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Abstract: Cycling is an increasingly popular mode of transport as part of the response to air pollu-

tion, urban congestion, and public health issues. The emergence of bike sharing programs and elec-

tric bicycles have also brought about notable changes in cycling characteristics, especially cycling 

speed. In order to provide a better basis for bicycle-related traffic simulations and theoretical deri-

vations, the study aimed to seek the best distribution for bicycle riding speed considering cyclist 

characteristics, vehicle type, and track attributes. K-means clustering was performed on speed sub-

categories while selecting the optimal number of clustering using L method. Then, 15 common mod-

els were fitted to the grouped speed data and Kolmogorov–Smirnov test, Akaike information crite-

rion, and Bayesian information criterion were applied to determine the best-fit distribution. The 

following results were acquired: (1) bicycle speed sub-clusters generated by the combinations of 

bicycle type, bicycle lateral position, gender, age, and lane width were grouped into three clusters; 

(2) Among the common distribution, generalized extreme value, gamma and lognormal were the 

top three models to fit the three clusters of speed dataset; and (3) integrating stability and overall 

performance, the generalized extreme value was the best-fit distribution of bicycle speed. 

Keywords: bicycling characteristics; speed modelling; K-means clustering; L method; distribution 

model; model comparison 

 

1. Introduction 

With air pollution, urban congestion, and public health issues like obesity becoming 

a concern, cycling is an increasingly popular mode of transport as part of the response. 

The widespread growth of bike-sharing programs and electric bikes across the world in-

vigorate bicycle travel [1]. The emergence of new forms and vehicle types have also 

brought about many changes in cycling characteristics, which is more significant in the 

rise of bicycle speed. The increase of vehicle types combining with the traditional impact 

factors like cyclist and cycling track attributes make bicycle speed more heterogeneous. 

Therefore, there is a need to renew the appropriate mathematical distributions for cycling 

speed. 

The rapid growth of electric bicycle (EB) transforms the constitution of bicycle flow, 

from a pure flow consisting of only conventional bicycles (CB) to two types of bikes in-

cluding EB. This notably increases the heterogeneity of bike riding speed. In a relatively 
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early study by Cherry in 2007 [2], he investigated the speed distributions of CB and EB 

and analyzed the difference. He found EB ran about 40% faster than CB without speed 

limit while 30% with speed limit. In 2008, Lin et al. [3] conducted a specific comparison 

study on operating speed of CB and EB. Their study presented that EB’s speed was 47.6% 

higher than CB’s, close to the result of Cherry. Further, they applied several models to fit 

bicycles’ speed and concluded logarithmic normal distribution was the best-fit distribu-

tion. Jin et al. [4] also analyzed the speed difference between CB and EB. Moreover, the 

gender, age, and loading state’s impact on speed were quantitatively compared. After-

wards, Jin et al. [5] performed a speed–flow relationship research for bicycle flow and they 

estimated the bicycle free flow speed using linear regression method. In 2017, Xu et al. [6] 

used a Gaussian mixture model to fit the speed distribution of mixed bicycle flow, and 

they recommended three-component model for free flow and five- or six- component 

model for other conditions. Xu et al. proposed speed limits for heterogeneous bicycle flow 

under different widths in their later study [7]. For the influence factors of bicycle speed, 

besides the bicycle type [2], characteristics of cyclists (gender, age) [3,4], roadway attrib-

utes (lane width, grade) [8,9], loading state of vehicles [4] have been studied by research-

ers. Gender and age were the most common factors. In the previous research, the male 

and young cyclists with higher speed were observed while the female and old groups 

were slower. In respect to roadway attributes, bicycle speed presented a positive relation-

ship with lane width while keeping a negatively related with road gradient. For loading 

state, it impacted bicycle speed in most cases. 

Together with the common factors like rider characteristics, facility attributes, et al., 

the development of EB increases the dispersion and diversity of bicycle speed considera-

bly. The existing studies mainly focuses on the analysis of the speed difference between 

CB and EB. Lin et al. and Xu et al. tried some unimodal distributions and Gaussian mix-

ture distribution to fit bicycle speed respectively. The former modelled the distribution of 

speeds only considering bike type and the later established a refined mixture model tak-

ing more factors into considerations. However, due to factor bike volume in Xu et al.’s 

model, the number of subcategories, weighting index, and other factors as well as their 

relationships to each other need to be determined and further explored. Considering vol-

ume factor in speed modelling yields too many cases and compositions of bicycle flow. In 

this situation, it is hard to capture the natural characteristics of bicycles, which is the basis 

for traffic simulations (e.g., speed initialization) and theoretical derivations (e.g., setting 

the input parameters of a model). 

In sum, bicycle riding speed is influenced by as many factors as the presence of elec-

tric bicycles. These influence factors should be taken into account in modelling processes 

whereas the difficulty of modelling and the complexity of models will increase mean-

while. To achieve a balance, the present study aims to establish relatively simplified mod-

els when considering the most common basic factors impacting bicycle speed. To obtain 

fewer cases and capture the nature of cycling speed, we only consider the cycling speed 

in free flow in which the riding state of a bike is influenced by rider personal features, 

vehicle performance, and road attributes, rather than any other disturbances, and use 

clustering to reduce the subcategories resulting from the basic factors. Meanwhile, to best 

fit cycling speed, 15 usual continuous distribution models are tested and compared. 

The rest of this paper consists of five sections. Section 2 indicates the methods and 

models for clustering and distribution fitting analysis. Section 3 describes the data prepa-

ration and description for clustering. Sections 4 and 5 present the results of the clustering 

and distribution fitting analysis, respectively. Finally, Section 6 provides the summary, 

main results, contributions, and limitations of this paper 

2. Methodology 

This section first describes the overall logic and technology pathway of the study. In 

the following two subsections, the algorithm and validation for data clustering and the 

models and test methods for speed distribution fitting are indicated briefly. 
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2.1. Study Logic and Technology Pathway 

2.1.1. Study Logic 

Speed distribution is necessary in traffic simulations and theoretical derivations be-

cause speed is a fundamental measure of traffic performance. Detailed and fine simulation 

and theoretical models take into account individual vehicles with their own demands, 

preferences, and behavior. To achieve this, it needs the support of speed distributions 

considering the heterogeneity of cyclists, vehicles and roads, especially the dynamics of 

subgroups in population. In previous studies, researchers generally adopted a top-down 

manner which first obtains the speed distributions of bicycle flow and explores the un-

derlying factors further. In this case, it is difficult to identify the natural subgroups be-

cause all the potential factors are mixed in the modelling process. Thus, in order to better 

distinguish the natural subpopulations formed by combinations of factors, a bottom-up 

approach was designed for the study. The influential factors were discussed firstly, and 

then the subgroups in population were identified easily by combining the factors or vari-

ables. However, it presented too many original subcategories due to the combinations of 

factor levels or variables. It was not realistic to investigate the speed of so many subcate-

gories and to establish separate model for each. To solve this problem, multi-comparison 

was used to reduce the levels under each factor and the initial subgroups were further 

merged using clustering techniques. 

Cluster analysis is the organization of a collection of patterns into clusters based on 

similarity. Fraley and Raftery [10] suggested dividing the clustering approaches into two 

different groups: hierarchical and partitioning techniques. Han and Kamber [11] sug-

gested the following three additional categories for applying clustering techniques: den-

sity-based methods, model-based methods and grid-based methods. An alternative cate-

gorization based on the induction principle of different clustering approaches is presented 

by Castro et al. [12]. 

Among the partitioning techniques, K-means and expectation maximization are two 

common algorithms. The K-means algorithm is the 2nd dominantly used data mining al-

gorithm and the EM algorithm is the 5th dominantly used data mining algorithm [13–15]. 

The K-Means algorithm is a very popular algorithm for data clustering, which aims at the 

local minimum of the distortion [16,17]. EM is one of the most popular algorithms for 

statistical pattern recognition and has been widely applied for different purpose: param-

eter estimation [18,19], mixture simplification [20], image matching [21], and audio-visual 

scene analysis [22]. EM’s popularity has risen due to its use in estimating mixture-model 

parameters [23,24]. The use of estimated mixture-models is equally interesting for density-

estimation tasks [20,25] and clustering tasks [26–28]. For clustering, EM aims at finding 

clusters such that maximum likelihood of each cluster’s parameters are obtained. The two 

have been compared by many scholars using the datasets from different fields [29–31]. In 

sum, although EM algorithm produced exceptionally good results in some datasets [32–

34], K-means has better clustering fitness than EM algorithm considering performance in 

time complexity and the influence of data type, size, and number of clusters. Most im-

portantly, EM is a model based approach which is based on the assumption that the data 

are generated by a mixture of underlying probability distributions (commonly Gaussian 

distribution). In the study, the distribution model remained to be determined in the next 

step after clustering. Thus, such methods like EM and other mix probability distribution 

separation are not suitable for our study. Considering the factors above, K-means was 

finally selected as the clustering technique for the study. 

2.1.2. Technology Pathway 

The technology pathway of this study mainly includes four procedures: field data 

collection and extraction, data prepossessing, data clustering, and speed distribution fit-

ting. The details of the first procedure had been indicated in another paper [35], which 
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conducted an influence factor analysis on bicycle free flow speed and merged the sub-

groups or levels under each factor as much as possible. Thus, the first procedure is briefly 

described herein. In data collection, we used cameras to capture bike traffic operations 

within 50 m-long track segments marked with some ground tapes and traffic cones. Then, 

the characteristics of cyclists and vehicles were extracted through manual identification 

and recording. Afterwards, riding speed was calculated based on the moments that bikes 

arriving at the marking points. 

All data collected are shown in Figure 1 to evaluate the bimodality. The speed distri-

bution does not exhibit bimodality or multimodality, as indicated by a bimodality coeffi-

cient 0.429 using the equation in [36]. Therefore, there is no need to use mixture distribu-

tion models [37]. As we had examined the influence factors of bicycle speed and the cor-

responding effects, the exploratory analysis was directly performed on the sub-popula-

tions generated from these significant factors to reduce the levels under each factor. The 

result is shown in Table 1. To address too many sub-populations, clustering was applied 

and then unimodal distribution models were fitted to the clustering results. The methods 

and outputs of the remaining three procedures are shown in Figure 2. 

Table 1. Basic characteristics of the original and level-merged field survey samples. 

Factor 
Original Merged 

Category or Level Counts Ratio Category or Level Counts Ratio 

gender 
Male 850 62.0% Male 850 62.0% 

Female 520 38.0% Female 520 38.0% 

age 

(~, 20) years 42 3.0% 

(~, 40) years 830 67.9% (20, 30) years 308 22.5% 

(30, 40) years 580 42.4% 

(40, 50) years 296 21.6% 
(40, 60) years 440 32.1% 

(50, 60) years 144 10.5% 

bicycle type 
EB 1028 75.1% EB 1028 75.1% 

CB 342 24.9% CB 342 24.9% 

lane width 

2 m 197 14.4% 
≤3.5 m 367 26.8% 

3.4 m 170 12.4% 

3.85 m 302 22.0% 

>3.5 m 1003 73.2% 4 m 346 25.3% 

5 m 355 25.9% 

lateral position 

left 211 15.4% left 211 15.4% 

center 745 54.4% center 745 54.4% 

right 421 30.8% right 421 30.8% 

Total ~ 1370 ~ ~ 1370 ~ 
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Figure 1. Histograms for Speed Data and the bimodality coefficient (value exceeding 0.555 are 

taken to indicate bimodality and conversely not). 

2.2. Clustering Algorithm and Validation 

2.2.1. K-Means Clustering 

K-means clustering is the most widely used partitional clustering algorithm [38]. The 

goal of K-means clustering is to partition n points (which can be one observation or one 

instance of a sample) into K clusters such that each point is assigned to one cluster of 

which centroid is the closest to it based on a particular proximity measure chosen. The 

following is an outline of the basic K-means algorithm: 

Step 1: Select K points as initial centroids. 

Step 2: Form K clusters by assigning each point to its closest centroid. 

Step 3: Recompute the centroid of each cluster. 

Step 4: Repeat Steps 2–3 until convergence criterion is met. 

In the third step, a wide range of proximity measures can be used while computing 

the closest centroid. The choice can significantly affect the centroid assignment and the 

quality of the final solution. The different kinds of measures which can be used here are 

city-block distance, Euclidean distance, correlation distance, and cosine similarity. 
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Figure 2. technology path of this study. 

2.2.2. Determining the Optimal Number of Clusters 

The problem of estimating the correct number of clusters (K) is one of the major chal-

lenges for the K-means clustering. The problem can be formulated as how to determine a 

number of clusters under which each class of data has optimal cohesion and different 

classes of data have maximum separation, here using an evaluation graph-based L 

method [39]. 

The information required to determine an appropriate number of clusters/segments 

to return is contained in an evaluation graph that is created by the clustering/segmenta-

tion algorithm. The evaluation graph is a two-dimensional plot where the x-axis is the 

number of clusters, and the y-axis is a measure of the quality or error of a clustering con-

sisting of x clusters. The y-axis values in the evaluation graph can be any evaluation met-

ric, such as: distance, similarity, error, or quality. 

Figure 3 shows an example of an evaluation graph, which can be seen in Figure 3a 

three areas of significantly different data points: a steeply straight region on the left, a flat 

region on the right, and a gradient region in the middle. On the right side of the Figure 

3b, the clustering merging process starts with the smaller classes, with many similar clas-

ses being merged, and this trend extends along a straight line to the left. Many of the 

cluster classes in this region are similar to each other, and so deserve to be merged. An-

other obvious area of the graph is the rapid increase in merge distance near the left side 

of the y-axis. The rapid increase in merge distance indicates that many different classes 

are being merged together and that the quality of the clustering is deteriorating because 

the classes are no longer internally homogeneous. If the merge quality of existing classes 

starts to get progressively worse, it means that too many mergers have been performed. 

Therefore a reasonable number of clusters should exist in the asymptotic region of the 

evaluation chart, or the “knee” of the scattered distribution. This area is between the flat 

area on the right, which increases slowly, and the steep area on the left, which increases 

rapidly. The number of clusters at the “knee” contains a good balance between homoge-

neity within classes and differences between classes. 
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Figure 3. (a) A sample evaluation graph; (b) finding the number of clusters using L method. 

The problem shifts to finding some point in the asymptotic region (i.e., the best clus-

tering number c), noting that the asymptotic region is between 2 linear regions and that 

the slope of the tangent at that point is mutated, so it is only necessary to find some point 

in the asymptotic region and use that point as a boundary to perform a linear fit to the 

data points in the steep and straight region on the left and the data points in the flat region, 

and the optimal clustering number is obtained when the fit to the data points in both re-

gions is best at the same time. Now define a metric that captures the interpolated mean of 

the mixed root mean squared error of the two region fits, as in Equation (1) [39]. 

   
1

1 1
e c c e c

c b c
RMSE RMSE L RMSE R

b b

 
 

 
 (1)

where RMSE(Lc) is the root mean squared error of the best-fit line for the sequence of 

points in Lc (and similarly for Rc). The weights are proportional to the lengths of Lc (c–1) 

and Rc (b–c). b is the maximum pre-set number of clusters, i.e., the maxima of the x-axis. 

We seek the value of c, such that RMSE is minimized, that is 

arg min c
c

c RMSE   (2)

Here, there is a need to specify a range or set for values of K or specifically to set a 

maximum for K. This directly affects the workload and time of clustering. Obviously, the 

maximum K is far less than the number of initial classes while it should include the opti-

mal value, c. By the previous studies summarized by Pham et al. [40], the maximum values 

of K were usually selected manually and no specific principles or rules were found. How-

ever, through calculating the ratio between the maximum number of clusters and the ini-

tial number (Maximum K/N, %), it was found most were below 20%. 

2.2.3. Clustering Validation 

The silhouette coefficient is a good indicator of the quality of clustering, which com-

bines the cohesion and separation of clusters [38]. The value is in the range of -1 to 1, the 

larger the value, the better the clustering effect. The specific calculation process is as fol-

lows. 

(1) For the ith element xi, the average of the distances from all other elements in the 

same cluster as it, recorded as mi, is calculated and used to quantify the cohesion within 

the cluster. 

(2) Select a cluster n other than xi, calculate the average distance between xi and all 

points in n, iterate through all other clusters to find this nearest average distance, denoted 

as ni, and use it to quantify the degree of separation between clusters. 

(3) For element xi, the profile factor Si = (ni–mi)/max(mi, ni). 

(4) Calculate the silhouette coefficients of all X’s, the average of which is the overall 

silhouette coefficient of the current cluster. 
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To check the clustering result visually, multidimensional scaling (MDS) was applied 

in the study because of the multidimensionality of the clustering indicators. MDS is an 

analysis method that maps similarities/differences between multiple objects to points in a 

low-dimensional space (two-dimensional for example), while maintaining the original re-

lationship between the objects. In this study, multiple statistics characterizing subclass 

velocities were mapped into two-dimensional space. Then, the results were plotted as 

scatterplots and examined the goodness of clustering. 

2.3. Distribution Fitting 

2.3.1. Probability Distribution Models for Fitting 

15 common continuous probability distributions were considered for fitting the bicy-

cle speed data, including Birnbaum–Saunders, exponential, gamma, generalized extreme 

value (GEV), generalized Pareto (GP), inverse Gaussian, logistic, loglogistic, lognormal, 

Nakagami, normal, Rayleigh, Rician, t-location scale, uniform, the mathematical expres-

sions for the probability density functions of these distributions can be found in Table A1 

in Appendix A. For each cluster, we found the best-fit parameters for each of these prob-

ability distributions using maximum-likelihood estimation. To select the best-fit distribu-

tion for a cluster, we then applied multiple model comparison techniques to rank each 

distribution for every cluster. The subsection below describes these techniques including 

Kolmogorov–Smirnov test, Akaike information criterion, and Bayesian information crite-

rion. 

2.3.2. Model Test and Selection 

Kolmogorov–Smirnov Test 

The Kolmogorov–Smirnov (K-S) test is a nonparametric test used to decide if a sam-

ple is selected from a population with a specific distribution [40]. The K-S test is based on 

the maximum distance (or supremum) between the empirical distribution function and 

the normal cumulative distributive function. The Kolmogorov–Smirnov test statistic is de-

fined as: 

   
1

1
max ,i i
i N

i i
F y F y

N N 

 
  

 
 (3)

where F is the cumulative distribution function of the samples being tested. If the proba-

bility that a given value of D is very small (less than a certain critical value, which can be 

obtained from tables), we can reject the null hypothesis that the two samples are drawn 

from the same underlying distributions at a given confidence level. 

AIC and BIC 

The Akaike information criterion (AIC) is a way of selecting a model from an input 

set of models [41,42]. It can be derived by an approximate minimization of the Kullback-

Leibler distance between the model and the truth. It is based on information theory, but a 

heuristic way to think about it is as a criterion that seeks a model, which has a good fit to 

the truth with very few parameters. 

It is defined as [41]: 

2 2AIC LL k    (4)

where LL is the log-likelihood of the model on the dataset, and k is the number of param-

eters in the model. 

The bias-corrected information criterion, often called AICc, takes into account the fi-

nite sample size, by essentially increasing the relative penalty for model complexity with 

small datasets. 

It is defined as [42]: 
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 2 1

1

k k
AICc AIC

N k


 

 
 (5)

where N is the sample size. For this study, we have used AICc for evaluating model effi-

cacy. 

Bayesian information criterion (BIC) is also an alternative way of selecting a model 

from a set of models. It is an approximation to Bayes factor between two models. It is 

defined as [41]: 

 2 logBIC LL k N    (6)

When comparing the BIC values for two models, the model with the smaller BIC 

value is considered better. In general, BIC penalizes models with more parameters more 

than AICc does. 

3. Data Preparation and Description 

This section indicates data preparation process for clustering including formation of 

initial sub-clusters of speed data, indicator selection for clustering, speed subsets sorting. 

Moreover, the speed data of initial sub-clusters are described in the end. 

Formation of initial sub-clusters: our previous study had determined five significant 

factors, including gender, age, bicycle type, lane width, lateral position, impacting BFFS. 

The values or levels of these factors had been merged as far as possible. By comparative 

analysis, bicycle speed has two distinct categories for gender (male and female), age (≤40 

years and >40 years), bicycle type (conventional bicycle (CB) and electric bicycle (EB)) and 

lane width (≤3.5 m and >3.5 m) respectively. In respect to lateral position, the speed data 

collected from the three parts of a bicycle lane (left, center and right) are significantly dif-

ferent. In the study, the five factors mentioned above were considered as the categorical 

variables, of which combinations partitioned the bicycle speed data collected into the ini-

tial sub-clusters or subsets. Theoretically, there are 48 (2 × 2 × 2 × 2 × 3) combinations for 

the five categorical variables and therefore exists 48 initial speed subsets. However, field 

observation only captured 45 sub-clusters and the unobserved three were sub-cluster (fe-

male, >40 years, EB, ≤3.5 m, left), (female, >40 years, CB, ≤3.5 m, left), and (male, ≤40 years, 

CB, ≤3.5 m, left). 

Indicator selection for clustering: Further clustering on the basis of the 45 initial sub-

clusters was first necessary to determine the indicators for clustering. Mean, standard de-

viation, minimum and maximum were selected to characterize the speed data of the sub-

clusters. These four statistics measured the central tendency, variability, and the lower 

and upper boundaries of the variation, respectively, which can completely describe the 

distribution of bicycle velocity of a subclass. 

Speed subsets sorting and numbering: After determining the indicators for cluster-

ing, sorting and numbering the speed subsets were performed to obtain the continuity of 

indicator changes, which was helpful to detect and correct the data defects in speed data 

and indicators. Moreover, the gradual variability of the indicators was also reflected in 

the final clustering results, in which the subset numbers in each cluster were orderly se-

quential. This can confirm the validity of the clustering results from one side. Therefore, 

the speed subsets (indicator: means) were multiple-level sorted in ascending order based 

on the degree of influence of the categorical variables on bicycle velocity, which had been 

examined by our preliminary study [24]. Those results indicated that bicycle type (CB < 

EB in speed) was the most influential factor on BFFS, followed by bicycle lateral position 

(right < center < left), gender (female < male), age (the older (>40 years) < the young (≤40 

years)), and lane width (the narrow < the wide) in sequence. The sorting result is shown in 

Table A2. 

Data description and cleaning of speed subsets: When completing data preparation, 

speed subsets are plotted in boxplot as shown in Figure 4 in order to check the outliers 
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(sub-cluster 8), the abnormal (sub-cluster 17), incomplete data (sub-cluster 20) and other 

data defects. To address the defects above, data cleaning techniques were applied, mainly 

including filtering out outliers, fixing the abnormal and impute missing values. 

 

Figure 4. Data Description for 45 Speed Subsets. 

4. Clustering Results 

4.1. Optimal Number of Clusters 

Integrating the previous studies and the initial number of the sub-clusters, we se-

lected 15 as the maximum K (at this time maximum K/N = 33% > 20% before), and then 2–

15 were the pre-set number of clusters. The four common methods of calculating the new 

clustering centroids were adopted, and finally, the clustering quality of the methods was 

compared to determine the best one. The metric used in L method was the means of the 

distance from each data point to the centroid of its cluster. The calculation result of the L 

method is shown in Figure 5. 
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Figure 5. (a) evaluation graph, (b) possible fitting lines, (c) RMSE, and (d) Best-fit lines for city-block distance, Euclidean 

distance, correlation distance, and Cosine similarity. 

Figure 5 obviously indicates that cosine similarity presents the best performance in 

clustering evaluation. For each pre-set K number, the value of cosine similarity is the least 

of four methods, which represents the best cohesion of clusters. Meanwhile, cosine simi-

larity renders the least number of cluster (3 clusters) when the others obtain 4 or 5. 

4.2. Validaty of Clustering 

Silhouette coefficient and two-dimensional graph were applied to evaluate the qual-

ity of clustering, as shown in Figure 6. From Figure 6a, it can be seen that the silhouette 

coefficients of most sub-clusters under each cluster exceeds 0.6 (basic criterion), and most 

of them exceed 0.8. Thus, for optimal number 3, the clustering presents a good perfor-

mance. 

 

(a) 

 

(b) 

Figure 6. (a) Silhouette coefficient values, and (b) Visualization of clustered data when number of clustering = 3. 

Four clustering indicators of sub-clusters were mapped to points in a two-dimen-

sional space see Figure 6b using MDS in order to check the clustering results of K = 3. It is 

obvious that 45 sub-clusters forms three sets, namely Cluster 1, 2, and 3. Simultaneously, 

sub-cluster numbers are serial in each cluster, sub-cluster 1–15, 16–27, and 28–45 for Clus-

ter 1, 2, 3, respectively, which also conforms the validity of the clustering result as indi-

cated in 3.1. Moreover, Xu et al. also obtained the optimal number 3 in modelling bicycle 

free flow speed [6]. 

To address the three sub-categories unobserved, they were imputed according to the 

aforementioned sorting rules. The three were numbered 19, 23, and 41 respectively. 

Among them, sub-cluster 19 and 23 were categorized to Cluster 2 while sub-cluster 41 to 

Cluster 3. 

5. Distribution Fitting Results for Speed Clusters 

5.1. Speed Distribution of Clusters 

The statistics and distribution characteristics of the three clusters were calculated, as 

shown in Table 2. Three speed subsets do not presents the bimodality or multimodality 

with their bimodality coefficients below 0.555. Thus, 15 common statistical distributions 

listed above were applied to fit the speed data of the three clusters and the test statistics 

for K-S test, AIC, AICc, and BIC were computed for the probability distributions. For each 
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cluster, we ranked all the probability distribution functions, using each of the four model 

test techniques in decreasing order as shown in Tables A3–A5 in Appendix B and the eight 

best-fit functions for each cluster are show in Figure 7a–f. Table 3 summarizes the distri-

bution orders for the three clusters and sorts these distributions by descending order on 

sum of three rankings and variances. 

Our results from each of the model comparison tests are summarized as follows: 

 The first 7 distributions were suitable to fit the data of the three clusters according to 

the K-S test results while Uniform, Rayleigh, Gp, and exponential distribution were 

not. Nakagami, Rician, normal, logistic remained uncertain due to the failures of 

passing at least one of K-S tests to the three clusters. 

 After considering the sum and variance of the three rankings together, we recom-

mended GEV, Gamma, and Lognormal distributions as the top three tools to fit the 

three clusters of speed data set. 

 Moreover, Tlocationscale, Gamma, and GEV distributions performed best in fitting 

the data from Clusterss 1, 2, and 3, respectively. 

Table 2. Speed statistics and distribution features for the three cluters. 

Cluster Counts 

Speed Statistics (m/s) Distribution Features 

Median Mean 
Std 

* 
85th Value 

Min 

* 
Max * Kurtosis Skewness 

BC 

* 

1 327 4.00 4.06 0.95 4.81 1.93 9.77 10.37 1.63 0.35 

2 179 5.25 5.24 1.10 6.32 2.83 8.84 3.29 0.34 0.33 

3 864 6.54 6.65 1.58 8.22 2.16 11.87 3.03 0.40 0.38 

Overall 1370 5.66 5.85 1.78 7.73 1.93 11.87 2.85 0.48 0.43 

* Std = Standard error, Min = Minimum, Max = Maximum, BC = bimodality coefficient. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7. (a) Fitting results for models ranked in the 1–4, (b) and 5–8 for the Cluster 1; (c) Fitting results for models ranked 

in the 1–4, (d) and 5–8 for the Cluster 2; (e) Fitting results for models ranked in the 1–4, (f) and 5–8 for the Cluster 3. 
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Table 3. Goodness-of-Fit Rankings of 15 Distribution Models for the Three Clusters. 

Number Name Cluster 1 Cluster 2 Cluster 3 Sum Var. Suggestions 

1 Gev 6 3 1 10 4.22 Recommended 

2 Gamma 8 1 2 11 9.56 Recommended 

3 Lognormal 3 4 6 13 1.56 Recommended 

4 Birnbaumsaunders 5 5 4 14 0.22 Suitable 

5 Inversegaussian 4 7 5 16 1.56 Suitable 

6 Loglogistic 2 6 9 17 8.22 Suitable 

7 Tlocationscale 1 11 10 22 20.22 Suitable 

8 Nakagami 9 2 3 14 9.56 Uncertain 

9 Rician 10 8 7 25 1.56 Uncertain 

10 Normal 11 9 8 28 1.56 Uncertain 

11 Logistic 7 10 11 28 2.89 Uncertain 

12 Uniform 13 12 12 37 0.22 Unsuitable 

13 Rayleigh 12 13 13 38 0.22 Unsuitable 

14 GP 14 14 14 42 0.00 Unsuitable 

15 Exponential 15 15 15 45 0.00 Unsuitable 

5.2. Discussion on Best-Fit Distribution 

Among the three recommended distributions, GEV and Gamma distributions pro-

vided the best fit to the speed data. GEV presented a relatively better stability than 

Gamma and an increasingly optimizing performance from Cluster 1 to 3. 

The GEV distribution is often used to model the smallest or largest value among a 

large set of independent, identically distributed random values representing measure-

ments or observations [43]. It combines three simpler distributions into a single form, al-

lowing a continuous range of possible shapes that include all three of the simpler distri-

butions. The three distribution types correspond to the limiting distribution of block max-

ima from different classes of underlying distributions illustrated in Figure 8: 

 Type Ⅰ—Distributions whose tails decrease exponentially when the shape parameter 

(k) is equal to zero, see the light blue line. 

 Type Ⅱ—Distributions whose tails decrease as a polynomial shown by the yellow 

line, when k is more than zero. 

 Type Ⅲ—Distributions whose tails are finite as illustrated by the red line, when k is 

less than zero. 

 

-2 0 2 4 6 8

(x-mu) / sigma

0

0.1

0.2

0.3

0.4

0.5

k < 0, Type III
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Figure 8. An example for three types of extreme value distributions and their tails’ features. 

The free speed is the maximum speed a bicycle can achieve most of the time, con-

sistent with the case where the GEV distribution applies. The best performance of GEV in 

fitting to the speed dataset of the three clusters had proved this point. Moreover, the esti-

mated shape parameters (k) were all less than zero see Tables A3–A5, which referred to 

Type Ⅲ of the extreme value distribution. It means that bicycles have their speed limits 

due to the source of driving, no matter powered by physical strength or electric power. 

From another side, Type Ⅲ of the extreme value distribution is also applied to establish a 

speed model with a safety or maximum velocity required by transport laws or regulations. 

From 2002 onwards, European Union had been published a series of directives or laws 

which defined the maximum velocity of an e-bike as 25 km/h (15.5 mile/h) [44,45]. This 

limit was then adopted by many countries in Europe [46,47] and other regions like Victo-

ria in Australia [48]. In 2018, China updated the design speed of EB in safety technical 

specification for electric bicycle [49]. This code also referred the requirements of EU and 

regulates 25 km/h as the maximum speed of electric bicycles produced from 15 April 2019. 

Therefore, it is necessary to update the distribution model of bicycle free flow speed under 

the limit. 

6. Conclusions 

The paper first performed K means clustering analysis on the speed sub-clusters 

formed by the combinations of five categorical variables (bicycle type, bicycle lateral po-

sition, gender, age and lane width) and determined the optimal number of clusters using 

L method. The clustering results were then validated and checked with silhouette coeffi-

cient and two-dimensional graph. Afterwards, 15 common models were fitted to the three 

clusters of speed data and four model test technologies were applied to select the best-fit 

distribution. The following results and conclusions were acquired: 

 48 initial bicycle speed sub-clusters generated by the combinations of bicycle type, 

bicycle lateral position, gender, age, and lane width were grouped in three clusters 

finally. 

 Among the common distributions, GEV, Gamma, and lognormal were the top three 

models to fit the three clusters of speed dataset.  

 Integrating stability and overall performance, GEV was the best-fit distribution of 

bicycle speed. The speeds of the three clusters followed GEV (−0.04, 0.78, 3.66), GEV 

(−0.17, 1.03, 4.81), and GEV (−0.18, 1.42, 6.00), respectively. 

The conclusions of the paper provides a useful reference for researchers when they 

select a suitable model to describe bicycle speed in other contexts. In simulations and the-

oretical derivations, the best-fit models found in the study may be considered as the alter-

native tools. Moreover, the fitting results are applied by finding the corresponding cluster 

if it just happens to match. Although the suitability of the models and best-fit distributions 

were validated, more data and many other contexts are necessary to improve the perfor-

mance of models. Specifically, gamma distribution performed better or similarly than 

GEV. The model deserves more discussions with the better quality of data. We will con-

tinue to work on the improvement of bicycle speed models in the future. 

Moreover, due to the limitations of the data extraction technology at the time of this 

study, the demographic attributes of cyclists like age and gender were estimated manually, 

which lowers the accuracy of the models to some extent. These limitations will be im-

proved with new AI technologies like object and character recognition in our next studies. 
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Appendix A 

Table A1. Probability density functions of different distributions used to fit the speed data. 

Distribution Probability Density Function Parameters 

Birnbaumsaunders 
 

;
2

x x

x x
x

x

   

   
 

  

    
    

     
   
      
   

 
β: scale parameter, β > 0; 

γ: shape parameter, γ > 0. 

Ev 
1

xx

ee e









  
μ: location parameter; 

σ: scale parameter, σ≥0 

Exponential 
1

; 0
x

e x





  θ: inverse scale, θ > 0 

Gamma 
 

11
; 0

x

x e x 
 


 


 

α: shape parameter, α: > 0; 

β: scale paramete, β > 0 

Gev      
1

1 , 0
1

;

, 0

k t x

x

x
k k

t x e t x

e k









 




   
       




 
k: shape parameter 

σ: scale parameter, σ > 0; 

θ: location parameter 

Gp 

1
1

1
1 , 0

1
, 0

k

x

x
k k

e k






 



 





      






 
k: shape parameter  

σ: scale parameter, σ≥0; 

θ: location parameter 

Inversegaussian 
 2

22

3
; 0

2

x

xe x

 





 

  
μ: scale parameter, μ>0; 

λ: shape parameter, λ>0 

Logistic 

1
;

1

x

x

e

e














 

 
  

 μ: mean; 

β: scale parameter, β > 0 

Loglogistic 
 

2

1 1 log
; , 0

1

z

z

e x
z x

x e



 


 


 μ: mean of logarithmic values, μ>0; 

σ: scale parameter of logarithmic values, σ > 0;  

Lognormal 
 2log

22
1 1

; 0
2

x

e x
x










  
μ: mean of logarithmic values; 

σ: standard deviation of logarithmic values, σ > 0; 



World Electr. Veh. J. 2021, 12, 43 17 of 20 
 

Nakagami 
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μ: location parameter; 

σ: scale parameter, σ > 0; 

ν: shape parameter, ν > 0. 
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Table A2. Sorting and Clustering Results for 48 sub-clusters. 

Number Gender Age Bicycle Type Lane Width Lateral Position Cluster 

1 Female >40 years CB 3.5 m right 1 

2 Female >40 years CB >3.5 m right 1 

3 Female 40 years CB 3.5 m right 1 

4 Female 40 years CB >3.5 m right 1 

5 Male >40 years CB 3.5 m right 1 

6 Male >40 years CB >3.5 m right 1 

7 Male 40 years CB 3.5 m right 1 

8 Male 40 years CB >3.5 m right 1 

9 Female >40 years CB 3.5 m center 1 

10 Female >40 years CB >3.5 m center 1 

11 Female 40 years CB 3.5 m center 1 

12 Female 40 years CB >3.5 m center 1 

13 Male >40 years CB 3.5 m center 1 

14 Male >40 years CB >3.5 m center 1 

15 Male 40 years CB 3.5 m center 1 

16 Male 40 years CB >3.5 m center 2 

17 Female >40 years CB 3.5 m left 2 

18 Female >40 years CB >3.5 m left 2 

19 Female 40 years CB 3.5 m left 2 

20 Female 40 years CB >3.5 m left 2 

21 Male >40 years CB 3.5 m left 2 

22 Male >40 years CB >3.5 m left 2 

23 Male 40 years CB 3.5 m left 2 

24 Male 40 years CB >3.5 m left 2 

25 Female >40 years EB 3.5 m right 2 

26 Female >40 years EB >3.5 m right 2 

27 Female 40 years EB 3.5 m right 2 

28 Female 40 years EB >3.5 m right 2 
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29 Male >40 years EB 3.5 m right 2 

30 Male >40 years EB >3.5 m right 3 

31 Male 40 years EB 3.5 m right 3 

32 Male 40 years EB >3.5 m right 3 

33 Female >40 years EB 3.5 m center 3 

34 Female >40 years EB >3.5 m center 3 

35 Female 40 years EB 3.5 m center 3 

36 Female 40 years EB >3.5 m center 3 

37 Male >40 years EB 3.5 m center 3 

38 Male >40 years EB >3.5 m center 3 

39 Male 40 years EB 3.5 m center 3 

40 Male 40 years EB >3.5 m center 3 

41 Female >40 years EB 3.5 m left 3 

42 Female >40 years EB >3.5 m left 3 

43 Female 40 years EB 3.5 m left 3 

44 Female 40 years EB >3.5 m left 3 

45 Male >40 years EB 3.5 m left 3 

46 Male >40 years EB >3.5 m left 3 

47 Male 40 years EB 3.5 m left 3 

48 Male 40 years EB >3.5 m left 3 

Appendix B 

Table A3. Probability Distribution Rankings Using Different Goodness-Of-Fit Tests for Cluster. 

Order Name Parameters LL KS AIC AICc BIC 

1 loglogistic μ: 1.38, σ: 0.12 −411.6 Y 827.3 827.3 834.9 

2 tlocationscale μ: 3.99, σ: 0.67, ν: 4.17 −416.8 Y 839.7 839.8 851.1 

3 lognormal μ: 1.38, σ: 0.22 −419.2 Y 842.5 842.5 850.0 

4 inversegaussian μ: 4.06, λ: 81.49 −420.2 Y 844.4 844.5 852.0 

5 birnbaumsaunders β: 3.97, γ: 0.22 −420.3 Y 844.6 844.6 852.2 

6 gev k: −0.04, σ: 0.78, θ: 3.66 −420.4 Y 846.8 846.8 858.1 

7 logistic μ: 4.00, β:0.48 −421.8 Y 847.6 847.6 855.1 

8 gamma α: 20.44, β: 0.20 −423.8 Y 851.5 851.6 859.1 

9 nakagami μ: 5.05, ω: 17.42 −433.7 N 871.3 871.3 878.9 

10 rician s: 3.95, σ: 0.96 −445.3 N 894.7 894.7 902.2 

11 normal μ: 4.06, σ: 0.95 −446.1 N 896.3 896.3 903.9 

12 rayleigh b: 2.95 −584.2 N 1170.4 1170.5 1174.2 

13 uniform a: 1.93, b: 9.77 −673.4 N 1350.8 1350.8 1358.4 

14 gp −0.56, θ: 5.53 −703.1 N 1410.1 1410.2 1417.7 

15 exponential θ: 4.06 −785.5 N 1573.1 1573.1 1576.9 

Table A4. Probability Distribution Rankings Using Different Goodness-Of-Fit Tests for Cluster. 

Order Name Parameter Values LL KS AIC AICc BIC 

1 gamma α: 22.74, β: 0.23 −268.2 Y 540.5 540.6 546.9 

2 nakagami μ: 5.92, ω: 28.66 −268.3 Y 540.7 540.7 547.0 

3 gev k: -0.17, σ: 1.03, θ: 4.81 −269.5 Y 542.9 543.0 549.3 

4 lognormal μ: 1.63, σ: 0.21 −268.5 Y 542.9 543.1 552.5 

5 birnbaumsaunders β: 5.12, γ: 0.21 −269.5 Y 543.0 543.0 549.3 

6 tlocationscale μ: 5.23, σ: 1.04, ν: 20.78 −269.5 Y 543.1 543.1 549.4 

7 inversegaussian μ: 5.24, λ: 113.26 −269.7 Y 543.4 543.5 549.8 
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8 rician s: 5.12, σ: 1.11 −269.8 Y 543.6 543.7 550.0 

9 normal μ: 5.24, σ: 1.09 −270.2 Y 544.4 544.4 550.7 

10 logistic μ: 5.22, β: 0.62 −270.3 Y 544.6 544.7 551.0 

11 loglogistic μ: 1.64, σ: 0.12 −269.5 Y 545.0 545.2 554.6 

12 uniform a: 2.83, b: 8.84 −321.1 N 646.1 646.2 652.5 

13 rayleigh b: 3.79 −363.0 N 728.1 728.1 731.2 

14 gp σ: -1.01, θ: 8.93 −389.9 N 783.7 783.8 790.1 

15 exponential θ: 5.24 −475.5 N 953.0 953.1 956.2 

Table A5. Probability Distribution Rankings Using Different Goodness-Of-Fit Tests for Cluster. 

Order Name Parameter Values LL 
K

S 
AIC AICc BIC 

1 gev k: −0.18, σ:1.42, θ: 6.00 −1566.6 Y 3139.3 3139.3 3153.5 

2 gamma α: 18.40, β: 0.36 −1567.9 Y 3139.8 3139.8 3149.3 

3 nakagami μ: 4.83,46.13 −1569.2 Y 3142.5 3142.5 3152.0 

4 birnbaumsaunders β: 6.43, γ: 0.24 −1572.8 Y 3149.6 3149.6 3159.1 

5 inversegaussian μ: 6.62, λ:114.96 −1573.0 Y 3150.1 3150.1 3159.6 

6 lognormal μ: 1.86, σ: 0.24 −1573.1 Y 3150.1 3150.2 3159.7 

7 rician s: 6.42, σ: 1.56 −1578.1 Y 3160.1 3160.2 3169.6 

8 normal μ: 6.62, σ: 1.53 −1578.9 Y 3161.8 3161.9 3171.3 

9 tlocationscale μ: 6.62, σ: 1.53, ν: 2594780.26 −1578.9 Y 3163.8 3163.9 3178.1 

10 loglogistic μ: 1.87, σ: 0.14 −1584.9 Y 3173.8 3173.8 3183.3 

11 logistic μ: 6.56, β: 0.88 −1590.1 Y 3184.2 3184.2 3193.7 

12 uniform a: 2.89, b: 11.24 −1814.4 N 3632.8 3632.8 3642.3 

13 rayleigh b: 4.8 −1946.1 N 3894.2 3894.2 3898.9 

14 gp −0.98, θ: 11.01 −2068.1 N 4140.2 4140.2 4149.7 

15 exponential θ: 6.62 −2470.5 N 4943.1 4943.1 4947.8 
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