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Abstract: In a context of growing electrification of road transport, Wireless Power Transfer (WPT)
appears as an appealing alternative technology as it enables Electric Vehicles (EVs) to charge
while driving and without any mechanical contact (with overhead cables or rails in the ground).
Although the WPT technology background dates from the end of 20th century, recent advances in
semiconductor technologies have enabled the first real demonstrations. Within the FABRIC European
project, the French research Institute VEDECOM and its partners implemented a whole prototype
wireless power transfer charging infrastructure. The first demonstrations of Inductive WPT in
different real driving conditions (up to 20 kW, from 0 to 100 km/h, with one or two serial vehicles)
were provided. This paper describes the prototype equipment and its instrumentation and provides
the system characterization results. The future of the Inductive WPT technology is further discussed
considering its different technical and economic challenges. In parallel, how this technology could be
part of future generation road infrastructures is discussed. Future research and demonstration steps
are presented in the conclusion.

Keywords: wireless charging; wireless power transfer; EV charging infrastructure; demonstration;
instrumentation; electric road; Electric Road System; Inductive Power Transfer

1. Introduction

The decarbonation of road transport will largely rely on electromobility deployment for the next
decade in Europe and worldwide. In [1] (p. 80), the International Energy Agency (IEA) predicts that
Electric Vehicles (EVs) will reach a market share (or sales share) of 26% in China and 23% in Europe by
2030, taking into account road transportation modes. As EV penetration grows, so will the number of
the associated charging infrastructures.

Commercially available EVs rely on conventional wired charging technologies currently deployed
in growing charging infrastructures [2]. From a user’s point of view, the charging experience is quite
different from what it used to be with Internal Combustion Engine (ICE) vehicles: On the one hand,
mass market EV Renault Zoe’s fastest charge is minimum 30 min. with current 50 kW DC chargers for
150 km additional autonomy [3]. On the other hand, the ICE equivalent vehicle category, such as Clio,
has at least double autonomy for a charging time of just a few minutes [4].
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Thus, even if the energy density of Electric Vehicle Batteries (EVB) and transferrable power levels
with wired charging technologies improve continuously, the gap to reach ICE vehicles’ charging
performances and user charging experience is still significant and will probably not be filled in a decade.
In addition, some new issues limiting or delaying the deployment of the improved conventional
wired technology might even appear (cable handling, for instance). Fortunately, electromobility
offers alternative charging solutions which are worth exploring or re-exploring in light of recent
technology improvements.

Electric Road Systems (ERS) as described in [5] (p. 1) are now entering the “Valley of death” after
their pleasant journey in the landscape of research. These complex systems include dynamic charging
technologies which are attractive alternatives since they do not rely on large and heavy batteries.
Indeed, they directly and efficiently get power while moving along a road, therefore saving battery
size as well as dedicated charging time and space.

Among these technologies, overhead conductive charging has been deployed successfully for
buses in urban roadways since the beginning of the 20th century (with traditional pantographs
conveying current from overhead wires). Overhead conductive charging for trucks and High Duty
Vehicles (HDV) is still in its experimental stages [6] in dedicated highway lanes. Ground conductive
charging has been tested in Sweden on a dedicated lane and a wide range of vehicles from passenger
cars to HDV [7]. These technologies can be considered as mature technologically in their original field
of application (guided transport). However, considering the many use cases addressed by non-guided
transports, they are not fully robust or interoperable yet. Many technical papers have reviewed
the advantages and drawbacks, infrastructure costs and viability aspects of these technologies [8]
(p. 56), [9–11].

Wireless charging solutions are at the origin of more than a century-old Roadway-Powered Electric
Vehicle (RPEV) concept, as recalled in [12]. These solutions can be viewed as being the ultimate
alternative solution for conventional plug-in EV charging issues. Indeed, in addition to the benefits of
charging while moving, they suppress the hazards of electricity transmission from a moving object to
a fixed one through mechanical contact.

As recalled by Cirimele [13] (p. 2), electricity wireless transmission has been the object of research
interest for centuries [14–16]. Wireless transmission of power has always been a goal since the founding
of Electrical Engineering as emphasized by Grant in [17] (p. 1277). In the last decade, the scientific
community has defined as Wireless Power Transfer (WPT) as the different ways to transfer energy in
a wide range of applications. Amongst the different WPT methods listed in [13] (p. 2), in [18] (pp. 2–3)
or [19] (p. 4), this work is focused on resonant Inductive Power Transmission (IPT) for EVs.

2. Fundamental Research Background and State of the Art of IPT Applications to Non-Guided
Surface Transport

IPT principles are based on Ampere’s law of 1820 and magnetic induction discovered by Faraday
in 1831. As also recalled in [13] (p. 2), Nicolas Tesla, one of the fathers of wireless power transmission,
presented a first contactless system [20]. He patented another apparatus for wireless electricity
transmission using inductors over a long distance in 1893 and identified later [21] two important
parameters for inductive transmission:

- The increase of frequency to improve the power transfer capability.
- The use of capacitors connected to the coils to create a resonant system and improve effectiveness.

The elementary components and functionalities of a resonant inductive WPT system are recalled
in [13] (pp. 3–4) and [17], (pp. 1278–1279) or [22] (p. 30).

The first attempt to couple significant power was patterned in 1894 by Hutin and Leblanc [23].
A first real application of the IPT for an EV was done in 1943, but with extremely poor efficiency [24].
Table 1 resumes the main IPT demonstrations listed by Grant [17], Cirimele [13], Jang [25], Brecher [26],
Panchal [27] and Qiu [28].
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Table 1. This table describes the main demonstrations of Inductive Power Transmission systems in
non-guided surface transport applications. The last line includes the FABRIC project target specifications
for the Versailles-Satory demonstration.

Year Project Veh.
Type

Driving
Cond

Air Gap
cm

Max
Power

kW

Op.
Freq. Hz Eff. % Ref. and

Outcomes

1980s
PATH

UC
Berkeley

Bus Dynamic 5–10 200 20 60 Ref. [29]
Project Stopped

1997 Conductix-
Wampfler Bus Static

Stationary 4 30 15

Patents [30,31]
First

commercialized
static WPT

2011

SELECT
Utah
State

University

Bus Static
Stationary 15–25 25 20 90

Ref. [32]
Commercial

activities (WAVE)

2011 PRIMOVE
Bombardier Bus

Static
Stationary
Dynamic

200 20 >85

Ref. [33]
Commercialization
static systems in

Mannheim, Berlin

2011 KAIST
Olev Bus

Static
Stationary
Dynamic

15–20 100 20 85

Ref. [34]
First

commercialized
dynamic wireless

charging bus

2016 ONRL Pass. car Slow
dynamic 20 22–23 90

Ref. [35]
Research

Laboratory
conditions

2017

FABRIC
Versailles-

Satory
Site

2 serial
Pass.
cars

Stationary
to

highway
speed (100

km/h)

17.5 20 85

Ref. [36]
Experimental
representative

road

Improved performances of the power electronic devices at frequencies above the tens of kilohertz,
and with current between tens and hundreds of Amperes, have raised considerable interest for
researchers and industries in IPT technologies since the 1990s. Successful commercialization initiatives
with buses in static/stationary use cases are recalled in Table 1.

The first static IPT applications up to 20 kW are reported in the automotive sector in [13] (p. 7)
since 2011 and in [37,38]. The commercialization of the first static IPT systems has started recently [39].
IPT transition from static to dynamic exploration is beginning. Oak Ridge National Laboratory (ONRL)
announced the first demonstrations of slow Dynamic IPT at 20 kW in an adapted serial car and in
laboratory conditions in 2016, thus bringing the Technology Readiness Level (TRL) to a value of 4–5
according to the standard classification [40]. Many other research projects have investigated the broad
aspects of dynamic IPT [13] (p. 8) in Europe and all over the world.

The goal of the FABRIC European project, which started in 2014 and finished mid-2018 [41],
was to assess the feasibility of different on-road charging technologies for the range extension on EVs
and pave the way for future potential deployments. In order to bridge the gap between laboratory
and operational environment, the specifications for the IPT demonstrations operated by the FABRIC
partner VEDECOM in collaboration with Qualcomm CDMA Technologies GmbH (Qualcomm) and
Renault were set as follows [42] (p. 571):

- The fixed part of the Dynamic IPT system should be integrated in a representative road
environment, enabling easy access for tune-up and maintenance

- The mobile part of the Dynamic IPT system should be integrated in a serial car
- The IPT system should enable
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# Charge from 0 to 100 km/h (to cover speed range for urban to highway use cases)
# Operate at 85 kHz. This frequency is in compliance with the emerging standardization

objective issued from the industry considering difficulty of meeting Electromagnetic Field
(EMF) and Electromagnetic Compatibility (EMC) requirements, packaging on vehicle,
mass and volume, comparative cost of power electronics as explained in [43] (p. 10)

# Charge of two vehicles on a 100 m test track (to ensure a minimum representativity at
reasonable project cost)

# Charge up to 20 kW (which is representative of the traction power needed for a small
passenger car at highway speed)

With these specifications, the technology objectives were set up to a TRL 6–7 since the
demonstrations were designed for a relevant environment, particularly as far as it concerns:

- Road integration: the previous demonstration of dynamic IPT charging on a passenger car was
done in laboratory conditions [35]. This demonstration is intended in a real civil engineered road
and in real climatic conditions

- Driving conditions: the previous demonstration of dynamic IPT charging on a passenger car was
done from stationary to low speeds [35]. This study was designed from stationary to highway
speed (100 km/h)

- Number of passenger vehicles demonstrated: single vehicle charging was previously
demonstrated [35]. The Versailles-Satory charging scenario for FABRIC involves two vehicles

- Operating frequency: from Table 1, previous demonstrations were done at operating frequencies
between 15 and 25 kHz. This demonstration was designed for a current standard operating
frequency of 85 kHz.

This paper provides an extensive outlook on the Versailles-Satory demonstrations and lessons
learned within the FABRIC project. In particular:

- It describes the experimental road infrastructure implemented, the additional equipment
integrated in a serial car, the characterization means, and methods used. Finally, it provides most
recent investigations’ methodology (Section 3, Material and Methods)

- It resumes the final characterized performances and safety assessment of the prototype system,
provides the latest results and discussions (Section 4, Public Demonstrations, Validation Result
and Discussions)

- It concludes on the results achieved vs. the initial objectives (Section 5, Conclusions) and on
the next use cases which should be further demonstrated. Finally, it describes the remaining
gaps to be bridged and how further developed IPT systems could find their place in future
ERS ecosystems.

3. Material and Methods

3.1. Road Infrastructure

The overall concept of the Versailles-Satory demonstration for the FABRIC project was to adapt
the FABRIC experimental road to the existing test tracks of the Versailles-Satory test site. The original
Dynamic Wireless Power Transfer (DWPT) system was provided by Qualcomm. The general track
configuration is described in Figure 1 below:



World Electric Vehicle Journal 2019, 10, 84 5 of 22World Electric Vehicle Journal 2019, 10, 84 5 of 22 
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test site. 

This experimental charging lane concept was developed to meet the different FABRIC project 
use cases expectations and to allow the simultaneous presence of two vehicles, analysis of the various 
transitions and the stabilization of charging. A minimum length of 100 m was required for speeds of 
a minimum of 60 km/h and with an effort to reach 80 km/h. Various power levels were to be tested; 
the target was to experiment a power flow up to 20 kW at high speed. As a complement to any electric 
on and off-board data measurement, precise positioning of cars and magnetic field emissions 
measurement close to the track would be available for data logging. 

Due to the technology designed by Qualcomm, a part of the power electronic had to be close to 
the emitter coils. Therefore, it was necessary to have easy access to all components integrated beneath 
the road surface. The available space was finally set to a cavity 80 cm wide and 20 cm deep formed 
by a precast central trench, as can be seen in Figure 2. 

 
Figure 2. Views of the experimental track pre-cast trench-based initial concept with a roadside DC/AC 
conversion cabinet behind the existing wall. 

In order to close this cavity, a special study was conducted in cooperation with IFSTTAR to 
define the adequate surfacing material. Different design constraints were set: no presence of iron 
elements, resistance in worst-case braking scenarios, smallest thickness, friction equivalent to road 
surface, easy opening and closing. These requirements were solved through simulation and testing 

Figure 1. Versailles-Satory experimental demonstration concept overview for the Versailles-Satory
test site.

This experimental charging lane concept was developed to meet the different FABRIC project
use cases expectations and to allow the simultaneous presence of two vehicles, analysis of the various
transitions and the stabilization of charging. A minimum length of 100 m was required for speeds of
a minimum of 60 km/h and with an effort to reach 80 km/h. Various power levels were to be tested;
the target was to experiment a power flow up to 20 kW at high speed. As a complement to any
electric on and off-board data measurement, precise positioning of cars and magnetic field emissions
measurement close to the track would be available for data logging.

Due to the technology designed by Qualcomm, a part of the power electronic had to be close to
the emitter coils. Therefore, it was necessary to have easy access to all components integrated beneath
the road surface. The available space was finally set to a cavity 80 cm wide and 20 cm deep formed by
a precast central trench, as can be seen in Figure 2.
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Figure 2. Views of the experimental track pre-cast trench-based initial concept with a roadside DC/AC
conversion cabinet behind the existing wall.

In order to close this cavity, a special study was conducted in cooperation with IFSTTAR to define
the adequate surfacing material. Different design constraints were set: no presence of iron elements,
resistance in worst-case braking scenarios, smallest thickness, friction equivalent to road surface,
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easy opening and closing. These requirements were solved through simulation and testing considering
3 cm thick bolted covers made in highly reinforced glass-fiber material. The final integrated charging
lane can be seen in Figure 3.
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3.2. Electric Infrastructure Integrated with the Dynamic IPT System and Additional Equipement

The DWPT primary system is supplied by a 1000 V DC electrical distribution with 50 kW power
along the test lane, as shown in Figure 4.
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A transformation cabinet which was implemented close to the experimental track hosts the grid
AC/DC transformer as well as the grid power measurement equipment (where UDC Line and IDC Line

were measured).

3.3. Serial Vehicle Implemented with Dynamic IPT System and Additional Equipment

Two extended Kangoos were provided for the experimentations by Renault. Two pads containing
secondary coils were integrated under the car. These two pads deliver energy to the battery through
a Qualcomm power converter, as shown in light blue in Figure 4.

Additional equipment integrated in the car by VEDECOM are displayed in green in Figure 5.
They provided the following data:

• electric measurements (charging current and battery voltage in the measure box)
• misalignment measurements (through data generated by a Global Positioning System (GPS)

enhanced by a Real Time Kinematic (RTK) system including inertial navigation sensors)
• air gap measurements (using four vertical laser sensors)
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Figure 5. Car Dynamic Wireless Power Transfer (DWPT) system components (in blue), main additional
measurement and localization equipment (in green), main car original components related to the system
(in yellow).

All the vehicle measurements and car CAN data could be recorded via a multichannel data logger
with an adjustable acquisition frequency up to 100 kHz.

The GPS-RTK system, integrated in one prototype car, provided up to centimeter-level accuracy
positioning of one reference point of the car (middle of rear axle).

The control/command data exchange between the infrastructure supervision room and the car
was done through a Direct Short-Range Communication (DSRC) antenna. All the information was
displayed in the car on an Human Machine Interface (HMI) also integrating a real-time misalignment
feedback graphic interface (based on a lane detection system developed according the methodology
background of [44]), as shown in Figure 6:
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Figure 7. Views of car prototypes. (a) First car prototype (EV1) used to test the first versions of the
charging system with view of the open central trench containing road embedded emitter coil system;
(b) view of the second car prototype (EV2) with finally implemented vehicle instrumentation.

3.4. Vehicle Verifications w/r External Power Source

In order to verify that the vehicle could withstand brutal power variations from an external
power source in driving conditions without unwanted BMS warning flags, a specific wheel bench test
campaign was conducted. These verifications are detailed in [42] (p. 572).
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3.5. Validation of the Integrated Vehicule and Infrastructure Methodology

The vehicle and charging infrastructure validation methodologies are described in detail in
FABRIC D4.7.1. [45]. This section resumes the main methodologies and associated results.

3.5.1. Battery Voltage and Current Shapes Visualization

Current and voltage shapes data (UBAT, IBAT, see Figure 5) were recorded at a 1 kHz sampling rate.
Power (PBAT) and Energy (EBAT) received by the battery were calculated and displayed on

a standard graphical output designed under Matlab®.
Power (PDC LINE) and Energy (EDC LINE) sent by the grid after DC conversion were measured and

calculated with the Power meter (see Table 2).

Table 2. Details of the type of measurement instruments used for the characterization in this study.

Data Measured Measuring Equipment
Description Measuring Range Relative Resolution

Vehicle Battery Voltage
(UBAT) Voltage transducer 0–350 V 0.6%

Vehicle Battery Current
(IBAT) Current transducer 0–200 A <0.5%

Grid Power (UDC Line
and IDC Line)

Multiphase precision
Power meter <0.05%

Distance to the ground
(4 points) Laser transducer 0–500 mm <0.5%

3.5.2. Dynamic IPT System Efficiency

The Dynamic IPT system efficiency was calculated after a test run and is defined as the ratio
between EBAT and EDC LINE.

3.5.3. Influence Factors Impact on Efficiency

The system performances were assessed following the FABRIC methodology in many real
driving conditions, with lateral misalignment between secondary and primary coils centerlines.
Misalignment was calculated from the data provided by the GPS-RTK system described in Section 3.3.
The positions of the car reference point (middle of rear axle) were recorded and post-processed
using a standard code in java. This code converted geographical coordinates (latitude and
longitude) into a Lambert 93 planar coordinate system (most commonly used for autonomous car
geolocation procedures). These coordinates were converted into a coordinate system linked to the
track. For practical reasons, the origin of the system was taken at the start of the last 25 m section, the
x-axis matching the reference line (0 misalignment) pointing in the direction of motion during standard
charge, and the y-axis pointing to the right. Figure 8 provides an example of the data generated in this
coordinate system.
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A 54-test plan was designed to organize the data collection and quantify the impact on charge
performance of three influencing factors:

• Misalignment (three targets: no misalignment, light right misalignment and light left misalignment;
the driving objective was to remain in the functioning range of ±20 cm)

• Air gap (three levels: nominal 175 mm, and two other levels close to the limits of the functional
range of ±25 mm)

• Speed (three levels: 20, 50 and 70 km/h).

Additional details are provided in [42].

3.5.4. EMF Assessment Inside and Outside of the Vehicle

The exposure measurement points inside the vehicle are shown in Figure 9.
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The measurements were performed with a wide frequency exposure level tester (1–400 kHz)
which is an equipment typically used to evaluate compliance with the exposure levels defined by the
International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2010 [46].

Outside the vehicle, as illustrated in Figure 10, the probe was located along the charging lane,
0.5 m above the ground and 1.5 m away from the track reference line (coils centerline).
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- Grid impact measurements
- ICT functions (mainly for HMI and Lane-Keeping Assistant (LKA) validation).

These are also detailed in and [42] (pp. 573–574).

3.6. Additional System Characterizations Methodologies

3.6.1. Radiated Emissions

In the automotive field, radiated Electromagnetic (EM) emissions measurements are carried out
in a static situation by positioning the vehicle on a chassis dynamometer. However, with the dynamic
IPT system, a measurement method must be adopted to measure the radiated EM emissions of the
complete “vehicle plus dynamic charging infrastructure” system. In the railway field, the EN 50121-2
standard [47] is dedicated to the radiated EM emissions measurement of the railway system as a whole
and this standard includes limits to be respected. Therefore, we adopted the same measurement
method and performed comparisons with the limits applied to the railway system.

As mentioned in [47], radiated EM emissions were measured 10 m away from the road center at
the passage of the vehicle at maximum charging power (20 kW), with a dedicated magnetic antenna
for 10 kHz to 30 MHz frequencies. The configuration of the spectrum analyzer connected to the
antenna (sweep time, number of points, resolution bandwidth) was in compliance with [47] for the
150 kHz–30 MHz frequency band.

3.6.2. Impact of a Dynamic Air Gap Variation on Charge Performance Evaluation Methodology

The additional laser instrumentation described in Section 3.3 enabled experimental measurement
of real-time distance to the ground of four points located below the car body. From these measurements,
an estimation of the variation of the distance to the ground vs. an origin position (taken at no speed) of
the front pad could be computed. These data could be merged and associated with PBAT data.

With this methodology, it was possible to study the effect of an air gap variation provoked
by a road discontinuity on charge performance. In order to reproduce a significant discontinuity,
a two-step test was set up using different duckboard layers as shown in Figure 11.
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4. Public Demonstrations, Validation Result and Discussions

4.1. Public Demonstrations

Between March and October 2017, the following dynamic charging performances were
demonstrated publicly several times, i.e.,

• at different power levels up to 20 kW
• from 0 up to 100 km/h speed
• with two prototype cars
• according to the different FABRIC use cases (stationary . . . )

The experimental Wireless Power Transfer infrastructure can be seen in operation in [48] as well
as in [36], which also resumes the FABRIC project demonstrations and findings.

4.2. Main Validation Results

4.2.1. Battery Voltage and Current Shapes

A typical example of measured current and voltage shapes (UBAT, IBAT), with calculated Power
and Energy received by the battery while charging (PBAT and EBAT) can be seen in Figure 12.
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Figure 12. Example of on-board pulsated current and voltages generated by the prototype Dynamic
IPT system charging at 20 kW while driving at 10 km/h.

The current and voltage shapes IBAT and UBAT have a pulsated shape, as shown in Figure 12.
Additional tune-up of the system and/or an additional filter could have reduced the amplitude of
these pulsations. These probably have an impact on the efficiency levels reported in Section 4.2.2 and
potentially on some EMC aspects.
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The impact on battery life is not straightforward from a first literature review. Short and transient
current pulses occur naturally in most EV load profiles. For example, accelerations or regenerative
breaking generate high amplitude currents with a frequency from 10 mHz to 10 Hz. The literature
review done in [49] shows a disconcerting variety of conclusions concerning the impact of these
currents on battery life with different technologies.

From [50] in the case of Li-Ion batteries, it was found that:

- Regenerative braking improves cycle life
- Cycle depth is a dominant factor for cycle life and battery degradation.

From [51], no difference in aging mechanism between cells exposed to no AC and cells
exposed to several different frequencies from 1 Hz to 1 kHz was observed during a one-year
experimental investigation.

From this perspective, repeated WPT opportunistic charges (at city lights or at stops or in motion
for example) with current and voltage shapes complying with existing or future standards powering
the battery could contribute to limit the discharge depth of batteries and therefore, have potentially
a good impact on battery life. Still, the effect of periodic and pulsated current issued from future IPT
systems should be further studied.

4.2.2. Dynamic IPT System Efficiency

As reported in the preliminary results reported in [42] (p. 576) on the tested prototype, the total
efficiency measured grid to battery reached around 70%. The value appears to be relatively low,
which is explained firstly by the strong innovative concept of the system using only one AC converter
for several distributed coil emitters. The designers expect to reach a significant progress close to 90%
with a more mature technology.

4.2.3. Influence Factors Impact on Efficiency

From the 54-test series, the main influence factor on efficiency was found to be misalignment.
Figure 13 presents the efficiency indicator (percentage of maximum efficiency recorder during the
54-test series) versus the misalignment data.
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Figure 13 shows values of efficiency globally greater than 85% of the maximum recorded efficiency
of the 54-test series. When average misalignment is contained in a [−15; +15] cm range, speed varies
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from 20 to 70 km/h and the air gap varies in the prototype functional range (see Section 3.5.3).
Beyond these misalignment values, efficiency starts to drop significantly. More details can be found
in [42] (p. 575).

No significant variation of the average misalignment was recorded while charging from 20 to
70 km/h using the LKA (see Figure 6). This is probably due to the experience gained by the drivers
during the many tests performed and the relatively short charging distance. Should longer charging
distances be considered and higher charging speeds, automation of a precise lane keeping task
will become a necessity. Future Connected Autonomous Electric Vehicles (CAEV) might eventually
integrate advanced lane keeping functions which could possibly be based on the EM field generated
while driving.

Misalignment tolerance of future WPT systems could also be improved by design.

4.2.4. EMF Assessment Inside and Outside of the Vehicle

Tests inside the car results show ICNIRP 2010 [46] compliant values for the operating frequency
of 85 kHz, as shown in Figure 14.
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4.2.5. Additional FABRIC Validation Results 

Figure 14. B-field measurements inside the vehicle for front passengers showing values below
27 µT following International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2010
applicable requirements.

Outside the vehicle, the EMF levels were measured in different driving conditions while charging.
The airgaps between the car and road embedded coils were set to their nominal position.

The levels obtained for the different tested use cases shown in Table 3 were below the values
recommended by [46]. In addition, some Electromagnetic Compatibility (EMC) verifications were
conducted without detecting a significant impact on the basic car functions.
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Table 3. Summary of the different test conditions. The maximum recorded values in different driving
conditions were compared to ICNIRP 2010 [46] levels.

Car Prototypes Driving Conditions Charging
Power (kW)

Speed
(km/h)

ICNIRP 2010
Compliant

EV1 & EV2 Car inter-distance: 50 m 18 20 Yes
EV1 & EV2 Car inter-distance: 50 m 18 20 Yes
EV1 & EV2 Car inter-distance: 50 m 18 50 Yes
EV1 & EV2 Car inter-distance: 50 m 18 70 Yes

EV2 Stationary 5 s 20 5–10–5–0 Yes
EV2 Stationary 5 s 20 5–10–5–0 Yes
EV2 Zig-Zag 20 20 Yes

EV2 Misalignment Target 15 cm
right 20 40 Yes

EV2 Misalignment Target 15 cm left 20 40 Yes

With the cumulated investigations performed on the Versailles-Satory test site and the other
demonstration operated by the teams of Politecnico di Torino [45], FABRIC developed some background
which can be used further in future assessment methodologies of Dynamic IPT systems.

Different standardization processes focusing on Inductive Dynamic PT are currently active,
as mentioned in [13] (p. 10). Amongst the different research and standardization activities,
complementary investigations regarding the EMF exposure levels of vehicle passengers and Vulnerable
Road Users (VRU) will be required. Reference [52] has recently defined limit power for WPT systems
operating at 85 kHz. Reference [53] aimed to improve measurement methods, dosimetric models and
phantoms of such measurement in vehicle inductive charging systems.

4.2.5. Additional FABRIC Validation Results

Additional assessment results of grid impact and ICT functions (mainly HMI and LKA validation
are detailed in [42] (pp. 573–574).

4.3. Additional System Characterizations Result

4.3.1. Radiated Emissions

The radiated emissions results are plotted in Figure 15.
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The results under 150 kHz are not relevant and cannot be compared to the EN 50121 standard
limit. Indeed, the measurement was carried out with a 10 kHz resolution bandwidth (RBW) required
to the 150 kHz–30 MHz frequency band in EN 50121. However, at frequencies inferior to 150 kHz,
the EN 50121 limit is defined for a measurement with a 200 Hz RBW. Since measurement with a 200 Hz
RBW takes too long to scan the 10 kHz–150 kHz frequency band in relation to the crossing time of
the vehicle in front of the antenna, we employed a 10 kHz RBW. A measurement with a 10 kHz RBW
instead of a 200 Hz RBW overvalues the result.

For frequencies between 150 kHz and 30 MHz, the emissions clearly exceed the limit applied for
the URBAN railway system. Nevertheless, considering the limit for the 25 kV rail system, only the third
harmonic exceeded the limit. Knowing that radiated electromagnetic emissions could be characterized
in the same way in a future standard for DWPT systems, it would be necessary to better confine the
magnetic field under the vehicle to reduce side emissions.

4.3.2. Impact of a Dynamic Air Gap Variation on Charge Performance

From Figure 16, we can observe that the transmitted power level is not influenced by a total air
gap increase of 10 cm from the nominal condition. Above this value, power disruption is observed.
The total air gap includes car vibrations while driving over the duckboard layers.
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This instrumentation could eventually be helpful to assess future product performances in real
driving conditions including road discontinuities.

5. Conclusions

5.1. Demonstrations and Experimental Characterizations in Real Conditions

The implementation of a prototype Dynamic IPT system in two serial vehicles and in the
Versailles-Satory experimental electric road project delivered demonstrations in compliance with the
initial FABRIC objectives in terms of:

• power levels (20 kW)
• charging speeds (from 0 to 100 km/h)
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• number of vehicles dynamically chargeable on the track (up to two).

Extensive demonstrations were performed in 2017 and the system was operable for a year in many
driving and climatic conditions. Road integration was handled with a civil engineering approach
given accessibility constraints to power electronic components. After the demonstrations illustrated
in [36–48], the TRL for the dynamic IPT technology could be valued between 6 and 7.

The results obtained from an extensive series of tests in many driving conditions are presented and
discussed in the Results section of this paper. They address global system efficiency, current shapes,
the impact of experimentally measured misalignment, EMF compliance with reference guidelines,
additionally measured radiated emissions and experimentally characterized air gap variations. All these
methodologies developed collaboratively within the FABRIC project can support future infrastructure
and product design, ongoing standardization and product assessment.

5.2. Prospectives

In light of these results, considering the successful feasibility demonstrations and other
investigations of the FABRIC project, many issues were identified. First, costs evaluations are
somewhat discouraging, since they range up to 3 MEUR/lane/km [54]. The many interoperability
issues [55] are also critical factors intensively reviewed by many ongoing standardization processes [13].
Finally, industrial processes for road integration also require a major effort [56].

Considering the current dynamic IPT systems performances, the centered urban use case appears
as the most accessible. Indeed, in this use case:

• EVs have the lowest speed and consumption, which implies a higher potential for additional
autonomy per km of charge while driving

• Pressure to ban ICE engines is very high in urban centers
• Land prices make charging infrastructure implantation costs very high
• The density of power supply equipment potentially available is important. Capacities from

existing metro and tram electric utilities could support part of the dynamic IPT charging
infrastructure deployment.

The first real deployment initiatives in an urban area appeared in Norway [57].
However, urban use case implies many interactions with VRU. Therefore, specific challenges

concerning safety, cohabitation and user acceptance will be prominent. On the other hand, extra urban
use case can permit the deployment of a controlled access lane in order to manage or cancel the
interactions with VRU. Therefore, higher-power experimentations could be possible.

Finally, the current research tries to identify the right dimensioning and covering rate of IPT systems
for long-distance applications [11,58]. Future System design considerations [59], traffic simulations
with high charging power and shared CAEV [60] show an interesting prospective. Advanced energy
management concepts like vehicular energy have been proposed [61]. Globally, visions of future
energy harvesting road ecosystems [62] could include vehicle to infrastructure bidirectional energy
transfers based on WPT, as visualized in Figure 17.
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Glossary

The following abbreviations are used in this manuscript:

BMS Battery Management System
CAEV Connected Autonomous Electric Vehicles
DC/AC Direct Current/Alternative Current
DSRC Direct Short-Range Communication
DWPT Dynamic Wireless Power Transfer
ECU Electric Control Unit
EM Electromagnetic
EMC Electromagnetic Compatibility
EMF Electromagnetic Field
ERS Electric Road Systems
EV Electric Vehicle
EVB Electric Vehicle Batteries
EVCC Electric Vehicle Communication Controller
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile
HDV High Duty Vehicles
HMI Human Machine Interface
ICE Internal Combustion Engine
ICNIRP International Commission on Non-Ionizing Radiation Protection
ICT Information and Communication Technology
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IEA International Energy Agency
IFSTTAR Institut Français des Sciences et Technologies des Transports, de

l’Aménagement et des Réseaux
IPT Inductive Power Transfer
LKA Lane Keeping Assistant
RBW Resolution Bandwidth
RPEV Roadway Powered Electric Vehicle
RTK Real-Time Kinematic
SOC State of Charge
TRL Technology Readiness Level
VCU Vehicle Charge Unit
VRU Vulnerable Road Users
WPT Wireless Power Transfer
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