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Abstract: Electric vehicles (EVs) are anticipated to play a critical role in the green transportation of 

the future. Logistics companies have started several projects operating with EVs in road 

transportation. However, routing decisions for EVs must take limited driving ranges into account. 

Previous related research on electric vehicle location routing problems (EVLRP) has investigated 

intra route facilities that support the energy supply network. Contrarily, this paper studies a new 

type of EVLRP with a restricted distance, where EVs are used for route planning in reverse flow 

logistics. The model is formulated from a real case problem in agriculture that combines both 

locating multiple depots and determining routing paths with a limited distance constraint. An 

adaptive large neighborhood search (ALNS) algorithm has been extended into four combinations 

and is proposed here for solving the problem. The computational results indicate that the ALNS 

algorithm can obtain quality solutions in short processing time when compared with software using 

exact methods. Furthermore, the proposed ALNS algorithm is applied to a case study problem to 

provide suitable locations and vehicle routes with a minimized total cost. 
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1. Introduction 

Road transportation represents a major activity in the logistics of the agricultural sector. It plays 

an important role in stakeholder satisfaction [1] and it is necessary for economic development. 

However, it also has an enormous impact on human health and the environment. Conventional 

vehicles use fuel engines, which are crucial sources of CO2, N2O, greenhouse gases (GHGs) [2], and 

negative externalities, including air pollution, noise, accidents, traffic congestions, climate change 

risk, and resource consumption [3]. According to Arias et al. (2018) [4], non-renewable energy sources 

that release GHGs account for 14% of global pollution. Thus, in the last decade, green logistics with 

green energy sources have received increased attention intending to minimize harmful effects on the 

environment. Electric vehicles (EVs) have become more attractive solutions to environmental 

problems via green technology. Many logistics companies have started projects for the 

implementation of EVs in their operations, such as UPS and DHL [5]. 

EVs have some benefits over traditional internal combustion engine vehicles (ICEVs). Firstly, 

EVs are the best alternative for greener transportation in the city and urban areas because they have 

zero GHGs emissions if their electricity comes from a renewable source. They also feature a 

significant reduction of air and noise pollution. However, EVs have limited driving ranges in 

comparison with ICEVs. The range of an EV depends on the electricity volume stored in the battery. 
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Fast chargers are not a practical option for transportation trucks since the charging stations are still 

insufficient [6]. The improvement of battery efficiency to extend the driving range is obstructed by 

concerns related to cost, the availability of materials, and safety [7]. These reasons imply that the 

situation of driving range limitation for EVs will not likely change in the coming year. Thus, it is still 

a greater challenge to consider the restricted driving range for EVs because of insufficient supporting 

systems. 

In recent research, some papers have focused on locating recharging stations or battery swap 

stations concurrently with routing decisions. Additionally, those papers considered the product 

delivery with a single depot location routing problem, a solution which impractically deals with real 

scenarios. Consequently, this paper intends to fulfill this gap and address realistic planning 

characteristics. This research not only determines locating multiple depots and assigning customers 

to them but also decides to route information for EVs with restricted driving ranges. This model is 

constructed for the planning aspect of a single echelon location routing problem, whereas previous 

studies have focused on the facilities for recharging and battery swap station. 

Cassava is the main economic crop of Thailand and generates huge income for the country. 

Currently, Thailand is the third-largest cassava producer globally, after Nigeria and Congo, but 

Thailand is the leading global exporter [8]. In 2017, Thailand produced 30.5 million tons of cassava, 

accounting for 9% of the world’s production, and the exporting value was 80,000 million baht [9]. 

Thailand has cassava planting areas that spread throughout every region of the country, where the 

total planting area is 8.9 million rai (1 rai = 0.16 ha) [10]. Because of the wide planting area, farmers 

must deal with a high transportation cost, especially when the distances between farms and buyers 

are far. Cassava farmers are facing constraints that reduce their income, owing to higher 

transportation costs, higher fuel prices, and additional price fluctuations. The current transportation 

system is still insufficient to support farmers. The government has focused on a policy surrounding 

this problem by supporting the establishment of collection centers. These centers will be standardized 

markets that set the standard price for buying a product, thereby farmers who live far away can save 

on transportation costs and receive fairness from selling products. Moreover, the suitable location of 

the center and economic routing will enhance the efficiency of the transportation system. Therefore, 

this research study focuses on finding the locations of collection centers and routing vehicles to pick 

up and deliver cassava to said centers. 

In developing countries, the agricultural sector typically lacks technologies to improve 

productivity and maximize crop yield. The motivation of this research is to provide a feasibility study 

for the integration of increasing farmer’s profitability via the technological benefits of EVs. The main 

contributions of this research study are threefold. Firstly, this paper proposes a new electric vehicle 

location routing problem (EVLRP) model, which is unique in terms of its planning aspects when 

compared to the previous literature on location routing problems (LRPs) dealing with EVs. Secondly, 

the model is formulated from a real case problem in Thailand. Besides, the model includes a realistic 

constraint, i.e., that the cassava quantity at the farm might exceed the vehicle capacity, thus the farm 

has a chance to be served more than once by applying a partial shipment with full vehicle capacity, 

then providing routing for the remaining quantity. Thirdly, the proposed adaptive large 

neighborhood search (ALNS) algorithm provides four combinations of different acceptance criteria 

for benchmarking. Then, the best one is selected for application to the case study. 

This paper is constructed as follows: A literature review is prepared in Section 2. Section 3 

presents the problem description and mathematical model. Section 4 introduces the ALNS 

methodology for solving this problem, while the computational results and their analysis are 

revealed in Section 5. Finally, conclusions and suggestions for future work are given in Section 6. 

2. Literature Review 

The literature review is composed of two main streams of research correlated with this work. 

The first stream concerns green location routing problems where no EV is used. Location routing 

problems (LRPs) integrate the facility location problems (FLPs) with vehicle routing problems (VRPs). 

Both FLPs and VRPs are NP-hard problems [11]. Therefore, LRPs also consider NP-hard 
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combinatorial optimization problems [12]. Many authors have studied LRP in variants of green 

transportation. Toro et al. (2017) [13] developed a bi-objective model considering environmental 

impacts. The first objective was to minimize the total operational cost, which consisted of the facility’s 
opening cost, the route opening cost, and the travelling cost. The second objective was to minimize 

fuel consumption and total emission. Wang and Li (2017) [14] proposed a low carbon model for LRPs 

with a heterogeneous fleet. The model aimed to reduce the total system cost, fuel consumption cost, 

and carbon emissions. The hybrid algorithm with simulated annealing (SA) and a variable 

neighborhood search (VNS) was represented as a solution approach. Xiao et al. (2012) [15] presented 

a fuel consumption minimization model with a fuel consumption factor where a SA method was 

developed to solve this problem. The model could decrease fuel consumption by 5% when compared 

to the conventional model. Dukkanci et al. (2019) [16] introduced a green hub location model by 

selecting the best location for the hub. The target was to optimize a reduction in CO2 emissions and 

fuel consumption by considering the speed and payload of the vehicle. Toro et al. (2016) [17] 
proposed a green open location routing problem (G-OLRP) model. An open LRP is where vehicles 

start at the depot but they do not necessarily return to the original depot. The authors formulated a 

bi-objective model to optimize the total operating cost and fuel consumption to reduce the total 

emissions. Wang et al. (2018) [18] studied a LRP in cold chain logistics to select a suitable location for 

distribution centers of fresh products. They proposed a model to minimize carbon emission costs and 

total operating costs. The review of recent studies indicates that many researchers have continuously paid 

attention to green LRP, which is expected given that global preservation is still a major research trend. 
The second stream correlates with LRPs using EVs for transportation. These papers studied 

finding the location of intra-route facilities to refill EVs or AFVs (alternative fuel vehicles) by adding 

facilities to routes. Wang and Lin (2009) [19] proposed a model for locating refuel stations, the results 

of which indicated that vehicle range was important for reducing the number of refueling stations. 
Then, Wang and Wang (2010) [20] studied the refuel station again but they applied a bi-objective 

model to passenger vehicles. Cavadas et al. (2015) [21] studied a problem for locating slow charging 

stations in urban areas. They found a solution to allow the demands of customers to be transferred 

between stations. Worley et al. (2012) [22] studied locating charging stations for EVs and designing 

routes. Their model goal was to minimize the total transportation cost, recharging cost, and cost of 

opening stations. Yang and Sun (2015) [23] proposed a model that decides the location of battery 

swap stations (BSSs) together with route planning. The authors proposed a heuristic adaptive large 

neighborhood search (ALNS) algorithm as a solution method. Li-ying and Yuan-bin (2015) [24] also 

studied both kinds of decisions with different charging technologies at each station. Each type of 

charging station is related to the opening cost and charging time. They developed a hybrid heuristic 

algorithm integrating a tabu search (TS) method with an adaptive variable neighborhood search 

(AVNS) method for solving the problem. Hof et al. (2017) [25] determined the locations of BSSs and 

examined routing problems for EVs. The AVNS algorithm was applied to solve the problem. Their 

method significantly improved the best-known solutions compared to the previous literature. 
Schiffer and Walther (2017a) [26] presented a model that takes the charging station location, 

routing, and different recharging options into account. The model also allowed EVs to partially 

recharge at both stations and customer nodes. A multi-objective function was formulated to 

minimize the total distance, the number of charging stations, and EVs used. Schiffer and Walther 

(2017b) [27] proposed LRP with intra-route facilities to determine the charging station’s locations. 
Partial recharging was also allowed in one of their models. The authors presented an ALNS algorithm 

for solving this problem. Their algorithm obtained new best-known solutions compared to the recent 

literature and new testing instances were created. Schiffer and Walther (2018) [28] studied a robust 

LRP to determine both a method for routing EVs and locating charging stations simultaneously. The 

special conditions were considered, such as uncertain customer demand and service time windows. 
The ALNS algorithm was developed for solving large-sized instances. Schiffer et al. (2018) [29] 
proposed an extension of the LRP with intra-route facilities by providing different replenishment 

services at facilities. Again, a hybrid ALNS algorithm and a local search method were proposed as 

the solving method. The algorithm has shown competitiveness when applied to exist instance sets. 
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Almouhana et al. (2020) [30] studied the LRP with constrained distance (LRPCD) dealing with 

multi depots and considering opening depots and assigning customers to them. However, they 

formulated a model as a delivery problem where the customer can be visited once. On the other 

hand, our work is different from these points of views and the combination of the proposed method 

in our work is unique. Berger et al. (2007) [31] presented a LRP model with rout-length constraints 

to combine location and routing planning when the customers must be served within a limited 

duration. The authors developed an efficiency exact method, branch, and price algorithm to solve the 

problem. However, the problem was formulated as uncapacitated LRP that is unrestricted of capacity 

constraint. Conversely, we formulated the capacitated LRP and developed a metaheuristic method 

as the solution approached. 
From the review of the recent literature, the aspects of LRP using EVs in the literature can be 

highlighted as follows: Previous papers have simultaneously focused on the determination of routes 

and locating intra-route facilities. The models have aimed to find locations to construct charging 

stations or batteries swap stations. Besides, the problems have been considered from a single-depot 

LRP with a delivery perspective. This paper simultaneously investigates multi-depot LRPs, assigning 

customers to selected depots, and route planning using EVs, which have limited distance. In this 

research, the problems are completely operated for a single echelon LRP, but previous studies have 

focused on intra-route facilities. Furthermore, this research deals with a realistic problem that occurs 

in the agricultural sector and that is solved by the proposed method. 
In the related literature, many metaheuristic processes have been carried out to solve LRPs. 

Generally, metaheuristics are compound strategies that combine features of heuristic techniques or 

other metaheuristic techniques. Contardo et al. (2014) [32] presented a three-stage heuristic which 

consists of a greedy randomized adaptive search procedure (GRASP) in the first stage, an integer-
linear programming (ILP) in the second stage, and the ILP with column generation in the third stage. 
The computation results have shown that their method was competitive with the previous method 

in the literature. Quintero-Araujo et al. (2017) [33] developed a two-phase metaheuristic for solving 

capacitated LRP. In the first phase, the algorithm selects the opened depots, allocates customers to 

the depots using biased randomization, and creates completed routing. In the final phase, the 
perturbation procedure was applied to refine the promising solution. This research proposes an 

adaptive large neighborhood search (ALNS) method to solve EV LRPs. The ALNS was first 

introduced by Ropke and Pisinger (2006) [34] to solve a vehicle routing problem (VRP) with pickup 

and delivery, including time windows. Since then, ALNS has been widely used for solving 

transportation problems. Koç (2016) [35] studied multiple periodic LRPs combined with a 

homogeneous fleet, heterogeneous fleet, and time windows. The proposed ALNS was highly 

effective at solving the problem and improved the solution of benchmark instances. Alinaghian and 

Shokouhi (2018) [36] integrated ALNS with a variable neighborhood search (VNS) method for solving 

large-sized instances of multi-depot, multi-compartment VRPs. The proposed algorithm indicated 

high performance compared to the results of exact methods. Chen et al. (2018) [37] developed an 

ALNS method to solve a dynamic VRP, such that the routing could be changed by real-time data. 
The computational results show that the algorithm could solve the problem within a short amount 

of time and obtain a good quality solution. Sirirak and Pitakaso (2018) [38] also developed an ALNS 

method with several destroy and repair operators to determine marketplace locations, as well as to 

make tourism routing decisions in the northern region of Thailand. The results illustrated the 

effectiveness of both the location and routing management. Theeraviriya et al., 2019 [39] used an 

ALNS method for solving a LRP while considering fuel consumption for different road categories. 
The proposed ALNS method provided the best location and route planning with the lowest fuel used, 

where the results were competitive compared to another method of a previous study. 

3. Problem Description and Mathematical Model 

This research addresses the electric vehicle location routing problem (EVLRP) where EVs have 

a restricted distance of travel. The purpose of the case study is to decide upon a suitable location 

among candidate cassava farms, then open relevant collection centers (depots). After that, the cassava 
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farms are assigned to relevant collection centers. Finally, transportation routes are prepared with 

restricted distances. These centers will gather cassavas from farms before sending them to cassava 

flour factories, the limitation of this research focuses only on activity between collection centers and 

farms. The transportation routes are provided for transferring cassavas from farm to collection center 

while the minimum of total cost is being considered. The model combined approach plans location 

and routing decisions simultaneously as they appeared in the literature surveys survey of recent 

research on LRPs [40]. The EVs are used in transportation, where they start each route at the collection 

center with a fully charged battery. Figure 1 illustrates the problem description. A partial shipment will 

be allowed if the farm has more cassavas than a vehicle’s capacity, as displayed by the dashed line in 

Figure 1. The rest quantity after partial shipment will be transported once by routing at that farm. 

 
(a) Location of cassava farms. 

 

(b) Select the location of collection centers. 

 

(c) Farm to collection centers assignment. 

 

(d) Routing with restricted distances. 

Figure 1. The solution of the case study problem. 

The problem contains the following constraints which must be satisfied: 

1. The total cassavas at farms assigned to a collection center must not exceed the capacity of the 

collection center. 
2. Each farm must deliver all generated cassavas to a collection center. 
3. Each route begins at a collection center and ends at the same place. 
4. The total cassavas on EVs must not exceed their load capacity at any time.  
5. Each farm can be visited more than once if the cassavas exceed a vehicle’s capacity. Then, partial 

deliveries are allowed. 
6. The route range must not exceed a given distance. 

Set 

I set of cassava farms, I = {i1, i2, i3, …} 

Parameters 

Sij the shipment cost per kilometer from node i to node j 

Qi cassava amount of farm i (kg) 

Dij distance from node i to node j (km) 

V EV load capacity (kg) 

Hj collection center capacity (kg) 

Oj opening cost if node j is selected to be collection center 

T maximum distance available for each EV 

F fixed cost per EV used. F is calculated by determining annual depreciation of EV divided by 

seasonal harvest period in one year (90 days). Then, the daily fixed cost per EV used is obtained. 
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Decision Variables 

yij = 1 if farm i is allocated to collection center j and a partial shipment is needed 

= 0 otherwise 

xij = 1 if there is a transportation from farm i to farm j and the remain from partial shipment is 

routed 

= 0 otherwise 

zj = 1 if collection center j is chosen 

= 0 otherwise 

ni = number of partial shipments at farm i 

K = number of EVs used 

Support Variables 

ui cumulative cassava quantity in EV at farm i, used for sub-tour prevention 

mj number of round transports using for routing at collection center j 

ri remaining cassavas after partial shipment from farm i 

ti cumulative distance at farm i 

Objective function 
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Equation (1) is the objective function associated with the total cost minimization, which consists 

of four cost terms, i.e., the opening cost of collection centers, the transportation cost of partial 

shipments, the transportation cost of routing, and the fixed cost of using EVs. Equation (2) ensures 

that each farm has to be allocated to only one collection center. Equation (3) calculates the number of 

partial shipments and remaining cassavas in case the amount at that farm exceeds the EV load 

capacity. Equation (4) specifies that the capacity of each collection center must never be exceeded. 

Equation (5) decides the route of the cassava collection from the farm. In the case of zj = 0, only one arc 

can be 1, otherwise, mj arcs are going into the depot j. Equation (6) is the connectivity equation which 

ensures that the vehicle must leave farm i after it has been visited. Equation (7) determines the route 

among the farms that are allocated to the same collection center. Equations (8) and (9) guarantee that 

the route length must not exceed the maximum distance allowed for each EV. Equations (10) and (11) 

specify that the load capacity of each EV must never be exceeded and deal with sub-tour prevention, 

respectively. Equation (12) limit the number of EVs used. Finally, Equation (13) defines the domain 

of decision variables. 

Obviously, the LRP considers to NP-hard combinatorial problems as it combines two NP-hard 

problems: the facility location problem (FLP) and the vehicle routing problem (VRP). Due to the 

complexity of the problem, the exact method proposed in early studies was limited by depending on 

a mathematical programming formulation. The authors usually use the reformulation and relaxation 

of some constraints such as sub-tour elimination and integrity [41–44]. Because of the exponential 

number of variables in the problem size, exact methods have been limited to a small and medium-

sized instance with 20 to 50 customers [45]. Based on our extensive study, the processing time was 

intolerable, and the model was frequently unsuccessful even though reformulations of constraints 

were attempted. For this reason, metaheuristics are usually used for solving realistic LRP problem 

size in more recent literature as we have reviewed in Section 2. Moreover, we aim to provide the 

optimization system for future research to support stochastic supply according to daily product 

quantity. The selection of depots and routes may be dynamic moved based on the changing of daily 

product quantity. Metaheuristics algorithm seems to be more advantageous to obtain a suitable 

solution in a short decision time. Thus, an ALNS was developed to reach close optimal results for 

solving large-sized problems, especially concerning the case study problem. 

4. Methodology 

When the problem size increases, it is too complex to be solved by the exact method, i.e., via the 

Lingo software package. In this research, an adaptive large neighborhood search (ALNS) algorithm 

was developed for solving the EVLRP. The basic concept of an ALNS algorithm is repeatedly 

applying several destroy and repair heuristics to gradually refine solutions at each iteration. A pair 

of heuristic methods is randomly selected to improve the solution. The method is adaptive because 

the probabilities of selecting them are adapted based on their past performance. Generally, ALNS 

algorithms begin with the generation of an initial solution, then destroy and repair methods are 

selected to improve the solution. Let D be the set of destroy operators, D = {d1, d2, d3, …, di}, and R 

be the set of repair operator, R = {r1, r2, r3, …, ri}. Each operator owns initial equal weights at the first 

iteration, indicated by w(ri) and w(di). At every iteration, the weights are automatically adjusted until 

complete pmax iterations. The operator that has successfully improved solutions has a higher weight, 

so it has a higher probability to be repeatedly selected. The proposed ALNS used to solve the EVLRP 

is presented in Figure 2. 
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Figure 2. Adaptive large neighborhood search (ALNS) algorithm for the EVLRP. 

4.1. Construct Initial Solution 

The initial feasible solution is fabricated by the below procedures: 

Step 1: Ranking the farms as the cassava quantity by descending order, then determining the 

probability of each farm based on the quantity. Due to the cumulative probability being directly 

varied based on the amount of the rubber, the farm that has more cassava would therefore have a 

higher chance of being selected, as shown in Figure 3; 

 

Figure 3. Example of calculation for 10 farms. 
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Step 2: Apply roulette wheel selection by choosing the random number between 0 and 1, then 

select a farm where the cumulative probability matches the random number. For example, if the 

random number is 0.18, farm 4 will be the depot; 

Step 3: Assign a farm to the opened depot by employing the nearest insertion method while 

considering the satisfaction of all constraints, such as the depot capacity, EV load capacity, and 

limited travel distance of EVs. If the load capacity and limited travel distance of EVs are satisfied 

while the depot capacity remains, terminate this route and start a new route to the same depot; 

Step 4: If there are unassigned farms left, return to step 1–3 to open a new depot and assign farms 

to the depot again until there are no more farms left. An example of this initial solution is shown in 

Figure 4, where farms 4 and 10 are established to be depots. 

Step 5: Repeat steps 1–4 for 10 times to obtain different 10 initial solutions. Determine the 

objective value then select the best one. 

 

Figure 4. Example of the initial solution. 

4.2. Destructive Degree 

The destructive degree (dd) is the proportion of destruction that is applied to the incumbent 

solution. This work designed a specific set of destructive degrees as follows: dd = {10%, 15%, 20%, 

25%, 30%, 35%, 40%}. At each iteration, the destroy operators will randomly select the destructive 

degree before execution. For instance, the current solution consists of 20 farms and the destructive 

degree is equal to 15%, so three farms (20 × 0.15) will be removed from the incumbent solution. Here, 

q is denoted as the removal farms. In this case, q = 3 will be put into the farm box waiting for the 

repair method operation. 

4.3. Destroy Operators 

This work designed five destruction methods for destroying the incumbent solution. These 

operators are used so that the searching area is continuously moving, thus a new solution is 

discovered. The different destroy operators are defined below. 

4.3.1. Random Elimination 

This is uncomplicated and fast heuristic. The basic concept is to randomly remove q farms and 

eliminate them from the current solution, as explained below. An example of random removal is 

displayed in Figure 5. 

Step 1: Randomly choose a destructive degree (dd); 

Step 2: Randomly choose a number of farms (q) associated with dd from the incumbent solution; 

Step 3: Detach q farms from the incumbent solution to the farm box. 
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Figure 5. The random elimination operator. 

4.3.2. Worst Elimination 

This operator eliminates q farms with the worst gain. Normally, the gain is the difference 

between the objective value when a farm is in the solution and the objective value when a said farm 

is eliminated.  

Step 1: Randomly select a destructive degree (dd). If there are 10 farms and dd = 20%, then two 

farms will be detached (q = 2); 

Step 2: Compute the objective value of the current solution; 

Step 3: Re-compute the objective value excluding a farm one by one, then determine the different 

cost by comparing to the objective value in step 2. These different values are gains, whereas if there 

are 10 farms, there are 10 gain values; 

Step 4: Sort farms in a decreasing order depending on the gain values from step 2; 

Step 5: Detach the first two farms that own high gain values to the farm box. 

4.3.3. Connected Elimination 

The connected elimination operator involves destroying farms that depend on the position of an 

adjacent point that is connected to the position of a removed point. This operator is similar to the 

related visits used by Shaw (1998) [46], however, while Shaw selects a set of customers that are most 

related to each other respect to the distance, we apply a simple concept to move q-1 farms which are 

the closest to the stone farm. 

Let the current solution contain 10 farms. 

Step 1: Randomly select the destructive degree (dd). Let dd = 20%, where two farms will then be 

detached (q = 2). 

Step 2: Randomly select a farm that will be removed and call this a stone farm. 

Step 3: Determine the distance of each farm when travelling from the stone farm.  

Step 4: Sort the farms in a descending order depending on the distances found in step 3. 

Step 5: Eliminate q-1 farms that are located closest to the stone farm then put them into the farm box. 

Figure 6 illustrates the connected removal when farm 3 is a stone farm and farm 7 is the closest 

location. Thus, these farms were removed from the solution. 

 

Figure 6. The connected elimination operator. 

4.3.4. Depot Elimination 

This operator has the purpose to increase the diversity of the searching area. The currently 

selected depot will be changed in its status from opened to closed, the current solution is shown in 

Figure 7a. 

Step 1: Randomly select one depot among all the opened depots, then close it. Let depot 10 be 

closed, as shown in Figure 7b; 
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Step 2: All farms which are assigned to this depot are moved to the farm box, as shown in Figure 7c. 

  
(a) (b) 

 
(c) 

Figure 7. The depot elimination operator. (a) The current solution. (b) The selected depot is closed. (c) 

All farms are moved to the farm box. 

Depot elimination allows the number of opened depots to change throughout the search, it will 

diversely impact the total cost in the objective function. After repair operation, the number of opened 

depots is possibly less or greater than the previous solution depends on the insertion method. 

4.3.5. Route Elimination 

The route elimination operator removes an entire route and moves the corresponding farms into 

the farm box. The new route will be rearranged by a repair operator. This method is a route 

improvement to explore better solutions. 

Step 1: Randomly choose a random number of p, where 1 ≤ p ≤ 3;  

Step 2: Then, p routes are chosen randomly from all routes. The selected routes and all 

corresponding farms will be removed to the route box and the farm box, as shown in Figure 8 for p = 2. 

This operator stems from the idea that farms which are close to other depots may be more 

advantageous for reassignment in the current situation 

 

Figure 8. The route elimination operator. 

4.4. Repair Operators 

After the current solution is eradicated by the destroy operators it becomes an incomplete 

solution. A repair operator is used to improve the solution by reinserting the farms from the box back 

into the solution, where it will then be a complete solution. Four different repair operators were 

designed and are detailed below. 
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4.4.1. Random Repairing 

The random repair operator is the most simple and uncomplicated method. The idea is to 

increase diversity by re-inserting the removed farms into any random position. The farms from the 

box are inserted randomly at any order and any position, as shown in Figure 9. 

 

 

Figure 9. Example of random repairing. 

4.4.2. Greedy Repairing 

The greedy repair operator will select the best position by considering the lowest cost. This is 

important for intensification. 

Step 1: Randomly select a farm in the box; 

Step 2: Determine the objective value at each possible solution that this farm could be placed at; 

Step 3: Place the farm at the cheapest position; 

Step 4: Repeat the process until there are no farms left in the box. 

4.4.3. Regret Repairing 

The regret repair operator does not only take the minimal cost position into account but also the 

second-best. This was used to compensate for the characteristics of the greedy repair operator. The 

definition of the regret value is the different cost between the best position and the second best. 
Therefore, farms with a high regret value have to be inserted first. The regret repairing method used 

in this work is determined by Equation (13): 

arg ����∈� �� ∆��
ℎ − ∆��

�

�

ℎ=�

�, (13) 

where U is the set of currently unassigned farms and ∆��
ℎ is the cost of the insertion of farm i into 

the hth lowest position. 

4.4.4. Route Repairing 

The route repair operator is a local search methodology for improving the solution. This 

operator is only applicable to the route elimination operator. The operator randomly selects the 
removed route points in the route box, then the route point initiates a new route to improve the 

solution, as shown in Figure 10. The new routes are expected to obtain a shorter path and reduce the 

travelling cost, which is the better solution. 
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Figure 10. The route repair operator. 

If the route repair operator is selected after other destroy operators except for route elimination, 

the removed farms in the farm box will be reinserted according to the procedure of those operators. 

4.5. Weight Adjustment and Solution Acceptance Methods 

The selection of destroy and repair operators depends on their success in former iterations. 
Adjusting the weights of the operators is imperative to enhancing the possibility that successful 

operators are selected more frequently than less successful operators. At the first iteration, every 

operator is set to equal weight, then operators are weighted and selected independently. Every time 

an operator finds a new solution, reward (��) is added to the current score to obtain the new score. 

The weight at each iteration will be updated according to this score. The reward (��) is assigned as 

follows: 
(��) = 10 if the operator finds a new global best solution; 

(��) = 8 if the operator finds a solution that is better than the incumbent solution; 

(��) = 6 if the operator finds a solution that is worse than the incumbent solution, but it is accepted 

by the acceptance method; 

(��) = 2 if the operator finds a solution that is worse than the incumbent solution and it is also 

rejected by the acceptance method. 
The acceptance method of ALNS is used to decide after the destroy and repair operations of 

whether to move forward with the incumbent solution (s) or with the new solution (s’). There are 

different strategies for implementing the acceptance method. Normally, an ALNS algorithm 

automatically accepts the better solution, but in the case of a worse solution, it must be judged by 

some techniques. However, this research proposes four acceptance methods, which are listed below. 

(1) Greedy Acceptance (GA) 

The solution s’ is only accepted if it is better than the incumbent solution s. 

(2) Simulated Annealing (SA)  

This method is motivated by a well-known metaheuristic, simulated annealing, which was first 

introduced by Metropolis et al. (1953) [47]. SA is the most widespread acceptance method used by 

ALNS algorithms. Every improving solution is accepted. Nevertheless, if Z(s’) > Z(s), s’ is accepted 

with a probability, as shown by Equation (14): 

� = ���
(�(�)��(��))

�  (14) 

where T is the temperature at the current iteration. T is decreased at every iteration by factor k. 

(3) Threshold Acceptance (TA) 

The new solution s’ is accepted if Z(s’) – Z(s) < Th. Th is called the threshold, which is decreased 

at every iteration by factor α. 

(4) Old Bachelor Acceptance (OBA) 
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The new solution s‘ is accepted if Z Z(s’) − Z(s) < Th with a threshold Th, which is the same as 

in the TA method. Th is decreased by factor α if a new solution is accepted. On the contrary, Th is 

increased by factor β if a new solution is rejected. 
The decreasing factor α and increasing factor β were set by the intervals of [0.9, 0.9999] and 

[1.000, 1.1], respectively. 

5. Computational Results 

The proposed ALNS algorithm was coded in Visual Studio 2019 with the mathematical model 

prepared by Lingo version 11 on a laptop with an Intel Core i5-4210U 2.70 GHz CPU with 6 GB of 

RAM. The experimental framework was a comparison between solutions obtained by the ALNS 

algorithm and solutions provided by the Lingo software. The three groups of test instances were 

generated randomly using a uniform distribution. All instances contained distinct numbers of farms, 

vehicle load capacities, and collection center capacities. Details of the test instances are shown in 

Table 1. The stopping criterion was set depending on the instance size. For small problems, the 

reported computational time was the duration after which the optimal solution was found. For 

medium, large, and case study problems, the algorithms were set equivalently to execute 1000 

iterations for each run. The algorithms were executed three times, then they reported the best results 

among the three executions. Since the optimal solution was not obtained during the acceptable 

processing time for the medium, large, and case study problems, the processing time for Lingo was 

set to be 72 h for the medium problem and 120 h for the large and case study problems. The best 

solution and lower bound obtained by Lingo were presented and compared with the solutions that 

were obtained by the proposed algorithms. The MINITAB® version 19 software package was used 

for statistical tests, where the significance level was set to be equivalent to 0.05 for all tests. 

Table 1. Defining the test instances. 

Small 

Instance 

Name 

Number 

of 

Farms 

Total 

Cassava 

(kg) 

Medium 

Instance 

Name 

Number 

of 

Farms 

Total 

Cassava 

(kg) 

Large 

Instance 

Name 

Number 

of Farms 

Total 

Cassava 

(kg) 

S1 4 12,978 M1 15 41,530 L1 25 64,111 

S2 4 11,923 M2 15 38,154 L2 25 63,900 

S3 5 16,210 M3 16 41,872 L3 28 64,077 

S4 6 20,692 M4 17 47,938 L4 30 67,218 

S5 7 22,688 M5 18 50,526 L5 30 66,320 

S6 8 29,770 M6 19 51,356 L6 35 73,872 

S7 9 32,776 M7 19 51,773 L7 40 81,096 

S8 10 35,485 M8 20 50,358 Case study 86 185,675 

Since four acceptance methods have been embedded in the algorithm, the mixtures of the 

proposed ALNS algorithms are clarified in Table 2. 

Table 2. Defining the proposed algorithms. 

Algorithm Name Acceptance Method Used 

ALNS-1 Greedy Acceptance (GA) 

ALNS-2 Simulated Annealing (SA) 

ALNS-3 Threshold Acceptance (TA) 

ALNS-4 Old Bachelor Acceptance (OBA) 

The experimental results were reported in terms of their quality and time by being separately 

considered for each instance size. For small-sized instances, both Lingo and all proposed ALNS 

algorithms could generate optimal solutions in a short amount of CPU time, as indicated in Table A1 

in Appendix A. This table reveals the time for which the proposed ALNS algorithm explores the 

solution. 
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As shown in Table A2, the results obtained by Lingo are the best solution within the limited 

computational time that was set to 4320 min. The proposed heuristics can find beyond Lingo, where 

they generate better solutions while only requiring 2.45 min on average, which is 99.94% ((4320 - 
2.45)/4320) less than Lingo. This means the proposed heuristics are effective for the medium-sized 

instance. Wilcoxon’s signed-rank test for matching pairs of data was performed to reveal whether 

the proposed ALNS algorithms were significantly different from the solutions obtained by Lingo. If 
p-value from the statistical test is lower than 0.05, it can be concluded that a pair of data is 

significantly different from each other. The results from MINITAB® are shown in Table 3. In this 

table, the numbers are p-values from the test. The signs ≤, =, and ≥ specify that the solution is less 

than, equal to, or greater than the compared method. 

Table 3. Statistical test results for the medium sized instance. 

Method ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Lingo   ≥(0.014)   ≥(0.014)   ≥(0.014)   ≥(0.014) 

ALNS-1 -   ≥(0.022) =(0.059)   ≥(0.022) 

ALNS-2 - -   ≤(0.022) =(0.100) 

ALNS-3 - - -   ≥(0.022) 

ALNS-4 - - - - 

The results in Table 3 show that Lingo initiates worse solutions than all the proposed ALNS 

algorithms. Comparing the proposed heuristics, ALNS-1 and ALNS-3 are not different from each 

other as well as ALNS-2 and ALNS-4, but ALN-3 is worse than ALNS-4. From this result, it can be 

concluded that ALNS-2 and ALNS-4 outperform the other proposed heuristics for this instance size. 

The experimental results of the large-sized instance (including the case study problem) are 

shown in Table A3. Lingo could only find lower bound solutions within the limited computational 

time, which was set to 7200 min. However, the proposed ALNS took only 7.48 min on average, which 

is 99.89% ((7200 − 7.48)/7200) less than that of Lingo. Comparing the proposed heuristics, it seems 

that ALNS-4 is the most effective algorithm because it generates the lowest cost in the large-sized 

instance and case study. 
The statistical test results found using Wilcoxon‘s signed-rank test for matching pairs of data via 

MINITAB® are shown in Table 4. The results are used to examine if the proposed heuristics are 

different than those of compared methods. The results show that the lower bound solutions from 

Lingo are lower than the solutions from all proposed heuristics, however they take a long 

computational time. Comparing the proposed heuristics, ALNS-1 is worse than ALNS-2 and ALNS-

4. The best algorithm here, similar to the medium-sized instance, is ALNS-4. 

Table 4. Statistical test results for the large-sized instance. 

Method ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Lingo   ≤(0.014)   ≤(0.014)   ≤(0.014)   ≤(0.014) 

ALNS-1 -   ≥(0.014) =(0.100)   ≥(0.014) 

ALNS-2 - -   ≤(0.014)   ≥(0.014) 

ALNS-3 - - -   ≥(0.014) 

ALNS-4 - - - - 

To verify the effectiveness of the proposed ALNS algorithm, the percentage differences (%dif) of 

the solutions generated by the ALNS were compared with the solution from Lingo. The percentage 

differences were calculated by Equation (15) and the results for all instance sizes are shown in Table 5. 

% ��� =  �
����� � ������

������
�  × 100, (15) 
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where ����� is the solution generated by the proposed ALNS algorithm and ������ is the solution 

generated by Lingo. 

Table 5. Percentage differences between the ALNS solutions and the Lingo solution. 

Medium-Size Instance ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Average −3.09% −3.84% −3.23% −3.95% 

Large-Size Instance ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Average 7.24% 6.63% 7.11% 6.59% 

From the results of the medium-size problem in Table 5, all the proposed heuristics obtain a 

better solution than Lingo, which only has the best solution within a limited amount of time. ALNS-

4 is the most improved solution, generating 3.95% less time than the solution from Lingo. For the large 

and case study problems, Lingo obtains solutions lower than the proposed heuristics, but these 

solutions are only lower bounds, even at 120 h. The proposed heuristics generate a percentage 

difference of approximately 6% to 7% when compared to the lower bound. ALNS-4 obtains the lowest 

percentage difference from the lower bound, which is only 6.59%. The full results are shown in Table A4. 

When comparing all the proposed ALNS algorithms, an experiment was performed to study the 

behaviors of the proposed methods when searching for the best solution. The proposed algorithms 

were run for a long duration to solve the case study problem until reaching mutual states. The best 

solutions obtained from each algorithm were recorded and the simulation plots are shown in Figure 

11. All methods started at almost the same solution level, but ALNS-1 slowly approached the best 

solution. The algorithm did not frequently move enough to escape from local optima, so it was 

difficult to discover the new best solution. The turning point of the line implies a change in the search 

area. On the other hand, ALNS-4 improved its best solution faster than the others, where it then 

moved to be the best until the end. Besides, ALNS-4 frequently changed the searching area, where it 

could escape from local optima. ALNS-4 was applied with an adaptive threshold to accept a new 

solution, where the threshold was periodically adjusted at each iteration. This was important for the 

concept of diversification, which let the algorithm always move to other searching areas. 

 

Figure 11. The solution plot during the simulation of the case study. 

Our proposed method has been tested on the well-known set of instances for the LRP that was 

gathered by Barreto (2007) [48]. Table 6 provides the information of Barreto’s instances and a 

comparison of the solutions obtained by other methods from the literatures and our proposed ALNS-
4. Column 1 shows the instance name that implies the number of customers and the number of 

candidate depots. Columns 2–3 show the vehicle capacity, the best-known solutions (BSK) reported 

by previous literature. The solutions obtained by multiple ant colony optimizations (MACO) [49] and 
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ALNS [50] are shown in columns 4–7. Columns 8–9 show the solutions obtained by the proposed 

ALNS-4. It includes the percentage deviation (%dev) to compare the performance in each method. 
The %dev is calculated by dividing the difference between the solution values from the method by 

the values of the best-known solutions. Bold numbers identify that best-known solution values are 

obtained by the proposed algorithm. 

It can be observed that the ALNS-4 is competitive with ALNS, because its average deviation to 

the ALNS is +0.02% (0.18% − 0.16%) concerning to the BKS. However, ALNS-4 has achieved 8 of 13 

BKSs, while the percentage of finding BKS is only 61.54%, which is slightly lower than ALNS 

(76.92%). ALNS-4 has obtained more average deviation than the MACO around +0.05% (0.18% – 

0.13%). Nevertheless, the MACO can achieve only 8 of 13 BKSs (57.14%), which is lower than the 

ALNS-4. 

Table 6. Comparison results on Barreto’s instances. 

Instance 
Vehicles 

Capacity 

BKS 

MACO 

(Ting and 

Chen, 

2013) 
%dev 

ALNS 

(Hemmelm

ayr et al., 

2012) 
%dev 

ALNS-4 

(Our 

Approach, 

2020) 
%dev 

Total 

Cost 

Best 

Solution 

Best 

Solution 

Best 

Solution 

Gaskell67-21 × 5 6000 424.90 424.90 0.00% 424.90 0.00% 424.90 0.00% 

Gaskell67-22 × 5 4500 585.11 585.10 0.00% 585.11 0.00% 585.10 0.00% 

Gaskell67-29 × 5 4500 512.10 512.10 0.00% 512.10 0.00% 512.10 0.00% 

Gaskell67-32 × 5a 8000 562.22 562.22 0.00% 562.22 0.00% 562.22 0.00% 

Gaskell67-32 × 5b 11,000 504.33 504.33 0.00% 504.33 0.00% 504.33 0.00% 

Gaskell67-36 × 5 250 460.37 464.37 0.86% 460.37 0.00% 464.81 0.96% 

Christofides69-50 × 5 160 565.60 565.62 0.00% 565.60 0.00% 565.62 0.00% 

Christofides69-75 × 10 140 844.40 844.88 0.06% 853.47 1.07% 850.48  0.71% 

Christofides69-100 × 10 200 833.43 836.75 0.40% 833.43 0.00% 833.43 0.00% 

Perl83-55 × 15 120 1112.06 1112.58 0.05% * * * * 

Perl83-85 × 7 160 1622.50 1623.14 0.04% * * * * 

Min92-27 × 5 2500 3062.02 * * 3062.02 0.00% 3067.46 0.18% 

Min92-134 × 8 850 5709.00 5709.00 0.00% 5712.99 0.07% 5712.99 0.07% 

Daskin95-88 × 8 9,000,000 355.78 355.78 0.00% 355.78 0.00% 355.78 0.00% 

Daskin95-150 × 10 8,000,000 43,919.90 44,131.02 0.48% 44,309.20 0.89% 44,096.49 0.40% 

Average   0.13% 0.13% 0.16%  0.18% 

Number of testing instances  14  13  13  

Number of BKS  8  10  8  

Percentage of finding BKS  57.14%  76.92%  61.54%  

Finally, the best solution of the case study problem was obtained by applying ALNS-4 to the 

problem. Table 7 shows the computational results of solving the case study problem. It was found that 

the location and transportation routes were managed efficiently by the proposed heuristic. From all 

86 cassava farms, eight farms were selected to be collection centers. Overall, 31 routes were provided 

to collect the products from all farms while considering the restricted driving range of EVs, which 

was set to 600 km in this case. Correspondence from Liimatainen et al. (2019) [51], the specification of 

the Tesla electric truck model “Semi” indicates the driving range of 480 to 800 km. Thus, we refer to 

this specification for determining the constrained distance in our case. The total cost was minimized 

to 509,906 baht. Consequently, it can be concluded that the proposed ALNS solution is a powerful 

method that can minimize the total cost in the agriculture sector by using EVs for transportation. 
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Table 7. Case study result solving by ALNS-4. 

Routing No. Opened Location Transportation Route Distance (km) Total Cost (Baht) 

1 4 4–1– 4 146 51,840 

2  4–1–7–10–20– 4 577 3780  

3  4–2– 21–39– 4 576 3775  

4 13 13–15– 13 132 51,777  

5  13– 15–14–13 583 3807  

6  13–44–12–13 578 3784  

7  13–18–16–22–13 514 3496  

8 19 19–17–41–40–19 563 53,717  

9  19–23–27–28–19 575 3771  

10  19–28–31–29–19 593 3852  

11  19–3– 8–9–19 573 3762  

12 42 42–45–86–32–35–42 570 53,748  

13  42–34–33–24–42 533 3582  

14  42–43–37–26–42 544 3631  

15  42–25–38–45–42 524 3541  

16 46 46–47–46 151 51,863  

17  46–47–46–50–46 551 3663  

18  46–49–48–46 583 3807  

19  49–56–57–58–49 581 3798  

20 55 55–36–84–55 590 53,838  

21  55–83–82–55 542 3622  

22  55–81–85–55 561 3708  

23 72 72–76–53–6–72 562 53,712  

24  72–59–60–61–72 564 3721  

25  72–63–69–71–72 555 3681  

26  72–5–62–68–74–72 583 3807  

27 80 80–77–75–52–11–80  570 53,748  

28  80–54–51–70–80 583 3807  

29  80–64–65–66–80 578 3784  

30  80–73–67–80 561 3708  

31  80–78–79–80 578 3784  

   Total cost 509,906 

6. Conclusions and Future Works 

This research studies the electric vehicle location routing problem (EVLRP), which considers the 

use of electric vehicles with restricted driving ranges in the agriculture sector to minimize the total 

operational cost. The operation of electric vehicles is becoming attractive in the logistics sector since 

they reduce environmental impacts caused by transportation activities. To the best of the author’s 

knowledge, this is the first time that this idea has been applied to a realistic agricultural problem. A 

mixed-integer programming model was formulated and solved by the exact method software 

package Lingo. The software could only handle small-sized problems and it could not deal with 

medium and large-sized problems, especially the case study problem. Thus, an ALNS algorithm was 

proposed for solving the EVLRP. 
In this paper, the ALNS was developed by deploying destroy and repair concepts. The proposed 

ALNS consists of five destroy and four repair operators. These operators were selected randomly to 

develop solutions in each iteration. Moreover, four acceptance criterions were applied, and four sub-
heuristics were created to assess the effectiveness of the solution acceptance method. The 

computational results show that ALNS-4 with the old bachelor acceptance method outperforms all 

the other proposed ALNS methods. Therefore, ALNS-4 was deployed to solve the cassava location 
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routing problem in Thailand. Then, eight collection centers and 31 routes were established with the 

lowest overall operational cost. This result indicates that the proposed heuristic method can solve the 

problem effectively according to the EV travel distance constraint, as well as other constraints. 
Moreover, the proposed methodology can be applied to other related industries as well. 

Nevertheless, there is still an opportunity to extend this paper. Future work would be to study 

adding time windows as well as heterogeneous fleets with various vehicle capacities and driving 

ranges. Furthermore, the maintenance cost and depreciation of EV batteries should be considered in 

the operational cost. The author believes this can be included to formulate a realistic model and will 

be a worthy extension. Additionally, although the proposed ALNS solution is very efficient and uses 

a well-known heuristic method, generating new destroy and repair operators with new acceptance 

methods will be valuable to study. Consequently, the solution approach of the problem should 

include hybrid metaheuristics to assess the efficiency of various methods for dealing with this kind 

of problem. 
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Appendix A 

Table A1. Results of the small-sized instance. 

Instance 

Name 

Lingo ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Status 
Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

S1 Opt. *  52,643   0.12   52,643   0.22   52,643   0.19   52,643   0.24   52,643   0.22  

S2 Opt.  52,863   0.13   52,863   0.20   52,863   0.25   52,863   0.23   52,863   0.24  

S3 Opt.  53,603   0.11   53,603   0.19   53,603   0.19   53,603   0.18   53,603   0.28  

S4 Opt.  55,976   0.14   55,976   0.17   55,976   0.24   55,976   0.21   55,976   0.25  

S5 Opt.  54,716   0.15   54,716   0.22   54,716   0.25   54,716   0.25   54,716   0.23  

S6 Opt. 103,451   0.16  103,451   0.26  103,451   0.23  103,451   0.24  103,451   0.22  

S7 Opt. 105,644   0.14  105,644   0.25  105,644   0.24  105,644   0.19  105,644   0.21  

S8 Opt. 107,809   0.18  107,809   0.23  107,809   0.21  107,809   0.18  107,809   0.22  

* Opt. = global optimal solution. 

Table A2. Results of the medium-sized instance. 

Instance 

Name 

Lingo ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Status 
Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

M1 Best ** 116,229  4320  12,742  2.22 111,812  2.28 112,742  2.51 111,812  2.58 

M2 Best 108,869   4320  105,603  2.51 104,732  2.27 105,385  2.62 104,514  2.69 

M3 Best 118,519   4320  114,963  2.13 114,015  2.31 114,963  2.61 113,778  2.62 

M4 Best 116,957   4320  113,448  2.26 113,448  2.27 113,448  2.36 113,448  2.64 

M5 Best 165,057   4320  160,105  2.21 158,785  2.73 159,775  2.53 158,455  2.32 

M6 Best 163,300   4320  158,401  2.34 157,095  2.57 158,074  2.38 156,768  2.77 

M7 Best 167,665   4320  162,635  2.31 161,294  2.78 162,300  2.44 161,294  2.44 

M8 Best 169,725   4320  164,633  2.27 163,275  2.62 164,294  2.51 163,275  2.41 

** Best = best solution reported by Lingo within limited time of 72 h. 
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Table A3. Results of the large-sized instance. 

Instance 

Name 

Lingo ALNS-1 ALNS-2 ALNS-3 ALNS-4 

Status 
Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

Cost 

(Baht) 

Time 

(mins.) 

L1 LB *** 172,727   7200  186,200  5.82 184,991  6.71 186,200  6.31 184,991  6.72 

L2 LB 175,367   7200  189,046  5.42 187,818  5.32 189,046  5.45 187,643  6.66 

L3 LB 175,017   7200  188,668  5.58 187,443  5.77 188,143  6.76 187,268  6.51 

L4 LB 183,455   7200  197,764  5.71 196,480  5.44 197,214  6.32 196,297  6.11 

L5 LB 192,638   7200  207,664  6.67 206,315  6.58 207,664  6.88 206,315  6.44 

L6 LB 271,964   7200  293,177  6.66 291,273  6.62 292,361  6.62 291,273  7.71 

L7 LB 276,329   7200  297,883  6.22 295,948  7.38 297,883  7.71 295,948  7.34 

Case 

study 
LB 476,548   7200  513,719  13.55 510,383  15.66 512,289  15.39 509,906  15.30 

*** LB = lower bound solution reported by Lingo within limited time of 120 h. 

Table A4. Percentage differences between the ALNS solutions and the Lingo solution. 

Instance ALNS-1 ALNS-2 ALNS-3 ALNS-4 

M1 −3.09% −3.95% −3.09% −3.95% 

M2 −3.09% −3.95% −3.31% −4.17% 

M3 −3.09% −3.95% −3.09% −4.17% 

M4 −3.09% -3.09% −3.09% −3.09% 

M5 −3.09% −3.95% −3.31% −4.17% 

M6 −3.09% −3.95% −3.31% −4.17% 

M7 −3.09% −3.95% −3.31% −3.95% 

M8 −3.09% −3.95% −3.31% −3.95% 

Average −3.09% −3.84% −3.23% −3.95% 

L1 7.24% 6.63% 7.24% 6.63% 

L2 7.24% 6.63% 7.24% 6.54% 

L3 7.24% 6.63% 6.98% 6.54% 

L4 7.24% 6.63% 6.98% 6.54% 

L5 7.24% 6.63% 7.24% 6.63% 

L6 7.24% 6.63% 6.98% 6.63% 

L7 7.24% 6.63% 7.24% 6.63% 

Case study 7.24% 6.63% 6.98% 6.54% 

Average 7.24% 6.63% 7.11% 6.59% 
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