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Abstract: The motivation of this paper is to identify possible directions for future developments in
the battery system structure for BEVs to help choosing the right cell for a system. A standard battery
system that powers electrified vehicles is composed of many individual battery cells, modules and
forms a system. Each of these levels have a natural tendency to have a decreased energy density and
specific energy compared to their predecessor. This however, is an important factor for the size of
the battery system and ultimately, cost and range of the electric vehicle. This study investigated the
trends of 25 commercially available BEVs of the years 2010 to 2019 regarding their change in energy
density and specific energy of from cell to module to system. Systems are improving. However,
specific energy is improving more than energy density. More room for improvements is thus to be
gained in packaging optimization and could be a next step for further battery system development.
Other aspects looked at are cell types and sizes. There, a trend to larger and prismatic cells could
be identified.

Keywords: electric vehicle battery; energy density; specific energy; packing efficiency; system design;
cell type; BEV; battery engineering

1. Introduction

Every year, more and more electric vehicles are being put on the road. Increasing demand is
supported by many forms of government subsidies, falling prices for vehicles and increasing offerings
by the vehicle manufacturers are encouraged and mandated through continuously stricter CO2 fleet
emission targets. To further increase the amount of battery electric vehicles (BEVs) sold, it is important
to overcome hurdles such as the long charging times and the lower range of BEVs compared to Internal
Combustion Engine (ICE) vehicles. Since especially range is very price sensitive due to the high cost of
the battery, a competitive BEV price is one of the key factors for a widespread adoption of BEVs [1].
Falling prices for electric vehicles are mostly realized through savings in cost for the most expensive
component of the electric vehicle, the battery system, which is estimated to make around 27% of the
vehicle cost structure when assessing a long-range electric vehicle with 75 kWh of energy [2] (p. 12).
In 2019, prices for battery systems in BEVs are estimated to stand at 139 €/kWh [3]. Now however, it is
estimated that prices will fall to 122 €/kWh in 2020 [2] (p. 12). This is already lower than the estimated
price of 150 $/kWh when electric vehicles can be price competitive with for example 50% of the US
car market not only from a TCO (total cost of ownership) perspective, but from an initial price point

World Electric Vehicle Journal 2020, 11, 77; doi:10.3390/wevj11040077 www.mdpi.com/journal/wevj

http://www.mdpi.com/journal/wevj
http://www.mdpi.com
https://orcid.org/0000-0002-6271-7256
https://orcid.org/0000-0002-4783-2598
https://orcid.org/0000-0003-2627-4002
http://www.mdpi.com/2032-6653/11/4/77?type=check_update&version=1
http://dx.doi.org/10.3390/wevj11040077
http://www.mdpi.com/journal/wevj


World Electric Vehicle Journal 2020, 11, 77 2 of 15

perspective. It is believed that going significantly below this point will lead to widespread adoption of
EVs [4]. However, it can also be noted that the relative and absolute price decrease rates for battery
systems are slowing down [5] (p. 31). This raises the question, where the future price optimization
next to the possible material improvements in the cell chemistry [6] (pp. 283–285) and production
scaling effects [7] (p. 297) can come from.

Standard battery systems that power electrified vehicles are composed of individual cells,
modules and together they form with the housing, thermal management and electric components a
battery system. The modules consist of multiple cells connected in series and/or parallel, encased in
a mechanical structure. A battery system is assembled by connecting multiple modules together in
series or parallel with sensors and controllers including battery management systems and thermal
management systems, and then encased in a housing structure as a final battery product designed
specifically for each electric vehicle model [7] (p. 291).

The characteristics of a battery cell play a pivotal role in the overall performance of BEVs.
Research on the optimization of the battery cell chemistry level has magnified strongly in the last
decade. Large incremental improvements, even with traditional lithium-ion batteries, have been made,
not only from a cost but also from an efficiency and lifetime perspective, which are all important critical
parameters for batteries. Especially the energy density on cell level is expected to raise further from
263 Wh/kg [8] (p. 4) in 2020 in large volume products to beyond 370 Wh/kg until 2024 [9] (p. 12), [10].
When looking at the whole cell and not the electrode and material level, the variation is very large:
cell sizes used in current electric vehicles on the market range from 3.5 Ah [11] (pp. VIII–32) to
beyond 120 Ah [12]. Next to the many different cell chemistries with differences in cost, electrical
behavior and lifetime, there are various types of cell formats such as pouch, cylindrical and prismatic
cells [5] (p. 12), [13], (p. 3) with different shapes and casing materials that influence the design of the
battery system with their distinct characteristics [14] (p. 183), like shown in Figure 1.
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Figure 1. Typical Cell Types for Lithium Ion Batteries. From left to right: Pouch Cell, Cylindrical Cell
and Prismatic Cell.

There is-so far-no consensus on using only one of the 3 different cell types, because they are all
being used by the various Original Equipment Manufacturers (OEMs). Hence, the overall battery
system topology varies greatly between different battery electric vehicle OEMs.

This raises the question, whether all these different design approaches are feasible or if a trend
towards a single most useful cell and system design is emerging. How can a cost- and range optimal
design be achieved on a system level? The aim of this work is a thorough review of current data
on battery system design structures of mass-produced BEVs. Special consideration shall be given to
packing densities and to cell type, size, use of space and weight of the battery system in current battery
electric vehicles. In this paper, we used the collected data to find potential areas of further battery
system optimization. By comparing the cell level to module and system level, we were able to see
whether the improvements made on cell level are also implemented on module and system level or,
if due to inefficient implementation, those improvements are getting lost on these levels. This paper
also investigates, how cell type and cell size affect energy density and specific energy on module and
system level. Like Jung, Silva et al. [15], it aims to find correlations and trends over multiple vehicles,
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but taken from a vehicle and battery system level to a battery system and component level. The result
of this study will help to show where optimization potentials for battery systems in BEVs especially
from a packaging and system design perspective are.

2. Materials and Methods—Battery Data

To achieve this, it was necessary to carry out a widespread assessment of electric vehicle battery
systems on the market. For this, available data for as many electric vehicle battery systems as available
from OEMs were aggregated from research papers, reports, conference presentations and websites.
Due to the fact that data on vehicles is not easy to find, it has to be noted that the aggregation of
the data was a combinatorial effort. Some sources give information on cell and module sizes of a
vehicle, others for example only on the system design. This data was then assembled into a full battery
system data set of the respective electric vehicle. In this paper, only the complete data sets are shown;
whenever raw data was incomplete, the vehicle was omitted from the study. An overview of the type
of data collected is given in Table A1 in the Appendix A.

Once aggregated, the data was then checked for plausibility and accuracy. Whenever multiple,
conflicting values existed, the more likely configuration was employed or, when one source was official,
this source was taken into account. Based on this large scale data collection, multiple classic battery
key performance indicators (KPI) where calculated for each battery system. These indicators where
calculated on cell, module and system level (Table A2 in Appendix A). Having thus gained a dataset
on the battery systems, it is possible to assess how different design configurations correlate with the
overall battery system KPIs. Then, the aim was to answer multiple questions:

1. How well is available space and mass utilized? The better the usage of volume available, the less
material next to the cell needs to be used. This saves weight and increases range as well as saves
costs, decreases the module size or leaves more space for further battery cells and thus more
range. This assessment can be done between cell and system level but also between cell and
module level and both from a gravimetric and volumetric perspective.

2. Are smaller or bigger cells beneficial to reach higher energy densities? Like the cell types, the cell
size also varies a lot between the different manufacturers.

3. How do different cell types perform from a gravimetric and volumetric perspective? As mentioned,
there is currently no industry consensus on one of the three types.

4. Which system level design shows the most potential for further optimization? A faster advancement
in battery technology with a decrease in price will lead, as mentioned before, to a faster adoption of
BEVs. Finding areas for potential optimizations will help to show battery system developers where
to focus on in the future.

3. Results

In the dataset, 25 different BEVs from 10 different OEMs with start of production (SOP) years
between 2010 and 2019 where analyzed regarding their specific energy, energy density, cell types,
and cell size. The vehicles looked at are mainly European, American and Asian vehicles excluding
Chinese vehicles because solid data there is scarce and hard to verify.

3.1. Development of Energy Density and Specific Energy

The energy density is one of the key indicators of performance of battery systems. Sufficient
energy density allows for sufficient range and is especially focused at the development on cell level.

3.1.1. Overall Development

To understand the development of battery systems over the years, Figures 2 and 3 show the
development of specific energy and energy density over the associated start of production (SOP) year
of the respective vehicle on all possible levels (cell, module and system).
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It is noteworthy, that both graphs show the same trend of increasing energy density over the last
years. In each graph, three linear regression lines are presented: the blue line is fit to the cell level,
the orange is fit to the module level and the grey line is fit to the system level. The reason for choosing
linear equations as a fit is the fact that typical “technology prediction” literature like [9] (p. 12) showcase
a qualitatively linear development forecast of future energy densities of lithium-ion batteries and thus
it makes sense to use the same proxy for comparing it to the actual development of battery systems.

Looking at the correlations (R2) for an assumed linear regression line of both figures, large variations
can be found. While the gravimetric energy density shows more constant correlations which vary
between 0.42 < R2 < 0.60 if cell, module and system level are compared, the volumetric energy density
varies between 0.18 < R2 < 0.72 between these. The smallest correlation in both graphs can be found
on cell level (gravimetric: R2 = 0.424; vol.: R2 = 0.189). The reason for this weak correlation are the
battery cells used by Tesla (circled in red) which create the decreased correlation because they have a
much higher energy density than others already since 2013.
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If one would exclude the data of the Tesla vehicles, the linear regression lines change: for the
gravimetric energy density on cell level it would be y = 14.095x − 28221, R2 = 0.753 (R2 increase of
0.329); for the volumetric energy density on cell level y = 28.171x − 56393, R2 = 0.694 (increase of 0.505).
On module and system level however, there were only minor changes of R2 (less than 0.1) found
between the regression line of all cars and non-Tesla cars. This means, that all the non-Tesla vehicles
correlate much more with each other than these vehicles with Tesla. The weakest correlation and the
smallest slope can now be found on system level in both graphs. With R2 = 0.32 for the volumetric
energy density, the correlation is very weak on system level.

Because the Tesla-vehicles have a large deviation from the other systems, especially on cell level,
they will be listed separately on the following graphs, similar to [15]. The correlation between the
values could also be interpreted as an indicator of how much the OEMs focused on a topic and how
much potential there is. High correlation would be a bigger focus but also currently less potential,
as all OEMs are closer together. On the other hand, a weak correlation can be interpreted as a topic
with less focus or more technical challenges that have yet to be overcome by some manufacturers.
It also means, that this topic shows high potential for improvement for the OEMs with data underneath
the regression lines.

3.1.2. Development on Cell Level

On cell level, there is a constant increase over the years and it can be seen that energy density
improves similarly on cell as on system level about 110% gravimetrically and 85% percent volumetrically
from 2010 to 2019 for non-Tesla vehicles (prismatic and pouch cells) (Figure 4). Tesla (cylindrical cells)
has increased less but has started on a much higher level already 2013. Overall, the relatively strong
correlations show, that the assessed manufacturers made use of newly improved cell performance
altogether. In addition, circle markers represent cylindrical cells and “X” markers represent prismatic
pouch and hard-case cells.
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Figure 4. Development of specific energy (Wh/kg) and energy density (Wh/L) on cell level of various
electric vehicles in the years between 2010 and 2019. Tesla with Cylindrical Cells shown separately.

3.1.3. Development on Module Level

Looking at the module level, one can also see a strong increase in specific energy and energy
density over the years (Figure 5).
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Figure 5. Energy density development on module level in the years between 2010 and 2019.

Prismatic and pouch cell vehicles improved on a lower basis by about 100% volumetrically and
gravimetrically. Cylindrical cell vehicles (Tesla) improved as well, although on a higher level: specific
energy improved about 61%, energy density by about 128% (calculated from Figure 5). This shows
that they have increased their energy density much more than their specific energy which means that
they focused more on packaging than on weight saving. This also correlates to the fact that cylindrical
Tesla cells already in 2013 where much better than cells used in other vehicles and that they now made
use of this cell potential even better.

3.1.4. Development on System Level

On system level (Figure 6), there is similarly to the module, a strong increase overall both in
specific energy and energy density. However, the correlation coefficient R2 of the energy density is
much lower on a system level for pouch and prismatic cell vehicles than for the cylindrical cell vehicle
manufacturer, Tesla. It shows, that gains made on module level are not always efficiently transferred
to the system level by many different manufacturers.

World Electric Vehicle Journal 2020, 11, x  7 of 16 

 
Figure 6. Development on system level in the years between 2010 and 2019. 

3.2. Level Efficiency 

To analyse how efficient the OEMs can transfer the energy density of the cell level to the higher 
levels, a plot which compares these was constructed. Different from a Ragone plot [16] (p. 3), specific 
energy and energy density and not specific energy and power are plotted against each other. Three 
different combinations are possible: cell to module, module to system, and cell to system. As 
mentioned above, because cylindrical vehicles (Tesla) have very different values from other vehicles, 
they were separately categorized in the following figures as well, like in [15]. 

The goal of every OEM should be to aim for an efficiency rate of 1 between cell and system level. 
This means, when a cell for example has an energy density of 500 Wh/L the energy density of the 
system will also be 500 Wh/L. In reality however, this is not possible. Due to cooling systems, battery 
management, contacting technology, sensors etc. the energy density decreases on every level. The 
efficiency rate can be calculated as follows: 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑒 =  𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙(𝑒𝑥𝑝𝑙. : 𝑆𝑦𝑠𝑡𝑒𝑚)𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 (𝑒𝑥𝑝𝑙. : 𝐶𝑒𝑙𝑙)   

The same applies to the specific energy efficiency rate. 

3.2.1. Cell Level to System Level 

As Figure 7 implies that, the efficiency of the specific energy of all cell types, is higher than their 
energy density. It can also be noted that the gravimetric correlation is very high (R² = 0.795 for pouch 
and prismatic cells; R² = 0.824 for cylindrical cells), the volumetric correlation of prismatic and pouch 
cell vehicles (R ²= 0.378) however is rather weak. 

0

50

100

150

200

250

300

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

En
er

gy
 d

en
si

ty
 a

nd
 sp

ec
ifi

c 
en

er
gy

 sy
st

em

SOP

Gravimetric (Wh/kg) – Prismatic and Pouch
Volumetric (Wh/L) – Prismatic and Pouch
Gravimetric (Wh/kg) – Cylindrical
Volumetric (Wh/L) – Cylindrical
y = 8.026x – 16065, R²=0.790
y = 11.238x – 22512, R²=0.401
y = 8.006x – 15992, R²=0.759
y = 12.532x – 25052, R²=0.600

Figure 6. Development on system level in the years between 2010 and 2019.
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3.2. Level Efficiency

To analyse how efficient the OEMs can transfer the energy density of the cell level to the higher
levels, a plot which compares these was constructed. Different from a Ragone plot [16] (p. 3),
specific energy and energy density and not specific energy and power are plotted against each other.
Three different combinations are possible: cell to module, module to system, and cell to system.
As mentioned above, because cylindrical vehicles (Tesla) have very different values from other vehicles,
they were separately categorized in the following figures as well, like in [15].

The goal of every OEM should be to aim for an efficiency rate of 1 between cell and system
level. This means, when a cell for example has an energy density of 500 Wh/L the energy density of
the system will also be 500 Wh/L. In reality however, this is not possible. Due to cooling systems,
battery management, contacting technology, sensors etc. the energy density decreases on every level.
The efficiency rate can be calculated as follows:

e f f iciency rate =
energy density o f higher level(expl. : System)

energy density o f lower level (expl. : Cell)

The same applies to the specific energy efficiency rate.

3.2.1. Cell Level to System Level

As Figure 7 implies that, the efficiency of the specific energy of all cell types, is higher than their
energy density. It can also be noted that the gravimetric correlation is very high (R2 = 0.795 for pouch
and prismatic cells; R2 = 0.824 for cylindrical cells), the volumetric correlation of prismatic and pouch
cell vehicles (R2 = 0.378) however is rather weak.World Electric Vehicle Journal 2020, 11, x  8 of 16 
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The efficiency rates are shown in Table 1. To see where this efficiency gets lost, the two combinations
cell to module, and module to system, need to be analyzed.
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Table 1. Efficiency rate of cell level to system level.

Gravimetric Prismatic
and Pouch

Gravimetric
Cylindrical

Volumetric Prismatic
and Pouch

Volumetric
Cylindrical

Average 0.575 0.552 0.353 0.295
Lowest 0.495 0.484 0.168 0.247
Highest 0.742 0.672 0.528 0.356

3.2.2. Cell Level to Module Level

Figure 8 shows the specific energy and energy density of the cell vs. the module. It can be
observed, that on the one hand the correlation of all four regressions are very strong and range from
R2 = 0.648 to R2 = 0.885. On the other hand, it is clearly visible why cylindrical cell vehicles were
affecting the cell level in Figure 2 so much but not the other levels.
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Figure 4 shows that the volumetric density of cylindrical cells is by far the best. However,
the volumetric energy density of the respective modules is on the same level as the other cell types.
The gravimetric and volumetric regression lines of Pouch and prismatic cell vehicles show a similar
slope and a similar correlation. Hence, the efficiency loss and the weak correlation seen in Figure 7
(cell to system) does not come from the losses from cell to module level.

The data shown in Table 2 underlines the findings in Figure 8. The efficiency rate for pouch and
prismatic cell vehicles is in both cases above 0.73. The volumetric efficiency rate of cylindrical cell
vehicles is with 0.362 very low. The first conclusion made from this data, is that Tesla, which is the only
manufacturer with round cells, has a lot of potential in further developing their modules. This is very
likely due to the fact that the round cells can inherently be packed less dense than prismatic or pouch
cells due to their shape. It is however important to mention again that cylindrical cell modules are not
worse; they have about the same density as other battery modules. But because the cylindrical cells are
leading in energy density on volumetric and gravimetric scale, the modules could be even better.
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Table 2. Efficiency rate of cell level to module level.

Gravimetric Prismatic
and Pouch

Gravimetric
Cylindrical

Volumetric Prismatic
and Pouch

Volumetric
Cylindrical

Average 0.816 0.716 0.732 0.362
Lowest 0.658 0.595 0.541 0.283
Highest 0.926 0.897 0.892 0.578

3.2.3. Module Level to System Level

Figure 9 shows again similar efficiency on gravimetric energy density. The gray and blue regression
line both show a strong correlation (R2 = 0.731 for pouch and prismatic cell vehicles; R2 = 0.965 for
cylindrical cells in vehicles). The volumetric energy density looks different. While Tesla with their
cylindrical cells was less efficient in bringing the good cell density to their modules, they are very
efficient in bringing the module density to system level (volumetric efficiency rate = 0.834, see Table 3).
They also show a high correlation (R2 = 0.832) from cell to system. The volumetric energy density of
other systems, show only weak correlations (R2 = 0.48) on module to system level. Also, the volumetric
efficiency rate of these vehicles is with 0.477 almost half of the efficiency rate of cylindrical cell systems.
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Table 3. Efficiency rate of module to system level.

Gravimetric Prismatic
and Pouch

Gravimetric
Cylindrical

Volumetric Prismatic
and Pouch

Volumetric
Cylindrical

Average 0.706 0.772 0.477 0.834
Lowest 0.62 0.738 0.21 0.616
Highest 0.885 0.812 0.753 0.952

Comparing the efficiency of the different levels, Figures 6–8 clearly show that the gravimetric
energy density is on all levels similar in correlation and efficiency rate, for all cell type vehicles.
The volumetric energy density on the other hand shows different correlations and different efficiencies
on each level and between the cell shapes. Cylindrical cells have a higher volumetric and gravimetric
density. However, they lose this advantage due to a low volumetric efficiency rate between cell and
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module level (0.362). The volumetric efficiency rate between module and system level is on the other
hand very good. For pouch and prismatic cell vehicles, it is the other way around. While Tesla with
its cylindrical cells has a weak volumetric efficiency rate between cell and module, the other vehicles
have a twice as high volumetric efficiency rate (0.732). However, between module and system level,
the volumetric efficiency rate is lower (Cylindrical: 0.834; Prismatic and Pouch: 0.477). The regression
in Figure 9 between these levels shows also the weak correlation (R2 = 0.48) which explains where the
weak correlation in Figure 7 comes from.

From Figures 7–9 can be concluded, that the gravimetric energy density has already been focus
of most OEMs, seen by relatively high efficiency rates and strong correlations on all three levels.
The volumetric energy density does not show these constant efficiency rates on all levels. Hence,
some OEMs show a lot of room for improvements especially between module and system level.

3.2.4. Cell Size

In Kerler, one of the conclusions is that there is no universal possibility of determining an
optimal battery cell size for electric vehicles because the influence through boundary conditions
of the specific system is very strong [17]. However, the industry trend seems to be converging to
at least slightly higher cell capacity since energy density increases and cell size at least stays the
same. An extreme example of this is the BMW i3 where the cell capacity more than doubled towards
120 Ah [12] over the years whereas cell size stayed the same. Other novel announced designs that are
not yet available on the market have cell sizes that are so large, that the module level is skipped like
the BYD “Blade Battery” [18] or the CATL “Cell to Pack” System [19]. These are not included in the
data. This would mean that the module level could be skipped entirely and one integration level falls
away which by itself would strongly increase energy density and specific energy.

As can be seen from Figure 10, there is no universal trend in cell size for new vehicles in the
assessed data—however maximum cell sizes seems to be going up continuously which fits with
announcements mentioned above. Also, plotting cell energy vs. system specific energy does not reveal
any strong correlations between dense and less dense systems.
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However, one could identify three groups: very small cells, medium sized cells and a few very
large cells that increase system specific energy with size. Very small and very large cells seem to be
advantageous—medium sized cell vary widely in their specific energy with an significant increase
in specific energy for cells above 200 Wh. Overall, no clear conclusions can be drawn and it seems
to be a matter of system design quality how much of a cell is “left” on system level. Doing the same
comparison with energy density does not reveal significant differences.
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3.2.5. Cell Type

All three cell types have been integrated into series production system designs. This shows that
none of their distinctions is so good or bad that this makes them superiorly attractive or unfitting. It is
noteable that Tesla is the only vehicle manufacturer that has been using cylindrical cells in large scale
EV applications. The other manufacturers employed prismatic hard case or pouch cells. The round
cells have a packaging disadvantage and this shows clearly when comparing energy density between
cell and module level for the various systems. The use of these round cells comes from Tesla’s history of
employing laptop battery cells for their original Tesla Roadster, their first vehicle. However, even Tesla
is announcing to introduce non-cylindrical cells to their vehicles [20].

In the book by Arora et al. [14] (p. 183) criteria for structural characteristics of battery cells are
assessed and small cylindrical cells are ascribed to only good, but not excellent “appropriateness for
production runs.” This seems not to represent reality as especially Tesla is producing at the largest scale.
Another relevant criteria in Arora et al. [14] is safety of a cell type, where pouch cells are described
as performing poorly in this regard compared to the others. However, since they are used widely as
well, this assessment is either untrue or safety can be increased to an adequate level on a module level.
“Field replaceability”, which means the ability to replace individual cells in a pack during its lifetime
not in the factory, is another criteria that is only “possible” with prismatic hard-case cells, according to
the source Arora et al. [14]. This also seems not to have played out this way—none of the cell types is
being replaced individually in the field in current OEM battery systems because no real incentives
exist and it is technically hard to do so [21], (p. 2).

When looking at the data (specific energy and cell type, Figure 11), one can see that prismatic
cells have a slightly lower energy density than pouch cells and these two a significantly lower energy
density on system level than the cylindrical cell. As shown above in Figure 11, the difference is smaller
than the difference in specific energy on cell level because round cells can be packed less optimally.
From this data, an existing advantage for the cylindrical cell can be seen, but it could be eroded by
larger and larger prismatic and pouch cells or even a cell to pack system which would not be as
advantageous with cylindrical cells.
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4. Discussion and Conclusions

The data analysis brought many relevant insights. One specific result of the assessment is that
specific energy on system level is seems to be mainly a question of cell chemistry; the cell mass fraction
between different systems stays relatively similar—much more so than energy density: Looking at the
data, it becomes clear that many systems assessed have a quite low energy density as compared to their
cell energy density and that the range of energy density between vehicles is very high. Especially the
influence of efficient packaging is very strong for reaching high driving ranges because spare volume
is scarce in vehicle design and packaging is not always done very efficiently, but efficient packaging
means more space for cells. To make use of this, many tools like [22] exist to build digital mock-ups of
various cell arrangements for efficient comparison.

It has to be noted, that the efficient use of the available space also has further advantages: less space
means less material used on housing and other components and then less weight for the battery
system which further increases range and can even help reduce the sizing of other components because
their strength can be lower because of a more compact and lighter battery system. This effect is also
known as the “negative weight spiral” [23]. It is also expected that when cells get cheaper and cheaper,
reducing system size and making use of the “weight spiral” can be a further differentiating and also
cost saving factor for battery system designers.

But how good can we expect current systems under ideal integration to get? The best system
available today has a specific energy of 181 Wh/kg. If one were to take the best cell-to module efficiency
(0.926) and the best module to system efficiency (0.885) and the cell with the highest specific energy
(269 Wh/kg), already current system designs could have 220 Wh/kg. This were to be an improvement
of 22%. For the energy density a similar thought experiment is possible: the current best system has
264 Wh/L, the best cell has 741 Wh/L. Taking the efficiencies like above (0.892/0.952), one would end
up with a system that has a staggering 629 Wh/L. However, this theoretical value can be limited by
other factors such as cooling system layout necessities for different cell types or module and system
configuration limitations but shows the potential that might be possible.

Also, other limits to the study exist that need to be taken in to account: All the data is a best
assessment from the external sources available, not from an own assessment of actual vehicles.
Especially volumetric data can have inaccuracies because it is not known whether the displacement
volume or the box volume is given for the system components. However, since shapes of modules and
systems is overall prismatic in most cases, this should not alter the results significantly. Furthermore,
the integration of a system into a pack is a factor that can especially influence gravimetric data. If the
battery system design is made to increase the stiffness of the entire vehicle body, the battery housing
needs to be much stronger than a battery system housing that relies on the strength of the vehicle
structure. The influence of this on weight is difficult to quantify. But given the fact that all battery
systems themselves have to pass some sort of mechanical certification tests like the ECE R 100 [24],
a similar minimum stiffness between systems can be expected. Also, power requirements can vary
greatly depending on the vehicle, and thus the size of the cooling system of the battery could affect
overall system size and weight strongly and increase the volume especially for larger premium vehicles.

For future research, more assessments are possible: when Cell-to-Pack technology hits the market,
it will be insightful to analyze the real-world benefits of this design concept. Also correlations between
vehicle power and cooling system strategies could be taken into account when better data becomes
available for this.

Compared to other studies about battery system configurations, this study has the advantage of
using up-to-date real-world data and not assessments of single systems or hypothetical configurations
that exist in prototype vehicles or digital mock-ups but not in large vehicles; also not only the cell and
the system are compared, but also the module level. It is possible to use the results of this design
assessment study for various purposes. For battery system designers, initial estimations for package
density assessments can be made and cell choices can be supported by comparison to current real-world
battery systems. The study also shows the limits in packing density that can be achieved with current
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system designs and thus helps to define the boundaries of possible system performance values like
weight, size or energy content and thus helps advance battery system development.
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Appendix A

Table A1. Collected Data.

Vehicle Name Vehicle Manufacturer Year of Market Entry Vehicle Weight Vehicle Class
Cell Type Nominal Voltage Cell Manufacturer Cell Capacity Module Size

Module Weight Module Configuration System Configuration System Size System Weight

Table A2. Estimated and calculated values.

Energy Density Specific Energy System Voltage Cell to Module Ratio
(gravimetric and volumetric) Cell to Pack Ratio

Table A3. Vehicle Data Sources.

Manufacturer Car Name Vehicle Class Market Entry Main Data Sources

BMW i3-Gen 1 Middle Class Vehicle 2013 Internet, Conference (AABC 2014, 2019 Asia), B3 Report

BMW i3-Gen 2 Middle Class Vehicle 2016 Internet, Conference (AABC 2014, 2019 Asia), B3 Report

BMW i3-Gen 3 Middle Class Vehicle 2018 Internet, Conference (AABC 2014, 2019 Asia), B3 Report

Daimler Smart for two Compact Vehicle 2012 Internet, Conferences (AABC 2018 Europe & Battery
Experts Forum 2016)

Jaguar I-Pace Middle Class Vehicle 2018 Internet, Paper (ATZ), B3 Report

Mitsubishi iMiEV Compact Vehicle 2010 Conference (AABC 2013), B3 Report, Internet

Nissan Leaf 24 kWh Middle Class Vehicle 2012 Internet, US DoE

Nissan Leaf 30 kWh Middle Class Vehicle 2015 Conferences (AABC Asia 2014), Internet, B3 Report

Nissan Leaf 40 kWh Middle Class Vehicle 2018 Internet, B3 Report

Nissan Leaf 62 kWh Middle Class Vehicle 2019 Internet, B3 Report

Renault Kangoo Z.E. Middle Class Vehicle 2011 B3 Report

Renault Zoe Gen 1 Compact Vehicle 2013 B3 Report

Renault Zoe Gen 2 Compact Vehicle 2017 B3 Report

Renault Zoe Gen 3 Compact Vehicle 2019 B3 Report

Tesla Model S 60 Luxury Vehicle 2013 Conference (AABC 2019 Asia), B3 Report

Tesla Model S 70 Luxury Vehicle 2015 Conference (AABC 2019 Asia), B3 Report

Tesla Model S 75 Luxury Vehicle 2016 Conference (AABC 2019 Asia), B3 Report

Tesla Model S 85 Luxury Vehicle 2013 Conference (AABC 2019 Asia), B3 Report

Tesla Model S 90 Luxury Vehicle 2015 Conference (AABC 2019 Asia), B3 Report

Tesla Model S P100D Luxury Vehicle 2016 Conference (AABC 2019 Asia), B3 Report

Tesla Model 3 Performance Middle Class Vehicle 2019 B3 Report

VW e-up Compact Vehicle 2013 B3 Report

GM Spark 2015 B3 Report

Opel Ampera-e Middle Class Vehicle 2017 B3 Report
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