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Abstract: An induction motor is a key device for an industrial machine. The installation misalignment
of the motor will result in derating problems and energy consumption that is generally used to
analyze signal faults using the fast Fourier transform (FFT) method. Problems with the rotor affect
the non-stationary signal and FFT can be utilized to analyze this problem inefficiently. This paper
proposed the testing and analysis of faults in an eccentric rotor at different levels using the stator
current detection technique and the calculation of the energy signal coefficient via the wavelet
decomposition (WD) method. The experimental results showed that an increase in eccentricity had a
linear relation with the energy signal, where R2 was 80.81%. Moreover, the test results illustrated
that the proposed method was more efficient than FFT and applicable to motor fault analysis and
application in the industrial.

Keywords: induction motor; misalignment installation; stator current signal; energy coefficient

1. Introduction

An induction motor is an essential component of industrial machinery. However, its
long service period and high-temperature environment lead to its deterioration. Induc-
tion motor malfunctions are classified into two types—mechanical malfunctions include
eccentric rotor shafts, rotor cracks, and bearing cracks, while electrical malfunctions in-
clude shorted stator coils and unstable motor voltage. Statistically, malfunctions are most
commonly due to [1–3] bearing faults (40%), followed by stator winding faults (38%), rotor
faults (10%), and other parts (12%) [4–6]. The data reveal that problems frequently occur
in the bearing because the structure of the rotor motor is designed to directly bear the
load from the motor shaft. Bearing damage is often a side-effect of a fault in the eccentric
shaft, which has many possible causes, such as inaccurate assembly of the motor at the
manufacturer or imbalanced installation that creates an eccentric air gap between the rotor
and stator, in addition to vibration [7]. Therefore, the eccentric problem is one of the main
faults leading to other malfunctions. There are three categories of eccentric air gaps in
the motor—static, dynamic, and hybrid. Moreover, the imbalance of the motor shaft or
distortion of the motor structure may create noise during rotation, while the rotor axis
or bearing distortion creates an asymmetric air gap, leading to overheating of the coil,
misaligned coupling, a tight belt between the axis, and an unstable or imbalanced motor
base attachment.

Recently, research has been carried out to establish methods for the analysis of eccentric
induction motor malfunctions by using signal data. These signal-based analyses are
classified into the following four methods:

1. Analysis of an electric current signal while the motor is running;
2. Analysis of a vibration signal while the motor is running;
3. Analysis of a sound signal;
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4. Analysis of thermal imagery.

According to a literature review of research conducted from 1975 to 2017, a number of
studies have investigated induction motor malfunctions [8–10]. For instance, S. Nadi et al.
proposed a technique for the inspection of mechanical malfunctions in an induction motor
using the relation between the eccentric motor and harmonics. Similarly, Thomson et al.
proposed an analysis technique for mechanical malfunctions using the current signal to
analyze the frequency components of the current and vibration signals by applying the fast
Fourier transform (FFT) method. However, FFT is not capable of analyzing the resolution of
non-stationary, unstable signals that occur in the transient condition. Subsequently, a signal
analysis method based on wavelets was developed, which can analyze non-stationary
signals and identify the required frequency range [10–12]. Moreover, the wavelet extracts
the signal data for use in the analysis of artificial intelligence (AI) systems, in addition to
other systems such as neural, fuzzy logic, and neural fuzzy networks [13,14]. The major
components of a condition monitoring system include the machinery, condition monitoring
sensors, signal processors, fault classifiers, machine models, and the monitoring output.
Errors and uncertainties in fault classification can lead to false alarms, which necessitate
better, more robust, and more reliable condition monitoring systems. Moreover, a major
challenge for a condition monitoring technique is its ability to differentiate changes in the
signal that are due to machinery defects. The proposed statistical method is based on the
identification of differences in operating conditions that reach statistical significance.

This paper proposes the testing and analysis of faults caused by misalignment due to
the incorrect installation of an induction motor. The performance of the proposed method
was tested by first assessing the motor in its normal state and coupling it with a load,
and then experiments were carried out in the abnormal condition. The hypothesis of this
study is that the external misalignment force leads to changes in the magnetomotive force
(MMF) and permeance wave, which results in a non-stationary signal [15–17]. FFT is not
appropriate for signal frequency detection in transient condition [18,19]. Therefore, this
research applied the wavelet transform with multiple levels of resolution distribution.
The energy coefficient with its standard deviation can be extracted using the wavelet
transform [20,21]. In order to obtain the attributes of the abnormal frequency signal from
the external misalignment, experiments at 10%, 20%, 30%, and 40% misalignment levels
(relative to the standard alignment) were used to perform a data correlation analysis and
diagnose rotor misalignment effects due to incorrect installation. This method can be used
in preventive maintenance planning to avoid motor deterioration, especially for larger
motors that cannot be stopped.

2. The Conception and Proposed Methods
2.1. Installation Misalignment Types

Shaft misalignment is the most common factor in the damage of an induction motor
in a machine. Misalignments can be parallel, angular, or a combination of both parallel and
angular, as shown in Figure 1.

2.2. Digital Signal Processing Techniques

The method for detecting mechanical faults due to misalignment of the rotor shaft is
detailed below. The fault can be analyzed by measuring the frequency of the signal, detect-
ing the motor current signal, and calculating the frequency from the following equation:

fec,i= fs(1 ± k
1 − s

p
) (1)

where fec,i is the frequency due to the installed rotor misalignment, fs is the fundamental
frequency, k is the order number, s is the slip speed, and p is the number of magnet poles.

fec,p = fsk(
1 − s

p
) (2)
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where fec,p is the frequency of the rotor misalignment with referring to the centerline to
analyze the relation and impacts of the eccentric rotor.

From Equations (1) and (2), the fault can be characterized by monitoring the frequency
modulation from the electrical supply and the stator current to identify broadband changes
in the stator current frequency.
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is angular. (c) shows a combined misalignment arising from the axial motor shaft coupled with the load in the same plane, 
and the center of motion is parallel and angular. (d) shows the adjustment of the installed rotor shaft connected to a load 
calibrated with a dial gauge. 
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Figure 1. The incorrect installation of an induction motor. (a) shows a parallel misalignment arising from the motor
shaft axis connected to the load in the same plane, and the center of motion of the shaft is parallel. (b) shows an angular
misalignment arising from the axial motor shaft coupled with the load in the same plane, and the center of motion of the
shaft is angular. (c) shows a combined misalignment arising from the axial motor shaft coupled with the load in the same
plane, and the center of motion is parallel and angular. (d) shows the adjustment of the installed rotor shaft connected to a
load calibrated with a dial gauge.

2.3. Analysis Technique and Determine Energy Coefficient of Current Signal

The wavelet transform (WT) method is a technique developed from the short-time
Fourier transform (STFT), which uses the window size function modification principle
(window function). The time interval must be suitable for the frequency range to be
analyzed; the higher the frequency signal is, the shorter the analysis time. Thus, lower-
frequency signals have a wide time interval. For the wavelet transform, the concept of
multi-resolution analysis is used by converting the signal into small waves with limited
energy. It is therefore suitable for the analysis of transient current signals in the frequency
domain using wavelet separation. This study applied the frequency band energy ratio
in [22], which is calculated using Equations (3)–(5).

According to the energy conservation principle, the following relation is obtained:

En(x(t)) =
2k−1

∑
m=0

En(x
k,m(i)) (3)

where the proportion of the mth frequency band energy relative to the total energy, i.e., the
normalized frequency band ratio, is

En(m) =
En(x

k,m(i))
En(x(t))

(4)

and the sum of all frequency band energy ratios is equal to 1, i.e.,

2k−1

∑
m=0

En(m) = 1 (5)
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3. Research Methods

This article reports the results of laboratory tests in which fault signals caused by the
misalignment of an induction rotor shaft were detected using the equipment shown in
Figures 2–5. The testing equipment consists of an induction motor, and the details of the
instrument are as follows.
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1. The parameters of the three-phase induction motor are 11 kW, 380 V, 50 Hz, and four
poles, as shown in Table 1;

2. The instrument was used for measuring the eccentricity of the rotor shaft;
3. For the motor startup, the control unit is set to the star and delta switch, which reduces

the high current during startup;
4. The current signal sensors are set with the current type (LEN-HX-10NP), with 1%

accuracy, 1% linearity, DC at a 50 kHz frequency bandwidth, 20 A input current Ip,
and 4 V output voltage, as shown in Figure 2;

5. A fourth-order low-pass filter circuit with a cut-off frequency of 500 Hz is included in
the design. Because the motor current signal is incorporated with a high frequency,
the high-frequency signal needs to be eliminated using the current circuit filter, as
shown in Figure 3;

6. The data acquisition card for receiving signal data for analysis is a Micro USB DAQ
that inputs and outputs 30 points and operates in both digital and analog input modes;

7. Figure 4. shows the circuit that is connected to the equipment for data recording
during testing [24]. Figure 5a,b shows the setup of the experimental set with a three-
phase induction motor and star-delta starting method. Figure 5c,d shows setup
the misalignment installation fault provided by the bolt base under motor, which
acts on the base under motor and checking with a dial gauge. The adjustable shaft
misalignment by the FISSO Ref: LS30.10 with switch magnet (M); overall height:
367 mm; horizontal: 10 mm dia. × 106 mm length; vertical: 12 mm dia. × 156 mm
length; base size: 60 mm × 50 mm × 55 mm; holding strength approx. 800 N;
weight: 1.660 kg [25];
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8. The eccentric rotor shaft defect test was carried out as follows. Figure 5a,b shows the
test setup for a motor in the no-load mode. A medium motor type was used; there-
fore, the star-delta starting method was employed to reduce the high current when
starting the motor. The low-pass frequency circuit was then detected by sampling at a
sampling frequency of 4 kHz, and the current signal was recorded with a DAQ card.

Table 1. The parameter of the three-phase induction motor [22].

Parameter Value

Power 11 kW
Voltage 380V
Ampere 20A

Power factor 0.8
Rotor speed 1450 rpm

Air gap 0.5 mm

Figure 6 shows the process of recording the current signal by the DAQ 6008 card using
the LabVIEW program. This process can be used in the analysis of motor faults. As shown
in Figure 5c,d, the load was connected to a 5 kW generator, and then four parallel eccentric
levels were tested (10%, 20%, 30%, and 40%) using a dial gauge as a level measuring
instrument. Then, the stator current signal was detected through a low-frequency circuit.
The signal stream was recorded with the DAQ card; the data were recorded using the
program LabVIEW. The signal data were obtained in an array form, and the signal was
analyzed for the effect of rotor shaft misalignment using a matrix program. To analyze
the effects of misalignment faults on the stator current, a test setup was designed in a
machinery laboratory. The setup consisted of a motor test stand, which included a dial
gauge to set and check the misalignment level, and data collection was performed by
sampling the current data and recording the collected data on a PC for analysis. A diagram
and photographs of the equipment for the complete test setup are shown in Figures 4 and 5.
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4. Results and Discussion

This paper reports the analysis of an induction motor fault from an incorrectly installed
eccentric rotor shaft using current signal detection, FFT, and the discrete wavelet transform
(DWT) technique.

4.1. Experimental Result at the Normal Condition

The test results for the motor disconnected from the load are as follows.
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Results of Current Signal Detection in the Time and Frequency Domains

Figure 7a shows the results of measuring motor current signals in the time domain,
whose signal characteristics are non-sinusoidal due to magnetism and hysteresis. Figure 7b
shows the signal measurement in the frequency domain using the FFT function; when
the motor operates, it produces MMF, resulting in the rotor frequency fr = sfs, causing a
difference in frequency, and the sideband of the fundamental frequency is obtained for the
motor in its normal state. The slip frequency has an energy (dB) value that is lower than
the main frequency value fs. The peak (Peak) of the spectrum signal with an odd order
(third (150 Hz), fifth (250 Hz), seventh (350 Hz), and ninth (450 Hz)) is obtained, which has
a lower energy value than the main frequency.
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Figure 7. The current signal in the time domain and frequency domain motor without load condition.
(a) shows the results of measuring motor current signals in the time domain, whose signal character-
istics are non-sinusoidal due to magnetism and hysteresis. (b) shows the signal measurement in the
frequency domain using the FFT function; when the motor operates, it produces MMF, resulting in
the rotor frequency fr = sfs, causing a difference in frequency, and the sideband of the fundamental
frequency is obtained for the motor in its normal state. The slip frequency has an energy (dB) value
that is lower than the main frequency value fs. The peak (Peak) of the spectrum signal with an odd
order (third (150 Hz), fifth (250 Hz), seventh (350 Hz), and ninth (450 Hz)) is obtained, which has a
lower energy value than the main frequency.
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From Figure 8, by using wavelet decomposition (WD) of the frequency signal, the
stator current is divided into four levels including d1, d2, d3, and d4, and one power
coefficient out, a4. It can be seen that the harmonic current can appear on both stator and
rotor currents. According to Equations (3)–(5), the energy coefficient of stator current can
be computed as in Table 2.
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Figure 8. Signal current in the frequency domain of the motor; the status is not connected to the load.

Table 2. The calculation energy coefficient of stator current signal in normal condition.

Energy Signal Coefficient

Ea 52.2548
Ed1 0.0302
Ed2 0.2859
Ed3 9.1370
Ed4 38.2919
Etotal 100

Table 2 shows the calculation results for the energy coefficient of the signal in the
normal condition, which was 52.2548. The energy coefficient of the current signal was used
as a normal standard to compare the normal and fault states.

4.2. Analysis Results of the Motor Fault from the Eccentric Rotor Shaft

Figure 5 shows the connection between the motor and load using a 5-kW power
generator. The eccentricity was adjusted to four levels—10%, 20%, 30%, and 40%—with a
dial gauge. The test results are as follows.

Figure 9a–d shows the test results of the current signal in the frequency domain
obtained from the eccentric rotor adjusted at 10%, 20%, 30%, and 40% misalignment
levels. The signal energy was analyzed and calculated with the energy coefficient using
Equations (3)–(5). The calculation results are as follows.
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Figure 9. Plotting current waveform in frequency domain used wavelet decomposition fourth level. (a) misalignment 10%
(0.05 mm); (b) misalignment 20% (0.1); (c) misalignment 30% (0.15 mm); (d) misalignment 40% (0.2 mm).

The analysis results of the motor signal current coefficient in Table 3 were used to plot
a graph of the linear regression, as shown in Figure 10.

Table 3. The analysis results of the motor current signal energy coefficient.

Parameter
Energy

Coefficient

Motor
Normal

Condition
Motor Installation Misalignment

0% 10% 20% 30% 40%

Ea 52.2548 90.4908 90.5329 89.9976 89.6416
Ed1 0.0303 0.0025 0.0025 0.0020 0.0019
Ed2 0.2859 0.1586 0.1586 0.0927 0.1042
Ed3 9.1370 0.27690 0.2690 0.2637 0.3154
Ed4 38.2919 9.1685 9.0370 9.6441 9.9369

Etotal 100 100 100 100 100
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Figure 10. The graph of determining the energy coefficient and rotor misalignment.

Figure 10 shows a comparison of the energy coefficients of current signals from the
normal motor and the eccentric motor with varying adjustments. The energy coefficient in
the normal condition was 52.2548. The eccentric coefficient obtained at 20% misalignment
(0.1 mm) was 90.5329; therefore, the impact of the misalignment was 45%. This implies that
the slight eccentricity in the installed induction motor connected to a load increases the
energy of the stator signal current, which increases the vibration, noise, and temperature.
As a result, the useful life of the motor is shorter.

From the linear regression graph in Figure 11, the coefficient of determination was
calculated from the linear equation. The correlation coefficient was 0.81162, which indicates
a positive relationship between the level of the eccentric rotor and the energy coefficient of
the stator current signal at 80.81%. The test and analysis results of the relation reveal the
energy coefficient of the current signal, which is an indicator of motor vibration. The same
approach was used in the research of Zhang et al. [27], who used vibration data to calculate
the frequency band energy ratio to analyze a rotor fault. The results showed that the
frequency band ratio could identify a corresponding relationship with the misalignment.
Similarly, in our research, statistical processing based on discriminant analysis was applied
to identify features in stator current data. However, the selection of the mother wavelet
is very important because it affects the fault detection results; hence, it should be carried
out carefully.
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5. Conclusions

This article presents a method that applies current signal detection and analysis
techniques to diagnose an induction motor fault resulting from installation misalignment
of a rotor shaft. FFT and DWT techniques were used to analyze data from a test setup in
which external rotor misalignment was the main motor mounting problem. As a result,
the vibration increased relative to the degree of misalignment of the shaft. In addition,
this affected the outside and inside of the motor, causing an eccentric air gap between
the stator and rotor, in addition to changes in magnetic displacement and imbalanced
inductance. There was a pair of harmonics (MMF wave causing even harmonics and
asymmetry), thus increasing the frequency of the motor current signal (sidebands of the
line frequency). The results of the analysis and calculation of the energy coefficient of the
signal were correlated. With the increase in the degree of misalignment, it was shown that
this analytical technique was effective in analyzing mechanical faults with greater accuracy
and detail than a previous method using FFT, and the results agree with those in a previous
study [28]. This study expands on past research, with validation from measurement results
using more diverse experimental procedures, namely, the measurement of various levels of
faults. A limitation of this procedure is that the analysis of signals requires some expertise.
Further development of analysis programs should be developed to include automation so
that operators can quickly analyze signals to detect faults.
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