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Abstract: Flexible charging can be applied to avoid peak loads on the electricity grid by curbing
demand of electric vehicle chargers as well as matching charging power with availability of sustain-
able energy. This paper presents results of a large-scale demonstration project “Flexpower” where
time-dependent charging profiles are applied to 432 public charging stations in the city of Amsterdam
between November 2019 and March 2020. The charging current on Flexpower stations is reduced
during household peak consumption hours (18:00–21:00), increased during the night-time, and
dynamically linked to solar intensity levels during the day. The results show that the EV contribution
to the grid peak load can be reduced by 1.2 kW per charging station with very limited user impact.
The increased charging current during sunny conditions does not lead to a significantly higher
energy transfer during the day because of lack of demand and technical limitations in the vehicles.
A simulation model is presented based on empirical power measurements over a wide range of
conditions combining the flexibility provided by simulations with the power of real-world data. The
model was validated by comparing aggregated results to actual measurements and was used to
evaluate the impact of different smart charging profiles in the Amsterdam context.

Keywords: electric vehicle (EV); smart charging; infrastructure; demonstration; user behavior

1. Introduction

Electric vehicles (EVs) are no longer only a niche market and will increasingly define
passenger mobility with a market growth of over 30% for the last five years and an
accumulated amount of 5 million EVs on the roads in 2019 [1]. The electrification of
transport and the need for more and faster charging is expected to add a considerable
load on the electricity infrastructure in the near future [2]. Because the timing of the peak
in demand of EV charging coincides largely with the peak in household consumption,
the total peak load will increase directly with the addition of more EVs and the limits of
the grid capacity may be reached [3–5]. As such, electric mobility provides a substantial
challenge to grid operators to provide sufficient capacity while maintain grid stability and
security without having to carry out expensive and disruptive grid reinforcements. The city
of Amsterdam has set the ambitious target of achieving local zero emission transport by
2030 for all transport modalities (including buses, city logistics, taxis, shared vehicles, and
private vehicles). The required expansion of charging stations will increase the load on the
local electricity grid. Smart charging of EVs offers opportunities for better managing and
incorporating this additional electricity demand within the boundaries of the existing grid.

Smart charging research in recent years has mainly been focused on simulation and
modeling to investigate the impact on the grid [5–7], energy market prices [8,9] and
matching of renewable energy profiles [10]. The results show that smart charging can give
significant advantages in reducing grid load during peak moments but the extent to which
depends on the specific details of the profiles and assumptions used in the models [7,9,11].
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The simulation work is valuable for exploring the feasibility and optimizing the impact
of various smart charging strategies, but often, the suggested architectures are based on
complicated communication schemes between vehicles and a centralized management
system and are not suitable for short-term implementation [3]. Moreover, simulation
studies include many assumptions on charging behavior based on start time distributions,
charge volume distributions, average power level of charging equipment and the potential
of rescheduling charging sessions [12–15] but lack real-world data on actual charging
power and will underestimate several practical effects such as differences in the charging
characteristics of different EV models, state of charge (SOC) and battery degradation effects,
local circumstances such as the number of sockets per station or the maximum current
level of the internal safety fuses, and other effects. As a result, the results may deviate
significantly from real-world implementations. Empirical cases are needed to validate
simulated results and fine-tune assumptions before applying the insights in practice.

There are several pilot studies where smart charging has been applied in prac-
tice [9,16,17]. These studies confirm the potential of smart charging to suppress peaks
in grid load, but the number of empirical studies is still limited, and these tend to have
only few chargers in a well-controlled environment [18–20]. In the period of January to
August 2018, a medium scale pilot called ‘Flexpower 1’ was conducted in order to perform
a quantitative analysis of how the various stakeholders are affected by smart charging in
the complicated setting of the public charging network in Amsterdam [21]. A static smart
charging profile was deployed on 39 public charging stations in Amsterdam, providing a
lower charging current limit during peak consumption hours (07:00–08:30 and 17:00–20:00)
and a higher current limit during the rest of the day. The impact on users was assessed by
studying to what extent average charging powers and volumes were increased or reduced
as result of the Flexpower profile. The results of this project were promising in terms of
limited impact on EV drivers and positive impact on the grid.

The current paper describes the project ‘Flexpower 2’, which ran between November
2019 and March 2020 as a follow up to ‘Flexpower 1’, increasing the number of charging
stations from 39 to 432 and providing a dynamic charging profile that changes on a daily
basis based on the forecasted solar irradiation level. The aim of this follow-up study
was to quantitatively evaluate the effect of smart charging on (i) the match of sustainable
energy generation and charging profiles, (ii) impact on the grid, and (iii) impact on EV
users. The large volume of data on charging transactions also allowed us to build a
simulation model based on empirical power measurements over a wide range of conditions,
combining the flexibility provided by simulations with the power of real-world data. The
experiment was terminated prematurely because of the lockdown following the outbreak
of the Corona virus in The Netherlands. The restrictions caused such a large change in
vehicle movements that the data were no longer useful for this analysis. The fact that the
data were collected primarily in the winter will cause seasonal effects to be obscured, but
the seasonal comparison in [22] shows that these effects are expected to be small.

2. Materials and Methods

During the ‘Flexpower 2’ study, data were collected on about 10,000 users responsible
for approximately 100,000 unique charging transactions on 432 public charging stations.
The dataset contains transactions of battery electric vehicles (BEVs; all-electric vehicle) as
well as plug-in hybrid electric vehicles (PHEVs; cars with dual fuel systems) since these
share the same public charging infrastructure. The general public was informed of the
project via stickers on the charging stations and a news campaign. However, no attractive
or repulsive effect of Flexpower stations can be found in the data; users have not changed
their charging behavior.

This study is a follow up to the project ‘Flexpower 1’, and a detailed description
of the experimental design, data sources, and methods of analysis is presented in the
corresponding research paper [21]. The costs associated with upgrading a grid connection
are about EUR 700/year and were sponsored by the city of Amsterdam. The smart charging
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profile that was applied in the ‘Flexpower 2’ follow up study was changed on two main
aspects compared to the preceding study: (i) the current limitations in the morning were
lifted and were shifted from 17:00–20:00 to 18:00–21:00 in the evening to better counteract
the household load on the grid, (ii) the current limit during the day was linked to the
weather forecast in Amsterdam. When a high intensity of solar irradiation was expected, a
higher current limit was applied on the charging stations than when a low solar irradiation
was forecasted. The profile is plotted in Figure 1 including a reference level representing
regular charging stations in Amsterdam. Rather than making the current limitation directly
proportional to the local solar power production, a two-level approach was chosen to
ensure transparency to the users of the charging stations and to simplify the statistical
analysis of the data.
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Figure 1. The time-dependent profile deployed on the selected Flexpower charging stations under sunny and cloudy
conditions compared to the current limit per phase on a regular public charging station in Amsterdam.

The specific type of EV is not known in the data, but a classification is inferred based
on the charging behavior over multiple sessions of the same payment ID. The classification
consists of the number of phases and maximum current, for example, 1 × 16 A means the
vehicle can charge over one electrical phase with a maximum of 16 ampere. For each time
interval in the data, the average power is computed and interpreted if possible. For example,
charging at 3.7 kW is interpreted as 16 A charging on a single phase, 5.5 kW as 25 A charging
on a single phase and 11 kW as 16 A charging on three phases, etc. The data records that
have an average power which matches an existing technical configuration available on the
market are labelled with the corresponding interpretation and this process is repeated for
all combinations of conditions (single/double occupancy, Flexpower/reference stations
and all current limitation levels—8 distributions in total). The records that fall outside of
the known technical ranges cannot be interpreted and are not labelled. These cases are
caused by unknown factors such as reduced charging power when the battery approaches
a full state-of-charge.

We distinguish five main groups which are presented in Table 1 (there are also a few
3 × 32 A models on the market, these have been combined with the 3 × 25 A category).
The 1 × 16 A category, which includes many PHEVs, is dominant in terms of number of
vehicles and sessions but only represents 24% of the total energy demand.

Table 1. An overview of the inferred EV categories with examples of corresponding popular models on the market and the
distribution on over several indicators on Flexpower stations (November 2019 to March 2020).

Vehicle
Category

Example of Model
on the Market

Number of
Sessions Sessions (%) Number of

Vehicles Vehicles (%) Energy
(MWh)

Energy
(%)

Average En-
ergy/Session

(kWh)

1 × 16 A Mitsubishi
Outlander (PHEV) 42,987 49% 5977 43% 255.58 24% 5.95

1 × 32 A Jaguar I-Pace 14,043 16% 1654 12% 221.91 21% 15.80
2 × 16 A VW e-Golf 4965 6% 800 6% 59.60 6% 12.00
3 × 16 A Tesla Model 3 16,833 19% 3632 26% 352.58 33% 20.95
3 × 25 A Tesla Model S 6065 7% 797 6% 155.12 14% 25.58
unknown 2669 3% 887 6% 34.19 3% 12.81
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3. Results and Discussion

In the following section, we present and discuss the impact the Flexpower profile
has on the EV charging process. Results are presented on (i) charging power per active
session, (ii) charging power per station (which represents the total grid load contribution of
EV charging), (iii) positively/negatively affected sessions on Flexpower charging stations
compared to the reference stations, (iv) the effect of dynamic current levels linked to solar
intensity, and (v) results of a simulation using measurements of real-world transactions
as input.

3.1. Average Charging Power Per Session

To investigate the impact on the effective charging power of the different vehicle
categories, we calculate the average power on the Flexpower and reference stations as a
function of time of day. Since the time-dependent profile is the same on all Flexpower
stations, the results for all stations can be aggregated. The results are presented in Figure 2.
The blue line is calculated from sessions on reference stations, which always have a limit of
25 A for both sockets combined and have 16 A fuses on the individual sockets. It is inter-
esting to note that the reference stations offer the same condition all day, but nevertheless,
the charging power fluctuates over time, especially for the categories charging on more
than one phase, and is significantly lower than the theoretically expected value (3.7 kW for
1 × 16 A, 11 kW for 3 × 16 A). This shows that there are other factors besides the charging
station characteristics that determine the effective power. The red line shows the average
power on Flexpower stations that have a time-dependent current limit. All categories show
a reduction of 30–50% in power during the evening hours (18:00–21:00) as a result of the
lower current limit. The rest of the dynamics differ between the vehicle categories.
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The 1 × 16 A and 2 × 16 A categories are internally limited to 16 A and therefore
cannot profit from the increased current limit during off-peak hours. The same applies for
the 3 × 16 A category, even though this category shows an increase in power late in the
evening. This can be explained by the double occupancy effect. Public charging stations in
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Amsterdam have two sockets, but the current limit applies to the whole station. The station
uses software to optimize the energy transfer to both sockets and can provide full current to
both sockets if it is possible to assign dedicated phases to each of the connected vehicles. A
3 × 16 A vehicle which is connected simultaneously with another vehicle always requires
at least one of the phases to be used for both sockets and the current limit is shared. On
regular charging stations, there is 25 A to share, and this configuration results in charging
at 12.5 A per socket. On Flexpower stations, the vehicle can continue to charge at 16 A even
during double occupancy because the station-wide limit is increased to 35 A. This effect is
strongest in the evening when the occupancy rate is highest. The double occupancy effect
can also occur for 1 × 16 A and 2 × 16 A vehicles, but because of the high market share of
single-phase vehicles, the criterium of >3 phases is not exceeded very often in these cases.

The 1 × 32 A and 3 × 25 A categories can profit from higher current levels during
off-peak hours and the removal of the 16 A fuse on the sockets, which can clearly be seen
in Figure 2.

The dip in power in the early morning is the result of a very low number of active
charging sessions that are all approaching a full state-of-charge. The last part of the
charging process is often slower due to the battery management system which reduces the
average power.

3.2. Total Grid Load

The results in Figure 2 do not reflect the number of active charging sessions, which
varies a lot over the day. When we average the charging power over the number of stations
instead of the number of active sessions, we get a better picture of the total grid load
contribution of EV charging over the day (an idle charging station is still counted in the
average). These results are presented in Figure 3.
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The blue line represents the average power of a reference station and clearly shows that
the peak in demand occurs between 18:00 and 22:00. The energy transfer then continues
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to decrease until 07:00. The average power per station is approximately constant during
the day.

The red line, representing the average power of a Flexpower station, follows the same
trend, except for the artificial decrease in power between 18:00–21:00 because of current
limitations. This creates outstanding demand which is met at an accelerated rate after
limitations are lifted, creating a rebound peak. Even though this rebound peak is higher
than the original demand peak, it occurs at a time when household demand has already
decreased causing the total load on the grid to be more evenly distributed. Flexpower
reduces the load on the grid during the peak (at 19:30) with 1.2 kW per station.

3.3. Positively and Negatively Affected Sessions

An important indicator for smart charging in practice is the extent to which EV users
are positively or negatively affected by providing a Flexpower profile compared to the
current standard static charging profile. A session on a Flexpower station is defined as
being negatively affected when it results in a lower amount of charged energy compared to
a similar transaction on a reference station. However, since the amount of charged energy
in a session depends on the battery size of the EV and the SOC of the batteries, we prefer
to analyze this indicator by looking at the average power per transaction. The average
power is directly proportional to the amount of energy charged and is insensitive to effects
of battery size and SOC.

Figure 4 shows the distributions of the average power per transaction for the five
different vehicle categories. We can identify several shifts in the distributions that cor-
respond to the positive and negative impact of the Flexpower profile. For the 1 × 16 A
category, there is a shift from 3.7 kW to 1.9 kW, and the 2 × 16 A category shows a shift
from 7.4 kW to 3.7 kW, which are the result of the current being reduced by a factor of
two during evening hours. The 1 × 32 A category shows the same shift to lower power but
also a much larger shift to values above 4 kW. This is the result of being able to charge at
25 A and 35 A during off-peak hours. The 3 × 16 A category shows a shift to lower power
levels because of current limitations but also a positive shift from 8 kW to 11 kW. This can
be explained by the fact that vehicles no longer have to share the current during double
occupancy. The 3 × 25 A category distributions contain the shift to lower power levels
because of limitations and the double occupancy effect, as well as the positive shift because
vehicles can charge at 25 A during off-peak hours.

The number of positively and negatively affected sessions are quantified as the per-
centage of transactions associated with these shifts and are determined by subtracting
the two distributions from each other. This leads to the results in Table 2. The 1 × 16 A
and 2 × 16 A categories cannot profit from Flexpower, and the 3 × 16 A has only limited
benefit. The 1 × 32 A category has the largest advantage, followed by the 3 × 25 A cate-
gory. The lower negative impact percentages of both these categories show that negative
impact in a transaction is often compensated during more favorable conditions beforehand
or afterwards.

Since most sessions complete charging before being disconnected and are unaffected
by definition, the total share of negatively affected sessions is only 6%. Most of these
sessions are PHEVs and will not experience any range anxiety as a result of Flexpower. The
vehicles capable of charging over 3 phases or at higher current are less negatively affected
and often even positively affected by Flexpower (the total share of positively affected
sessions is 4%). Overall, we can conclude that the impact of Flexpower on customers is
very limited and that the positive and negative effects are of equal magnitude.



World Electr. Veh. J. 2021, 12, 82 7 of 11

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 7 of 12 
 

spond to the positive and negative impact of the Flexpower profile. For the 1 × 16 A cate-

gory, there is a shift from 3.7 kW to 1.9 kW, and the 2 × 16 A category shows a shift from 

7.4 kW to 3.7 kW, which are the result of the current being reduced by a factor of two 

during evening hours. The 1 × 32 A category shows the same shift to lower power but also 

a much larger shift to values above 4 kW. This is the result of being able to charge at 25 A 

and 35 A during off-peak hours. The 3 × 16 A category shows a shift to lower power levels 

because of current limitations but also a positive shift from 8 kW to 11 kW. This can be 

explained by the fact that vehicles no longer have to share the current during double oc-

cupancy. The 3 × 25 A category distributions contain the shift to lower power levels be-

cause of limitations and the double occupancy effect, as well as the positive shift because 

vehicles can charge at 25 A during off-peak hours. 

 

Figure 4. Distribution of the average power per transaction per vehicle category for Flexpower and reference stations. The 

average is calculated for the whole session, so periods of slower charging during the current limitation can be compensated 

in the preceding or following hours. Only sessions that have not finished charging upon disconnection are shown (47.3%). 

The number of positively and negatively affected sessions are quantified as the per-

centage of transactions associated with these shifts and are determined by subtracting the 

two distributions from each other. This leads to the results in Table 2. The 1 × 16 A and 2 

× 16 A categories cannot profit from Flexpower, and the 3 × 16 A has only limited benefit. 

The 1 × 32 A category has the largest advantage, followed by the 3 × 25 A category. The 

lower negative impact percentages of both these categories show that negative impact in 

a transaction is often compensated during more favorable conditions beforehand or after-

wards. 

Since most sessions complete charging before being disconnected and are unaffected 

by definition, the total share of negatively affected sessions is only 6%. Most of these ses-

sions are PHEVs and will not experience any range anxiety as a result of Flexpower. The 

vehicles capable of charging over 3 phases or at higher current are less negatively affected 

Figure 4. Distribution of the average power per transaction per vehicle category for Flexpower and reference stations. The
average is calculated for the whole session, so periods of slower charging during the current limitation can be compensated
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Table 2. Percentage of charging sessions that was influenced by Flexpower and how. The numbers
only reflect the sessions that were not completed at the moment of disconnection.

Vehicle
Category Negative No Impact Positive Sessions That Have

Completed Charging (%)

1 × 16 A 19% 77% 4% 64.7%
1 × 32 A 5% 28% 67% 59.8%
2 × 16 A 23% 77% 0% 62.6%
3 × 16 A 15% 74% 11% 58.5%
3 × 25 A 2% 64% 34% 52.9%

3.4. Solar Intensity Levels

The time-dependent current profile on Flexpower stations is updated each night
depending on the weather forecast for the coming day. If the probability that the sun will
shine (parameter ‘d1zon’ from the Dutch weerlive API [23]) is 40% or higher, the current
limit is set to 35 A between 06:30 and 18:00, if it is lower it is set to 25 A during this time.
This dynamic adaptation of the smart charging profile is done to investigate to what extent
EVs can be used to absorb peaks in local solar power generation.

Figure 5 shows the average power per session and the average power per station for
both solar intensity levels. It can be seen that the higher current limit leads to slightly
higher power per session and also to a slightly higher power per station, indicating more
energy was charged during the day and relieving a small portion of the evening load. The
difference is not very large because only a limited share of vehicles can profit from the
increased current limit during high solar intensity conditions, and double occupancy, for
which the higher current limit gives an advantage, occurs less frequently during the day.
Moreover, if vehicles complete charging before disconnecting, a higher power will not
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lead to higher energy volume; the battery will just be fully charged faster. If EVs are to be
used to absorb future peaks in local solar power, extra incentives are needed to promote
charging during overlapping hours.
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3.5. Simulation Model

The possibility to apply a time-dependent current limit on live charging stations with
real users is a unique opportunity to evaluate smart charging strategies under real-world
conditions. However, because there are so many known and unknown factors that influence
the charging process and often only one or two transactions take place on a charging station
per day, it takes many stations and several weeks to be able to draw reliable conclusions.
Moreover, it is undesirable to subject real users to more aggressive profiles, limiting their
access to energy and directly impacting their mobility. Therefore, it is of great added value
to be able to simulate the impact of smart charging profiles.

To ensure that simulation gives reliable results, we use empirical measurements of
actual charging sessions as input for the model, as it is known that these are very different
from theoretical values [21]. The occupancy of a station, the vehicle category, and the
applied current limit are known factors that influence the charging power. We construct a
power table containing every combination of these factors (e.g., a single 1 × 32 A vehicle on
a Flexpower station with a 16 A current limit) and determine the average charging power
under these circumstances from the data. The empirical values are up to 30% lower than
the theoretical power under the corresponding conditions.

The simulation takes the start time, end time, and total energy of a real transaction and
simulates how this session would have developed over time if a different smart charging
profile had been implemented. For each 15-min interval, a value is taken from the power
table corresponding to the conditions as they were at that moment in time. A distinction is
made between sessions that completed charging before being disconnected and sessions
that continued charging until the connection was ended by the user. When simulating the
first scenario, the process stops when the total energy volume reaches the amount that was
charged in the original transaction, the battery capacity is the limiting factor. The amount
of time it takes to reach this energy volume may be shorter or longer depending on the
conditions during the session. When simulating a non-completed transaction, the process
continues until the end of the transaction is reached. This can result in a larger or smaller
amount of energy depending on the conditions during the session.

To validate the reliability of the simulation model, the transactions from a random
selection of 50% of all stations (reference and Flexpower) were simulated with the cor-
responding current limitation profiles (as illustrated in Figure 1), and the results were
compared to the actual measurements on the remaining 50% of the stations. In total, over
150.000 transactions were run through the simulation. The aggregated results are shown
in Figure 6A. The simulated results very closely match the real results, indicating that the



World Electr. Veh. J. 2021, 12, 82 9 of 11

impact of a smart charging profile can be accurately evaluated with our model for the
specific context of Amsterdam.

World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 10 of 12 
 

 

Figure 6. (A) Average charging power per station for the actual data on Flexpower and reference stations, as well as a 

simulation of the Flexpower and reference profiles on the same transactions. (B) Simulations of the average charging 

power per station on a fixed set of transactions using different current limitation levels during the evening hours (18:00–

21:00). 

Because it was shown that the simulations give reliable results for the grid impact, 

we can now simulate different scenarios for a fixed set of transactions. Since the input 

transactions are now the same every time, an accurate comparison can be made of the grid 

impact, depending on the specific profile configurations, but also of how individual trans-

actions were influenced by the profile in terms of total energy or charging time. 

Figure 6B shows how the current limit level during the evening hours influences the 

avoided grid load and the rebound peak. Simulations were run where the current limit 

level between 18:00–21:00 was set to 8 A (actual Flexpower profile), 12 A, 16 A, 20 A, 25 

A, and 35 A. Since we do not have actual measurements of charging behavior at 12 A and 

20 A, the power values were interpolated between 8 A and 16 A and between 16 A and 25 

A since it is expected that the power in those intervals increases linearly with the current 

limit. 

The lower the current limit during evening hours, the higher the rebound peak is, 

where the current limit of 35 A is the only case which does not show a discontinuity at 

21:00, indicating there is outstanding demand at this time regardless of the conditions 

during the evening hours and there are conditions for which a 35 A limit is advantageous 

(e.g., double occupancy of 3-phase vehicles). The difference in grid load and magnitude 

of the rebound peak between the 8 A and 16 A current limits is much larger than the 

difference between 16 A and 25 A. This can be explained by the fact that all vehicles can 

profit from the increase from 8 A to 16 A, but only a limit number of vehicles can benefit 

from a higher current than 16 A. 

The results from the simulation model show that the impact of smart charging strat-

egies can be studied in a virtual environment. Any set of real or hypothetical transactions 

can be evaluated on multiple profiles to evaluate the impact on the users, total sales, the 

grid load, and overlap with generation of sustainable energy. This allows us to estimate 

the business case of new strategies without directly exposing real users and without weeks 

Figure 6. (A) Average charging power per station for the actual data on Flexpower and reference stations, as well as a
simulation of the Flexpower and reference profiles on the same transactions. (B) Simulations of the average charging power
per station on a fixed set of transactions using different current limitation levels during the evening hours (18:00–21:00).

Because it was shown that the simulations give reliable results for the grid impact,
we can now simulate different scenarios for a fixed set of transactions. Since the input
transactions are now the same every time, an accurate comparison can be made of the
grid impact, depending on the specific profile configurations, but also of how individual
transactions were influenced by the profile in terms of total energy or charging time.

Figure 6B shows how the current limit level during the evening hours influences the
avoided grid load and the rebound peak. Simulations were run where the current limit
level between 18:00–21:00 was set to 8 A (actual Flexpower profile), 12 A, 16 A, 20 A, 25 A,
and 35 A. Since we do not have actual measurements of charging behavior at 12 A and 20 A,
the power values were interpolated between 8 A and 16 A and between 16 A and 25 A since
it is expected that the power in those intervals increases linearly with the current limit.

The lower the current limit during evening hours, the higher the rebound peak is,
where the current limit of 35 A is the only case which does not show a discontinuity at 21:00,
indicating there is outstanding demand at this time regardless of the conditions during
the evening hours and there are conditions for which a 35 A limit is advantageous (e.g.,
double occupancy of 3-phase vehicles). The difference in grid load and magnitude of the
rebound peak between the 8 A and 16 A current limits is much larger than the difference
between 16 A and 25 A. This can be explained by the fact that all vehicles can profit from
the increase from 8 A to 16 A, but only a limit number of vehicles can benefit from a higher
current than 16 A.

The results from the simulation model show that the impact of smart charging strate-
gies can be studied in a virtual environment. Any set of real or hypothetical transactions
can be evaluated on multiple profiles to evaluate the impact on the users, total sales, the
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grid load, and overlap with generation of sustainable energy. This allows us to estimate
the business case of new strategies without directly exposing real users and without weeks
of delay to accumulate sufficient data. The simulation model has become a valuable tool to
experiment with smart charging profiles using input calibrated to the Amsterdam context
and to evaluate policy decisions.

4. Outlook

The ambitious renewable energy targets in Amsterdam and corresponding growth in
EV market share will make a smart charging strategy unavoidable. Part of the ongoing
study is to combine data on charging transactions with measurements on the local electricity
grid to better understand the interaction between the household and EV contributions
to the load and to be able to customize smart charging profile depending on the local
circumstances instead of the current one-size-fits-all approach.

The current profiles are now communicated with the charging stations over OCPP
(Open Charge Point Protocol) one day ahead. The protocol allows for real-time communica-
tion, and we aim to implement this in the project. This would allow dynamic adjustment of
the current limit depending on actual occupancy and demand levels as well as emergency
interventions when the grid load passes a critical threshold.

5. Conclusions

A time-dependent current limit was deployed on 432 public charging stations in the
city of Amsterdam where the current was reduced during the peak hours of household
energy consumption (18:00–21:00), was increased during the night, and dynamically linked
to the forecasted level of solar intensity during the day. By alternating a lower current
during peak hours with a current surplus during off-peak hours, we were successfully able
to suppress the load of EV charging on the grid by 1.2 kW per station during a designated
time window with minimal consumer impact.

The results in this paper show a large difference between the theoretical charging limit
and the practical power levels that are realized. For example, for the 1 × 16 A vehicles,
the actual charging power is stable around 3 kW (Figure 2), while the theoretical limit
for 1 × 16 A is 3.7 kW, a difference of about 20%. This discrepancy can be found for all
categories and is an important insight to help make policy and models more realistic. This
difference between theoretical limit and the charging power in practice arises from the sum
of many factors, some associated with the vehicle and some associated with the charging
station and the grid. It is difficult to say to what extent this result applies to different
cities and countries as the local circumstances may differ significantly for public charging
infrastructures in terms of connection types, vehicle fleet composition, and occupancy rates.
Using measurements from real transactions for calibration, the simulation presented in this
paper could be evaluated for different contexts.

It was also shown that in the current situation, the possibility of increasing charging
volumes during the day is limited by the level of demand, low occupancy rates, and
technical limitations of most of the electric vehicles currently on the market. If the goal of
better overlap of EV charging with solar power generation is to be realized, consumers
need more incentives to charge during the day.
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