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Abstract: In recent decades, urban air pollution has increased considerably in Mexico City, leading to
harmful effects on the ecosystem. To reduce pollutant emissions, new sustainable technologies have
been adopted in the transport sector. To date, no studies have conducted a technoeconomic analysis
of the environmental impact of electric vehicles (EVs) in regard to taxis in Mexico. To address this
gap in the research, this study aimed to perform a cost-environmental impact assessment of electric
taxi introduction in Mexico City using the life-cycle cost (LCC) methodology and the greenhouse
gas (GHG) emissions assessment. Furthermore, a sensitivity analysis was performed to identify
parameters with the greatest influence on the LCC. The LCC of EVs was found to be larger than that
of internal combustion vehicles (ICVs); the acquisition cost was identified as the greatest contributor
to the total LCC, followed by the maintenance cost. Worldwide, mixed results have been reported
due to differences in the use of local parameters and values. To promote EVs, it is necessary to reduce
either acquisition costs or battery costs. The environmental analysis showed that there is only a slight
reduction in GHG emissions with electric taxi introduction. Nevertheless, cleaner renewable energy
sources must be adopted and considered in order to achieve a much greater reduction and take full
advantage of the benefits of EVs.

Keywords: life-cycle cost; electric vehicles; environmental impact; public transport; sustainable mobility

1. Introduction

In recent decades, the level of urban air pollution, based on historical GHG emis-
sions [1], has increased considerably in Mexico City, leading to harmful effects on the
ecosystem. Therefore, Mexico has become a global focus in terms of the pollution level. Air
pollution originates mainly from anthropogenic activities, resulting in changes to natural
resources such as water, air, and soil. Global population growth has increased fossil fuel
use to fulfill population energy needs [2], resulting in environmental pollution, mainly air
and water pollution. To perform a cost-environmental impact assessment, it is necessary
to determine the trajectory of pollutant emissions [3]. Environmental pollution involves
contributions from different sectors and activities, such as industry, agriculture, mining,
livestock, and mobility. The transport sector represents one of the largest consumers of
fossil fuels [4]. In Mexico, the transport sector contributes approximately 53.3% of pollutant
emissions [5], as this sector is primarily based on internal combustion vehicles (ICVs),
which work by burning fossil fuels. The constant use of ICVs increases levels of pollutants
including carbon dioxide and nitrous oxide.

Some studies [6–8] have proposed measures to mitigate or reduce pollutant emissions
caused by the transport sector. There have been proposals to standardize fuels in order
to make efficiency improvements through the removal of inefficient products from the
market by manufacturers, allowing final consumers to make a decision based on efficiency
and cost information. It has been argued that, through this measure, the contribution of

World Electr. Veh. J. 2021, 12, 93. https://doi.org/10.3390/wevj12030093 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-8569-3218
https://orcid.org/0000-0001-5299-3276
https://doi.org/10.3390/wevj12030093
https://doi.org/10.3390/wevj12030093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12030093
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12030093?type=check_update&version=3


World Electr. Veh. J. 2021, 12, 93 2 of 23

the transport sector to environmental pollution could be reduced. However, other studies
argue that air pollution could be reduced by accelerating the introduction of clean and
efficient technologies in the transport sector [9], specifically biofuels [10,11], which could
reduce the level of dependence on fossil fuels. According to the International Energy
Agency forecast [12], by the year 2050, global CO2 levels may decrease by approximately
2 gigatons per year by using biofuels to meet up to 27% of the energy demands of the
transport sector. Nevertheless, optimal and sufficient technological development in the
production of efficient and economical biofuels is yet to be achieved, resulting in low
adoption of biofuels as the main sources of alternative energy.

Other measures that have been proposed to mitigate pollutant emissions are the use
and adoption of electric vehicles (EVs) [9,13,14]. Compared with internal combustion
vehicles (ICVs), EVs were late to acquire popularity in the market—beginning in the 1970s,
due to the high price of fuel [15], and ending in the 1990s, with a mandate of zero emissions
introduced in the USA [16]. In 2019, 4.79 million EVs were being used worldwide [17], and
this number is expected to increase to 43 million units by 2030 [18].

The studies presented in [19–27] addressed the economic effectiveness of EVs on the
market compared with ICVs and hybrid electric vehicles (HEVs) using the life-cycle cost
methodology and considering different stages, such as production, operation, maintenance,
and depreciation/end of life. Many of these studies assessed the competitiveness of EVs in
a market that has been monopolized by ICVs and the petrol industry.

This paper aims to perform a cost-environmental impact assessment of electric vehicles,
specifically taxis in Mexico City, in order to assess the feasibility of using EVs compared
with ICVs. Additionally, a sensitivity analysis is performed to observe the effects of possible
variations in the parameters used. Despite our use of specific parameters for the Mexican
market, the methodology used in this paper can be applied worldwide to calculate the
LCC and assess pollutant emissions.

The geographical area to be studied is Mexico City. According to data obtained
through the INEGI portal [28], the CDMX territory has an area of 1487 km2, which repre-
sents 0.08% of the total territory of Mexico, and is divided into 16 municipalities. According
to the last census (conducted in 2015), it has a total population of approximately 8,985,339 in-
habitants. The total emissions per year in Mexico City is 16,745,438 tons of CO2 equivalents,
5.23% of the average annual national emissions [29].

This study contributes to the literature in two areas. Firstly, it evaluates the feasibility
of introducing EVs to the Mexican market and for use in public transport, specifically
taxis, by using local data to conduct a technoeconomic analysis of electric vehicles and
identify dominant factors that affect the total LCC. Furthermore, this study determines the
environmental impact of EVs in terms of GHG emissions.

2. Literature Review

Multiple LCC papers have been published in order to assess the effectiveness of
introducing new technologies into the vehicle market: for example, EVs (e.g., Mitropoulos
et al. [19] and Breetz [21]), electric buses (e.g., Li et al. [25]), and hybrid electric trucks (e.g.,
Vora et al. [26]).

Some studies have argued that the parameters for LCC calculation might vary de-
pending on the study area: for example, the annual driving mileage [19,21], fuel price,
annual taxes, and insurance costs [30].

Geographically, multiple economic evaluations have been performed to measure
the competitiveness of the introduction of EVs into the market [19–23] in areas such as
Europe, the USA, Singapore, and Australia. Some studies have concluded that the LCC
of EVs is lower than that of ICVs in countries such as Japan, the UK, the USA, France,
and Norway [23,24]. On the contrary, in some countries, such as Italy, Hungary, Portugal,
Germany, and Austria, the LCC of EVs is higher [23].

In China, the EV fleet has increased considerably over the years. Thus, many economic
studies of EVs have been conducted. The authors of [31] compared the cost effectiveness
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of EVs and ICVs. They concluded that the LCC of EVs could be lower if longer distances
were considered. The authors in [32] assessed the LCC with the consideration of tangible
and intangible costs of traffic policies. The results showed that the incorporation of intan-
gible costs, such as purchasing and driving restrictions, would make the EVs more cost
competitive. He et al. [33] considered the point of view of potential consumers to estimate
the LCC of EVs and defined a critical acquisition cost as a break-even point for potential
consumers to choose EVs over ICVs. The authors of [34] compared the economic benefits
of EVs in three different countries: China, the United States, and Germany. They showed
that despite differences in parameters, such as fuel prices, subsidies, and driving patterns,
the economic benefits barely differed among these regions.

Previously conducted studies have shown different results when conducting LCCs
to assess the feasibility and competitiveness of EVs in the automotive market with results
depending on the values of the local parameters used. Some studies concluded that
parameters such as the annual driving mileage used for the LCC calculation [19,21] vary in
terms of the total number of miles or kilometers. For instance, [21,31] emphasized that the
LCC of EVs is lower than that of ICVs and HEVs. They considered longer distances in the
analysis, which suggests a greater benefit of EVs in terms of fuel cost savings.

The influence of the annual distance traveled has been identified as important in
some studies. Nevertheless, other dominant parameters affect the LCC results, such as
taxes [20,24], acquisition or purchase costs, and local electricity prices [20,22]. On the
contrary, [21] did not identify dominant parameters in the LCC.

Most studies in this area considered all LCC factors and stages for their calculations;
however, some factors were excluded from the LCC analysis in various studies: for example,
the maintenance cost [22] and the effects of the different parameters in the sensitivity
analysis [19,22].

Mixed LCC results have been published worldwide. Differences have been influenced
by the local market parameters used and different values in, for example, the acquisition
cost, fuel prices, efficiencies, taxes, and subsidies, among others. Therefore, to perform an
analysis of the cost-technical impacts of different vehicles, it is important to consider the
appropriate use of local parameters.

3. Methods and Data
3.1. Vehicle Selection

As this research used Mexico City as the area of study, ICVs such as the Nissan Versa
and Chevrolet Beat were used. These models are the most appropriate for use as taxis
at the economic and technical levels. Additionally, electric cars such as the Nissan Leaf
and Chevrolet Bolt were chosen, as these can be more easily purchased from the Mexican
market. This selection was made with the objective of comparing the LCC and polluting
emissions of EVs and ICVs.

The vehicles were chosen according to different factors, such as the popularity and
prestige of the brands. According to the INEGI database [35], in the period from January to
September 2020, these vehicles were the best-sellers in Mexico.

Some general characteristics and parameters of the chosen vehicles can be seen in
Table 1.

Table 1. General parameters of the chosen vehicles.

Brand Leaf Bolt Versa Beat

Vehicle type EV EV ICV ICV
Cost USD 34,890.66 39,711.73 13,116.30 10,780.32

Weight (Kg) 1556 1625 1496 1384
Engine in CC N/A N/A 1600 1200

Battery size (kWh) 40 60 0.6 0.6
Battery capacity (Km) 241 416 N/A N/A

Source: [2,3,36,37].
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3.2. Life Cycle Cost Analysis
3.2.1. LCC Overview

The life-cycle cost [38] refers to all costs incurred throughout the lifetime of an object.
This approach can be extrapolated to perform an analysis in the economic context consider-
ing all costs involved in a vehicle’s lifetime, such as the acquisition cost, operating cost,
depreciation cost, and maintenance cost. The life-cycle cost analysis is also useful for the
identification of expensive components that may block the rapid expansion of products (in
this case automobiles) on the market. Equation (1) was used to calculate the LCC, which
involves all costs related to the use of the vehicles:

LCC = AC +
n

∑
i=1

(OCi + MCi + CDi) (1)

where AC = acquisition cost, OC = operating cos t, DC =
depreciation

disposal cost, and MC = ma-
intenance cost.

3.2.2. Acquisition Cost

Based on manufacturers’ suggested retail prices (MSRPs), the acquisition cost of EVs
has been high throughout the years. Nevertheless, one of the advantages of promoting the
development of the internal automobile market through a decree published by the Mexican
government [39] is the exemption of tariffs for electric vehicles.

One of the main causes of EVs’ high acquisition cost is the cost of batteries. This
considerably affects their sale price. Therefore, it affects both the expansion of EVs in the
market and the adoption of this type of vehicle by society. Nonetheless, studies related
to batteries and their energy storage [40] have estimated that the cost per Kilowatt/hour
decreased in the period from 2007 to 2014 by approximately 14% each year. The cost of
batteries used by the main manufacturers of electric vehicles is even lower, around USD 299,
which is equivalent to MXN 6000, per kWh. Annually, an 8% reduction in the battery cost
is projected. This could be advantageous for the EV market and could lead to a noticeable
decrease in environmental pollution.

3.2.3. Operation Costs

As cited in [40], according to Frenning (2001), the operating costs include all costs
related to the consumption of energy supply, water, service, security, and administration,
among others. The operating costs applied to vehicles include the fuel cost (for ICVs)
and the average recharge cost (for EVs). Furthermore, service fees include holding taxes,
pollutant emissions checks, and the insurance cost.

The operating costs can be calculated by Equation (2):

OC =
n

∑
i=1

(CComi + CTeni + CSi + CVi) (2)

where CCom = fuel costs, CTen = holding taxes, CV = pollutant emissions checks, and
CS = Insurance covering.

To determine the real cost of fuel, parameters such as the vehicle efficiency type j (ηj),
the domestic recharging efficiency (for EVs) [41] (ηcharging), the annual distance traveled
(Di) in period i, the electricity cost [42] (Celect,i) and the gasoline fuel cost [43] (Cgas,i) are
used. The fuel cost for ICVs can be calculated with Equation (3), and that for EVs can be
calculated with Equation (4).

CComVCI, i = ηVCI × Di × Cgas,i (3)

CComEV, i = ηEV × Di ×
Celect,i

ηcharging
(4)
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3.2.4. Maintenance Cost

The maintenance cost applied to vehicles includes preventive and corrective mainte-
nance costs, such as the service cost based on the distance traveled, battery cost, and tire
replacement cost. Preventive maintenance of vehicles avoids the need for larger repairs
by prioritizing smaller ones throughout a vehicle’s lifetime. In other words, preventive
maintenance is car servicing to prevent failure over the vehicle’s lifetime, while corrective
maintenance considers changes in vehicle batteries and tires.

The maintenance cost can be calculated with Equation (5):

MC =
n

∑
i=1

(PMCi + CMCi) (5)

where PMC = preventive maintenance cost and CMC = corrective maintenance cost.
The preventive maintenance cost can be calculated using the preventive maintenance

index (IMPi) and the distance traveled. The preventive maintenance cost can be calculated
with Equation (6):

CMPi = IMPi × Di (6)

The IMPi can be calculated with Equation (7):

IMPi =
pmi

km per year
(7)

where pmi = maintenance cost in each period i.
The corrective maintenance cost can be calculated using cost parameters such as the

battery change cost (CBi) and tire replacement cost (CNi), both in period i. Equation (8) is
used to calculate the corrective maintenance cost:

CMCi = BCi + TCi (8)

where BC = battery cost, and tC = tires cost.
The cost of batteries is one of the most important factors to consider since it is one of the

main contributors to both the total LCC and the cost of corrective maintenance. Nonetheless,
as previously mentioned, by the reducing battery cost [40,44], the maintenance cost should
decrease, allowing a much greater benefit for electric vehicles.

3.2.5. Depreciation/Disposal Cost

The depreciation cost includes factors that reduce the price of a new item. Applied
to vehicles, depreciation represents the difference between the acquisition cost and the
vehicle’s current value in the market. According to the Income Tax Law [45] and the
depreciation rates seen in Article 34, the depreciation rate of new cars is around 10–25%
per year.

The depreciation/disposal cost was calculated with Equation (9) using parameters
such as the depreciation cost of the vehicle at the end of period n and the battery scrap cost:

CD =
n

∑
i=1

(CDVn + CSBn) (9)

where CDV = vehicle depreciation cost, and CSB = battery scrap cost.
Assuming the vehicle owner earns income from the sale of the vehicle, the amount

will be negative, because the costs of scrapping/selling the vehicle and the battery are
subtracted from the total life-cycle cost.

3.3. LCC Data Requirements

For collection of the LCC main parameters, it was necessary to identify the cost-
technical characteristics of the different vehicles chosen. The data were collected from
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research articles, databases of technical specifications, and economic data provided by the
manufacturers of the chosen vehicles and web pages. The costs of the LCC are given in
Mexican pesos (MXN) and US dollars (USD) using the conversion rate from January 2021
of USD 1 = MXN 20.12. The chosen annual distance (Di) was 15,000 km with a vehicle
lifetime of 8 years. Nevertheless, this annual distance was set as a reference. Since taxis
use longer distances for their services, the average distance per trip in a day for taxis was
taken as 4.9 km [46], assuming 20 trips per day and a six-day working week. In a year, the
average travel distance for a taxi was determined to be around 31,066 km. The parameters
used for the LCC calculations can be seen in Appendix A Table A1.

Data on the average cost of domestic electricity consumpton were obtained from the
National Electricity Sector data portal [42]. Furthermore, the average cost of gasoline was
obtained from the Energy Regulatory Commission portal [43].

Holding taxes and verification costs were omitted for EVs [39]. On the other hand,
for ICVs, these costs were MXN 650 (USD 32.30) and MXN 1100 (USD 54.67), respectively.
The insurance coverage cost varies depending on an automobile’s insurance company (see
Table A1).

The cost of the preventive maintenance index (IMPi) for ICVs is USD 0.0334 per
km [19] or MXN 0.6699 per km. This analysis included an estimate of the service cost
for any internal combustion vehicle. In this study, real service costs were considered for
each selected ICV. The maintenance cost of an electric vehicle, which has fewer mechanical
components than an ICV, was estimated to be approximately 30% lower than that of the
average maintenance cost for an ICV [47].

The cost of batteries in the year 2020, in terms of their storage capacity limit, was
deemed to be USD 193.83 kWh/km based on an annual reduction in the cost of batteries of
8% [40]. A useful life of 100,000 miles or 169,934.4 km [48] was considered for EV batteries.
On the contrary, a useful life of 5 years was considered for ICV batteries. Their useful life is
shorter because they contain more corrosive components.

3.4. LCC Sensitivity Analysis

As already mentioned above, the life-cycle cost uses technical and economic param-
eters for its calculation. The sensitivity analysis allowed us to determine the effects of
different factors on the LCC, such as the acquisition and battery costs, electricity and fuel
costs, and the distance traveled per year.

The acquisition cost was mainly based on the manufacturer’s suggested retail price
(MSRP) and the official brand website for each vehicle. These costs may vary depending
on factors related to each location, such as import taxes, variations in the market caused by
supply and demand, and the addition of new technologies, among others. The sensitivity
analysis applied to the acquisition cost allowed us to determine the percentage decrease
required for EVs to compete with ICVs and have a greater level of expansion in the market.

The fuel cost influences the total operating costs. The variation in fuel prices—
electricity for EVs (CComEV,i) and gasoline for ICVs (CComVCI,i)—depends on the parame-
ters of the area to be studied. A change in the price of gasoline will not directly affect EVs.
Nevertheless, if the cost of gasoline is too high, the LCC of ICVs will increase, making EVs
more affordable for users.

Additionally, the battery cost factor is one of the most influential factors in the eco-
nomic analysis, because it affects both the changing battery cost (BCi) and the maintenance
cost (MC), thus affecting the life-cycle cost. Several studies have argued that the battery
cost is the most important factor to consider while analyzing the LCC in terms of electric
vehicles [40,44].

Finally, an analysis of the annual distance traveled was performed. This factor mainly
influences the results of the LCC, the operating costs (OC) and the maintenance cost (MC).
Despite assuming the same average distance for all vehicles, it is essential to know the
annual distance variation, because users are expected to have different mileages every year.
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3.5. Environmental Impact Analysis

One of the problems related to environmental pollution in Mexico and Mexico City is
the increase in greenhouse gases (GHG) [1]. These gases can be represented by an intensity
factor given in terms of the equivalent carbon dioxide (CO2) concentration. The greenhouse
gas concentration can be analyzed in terms of the mass of carbon dioxide [49], which can
be calculated using Equation (10):

mCO2, GHG EQ. = mCO2 + 21mCH4 + 310mN2O (10)

where m represents the masses of the different components, such as carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O). Other components, such as hydrofluorocarbons
(HCFCs), perfluorocarbons (PFCs), and sulfur hexafluorides (SF6), are omitted from Equa-
tion (10) due to their minimal contributions to the combustion process [41].

Coefficients 1 for (CO2), 21 for (CH4) and 310 for (N2O) refer to the Global Warming
Potential index (GWP), which is a measure of absorbed heat trapped by a certain green-
house gas compared with a reference gas, in this case (CO2). In other words, it can be
interpreted as the damage caused by gases in the atmosphere: for instance, each unit of
methane (CH4) is equivalent to 21 units of carbon dioxide (CO2).

In this study, the equivalent emissions of (CO2) were analyzed in three stages of the
life cycle of vehicles: production, operation, and disposal.

3.5.1. GHG Emissions in the Vehicle Production Phase

To assess the environmental impact of vehicle production type j, we considered the
weight of the vehicle, the battery’s weight, the greenhouse gas emissions per kilogram
of the vehicle, and the battery [50]. To calculate the polluting emissions resulting from a
vehicle’s production, Equation (11) was used:

IAVj = (mv − mbat)× EGHGv + mbat × EGHGbat (11)

where IAVi environmental impact during production phase, mv = vehicle weight, mbat = battery
weight, EGHGv = GHG vehicle emissions, and EGHGbat = GHG battery emissions.

For the production of vehicles, it was assumed that the average emissions per kilogram
for vehicles (EGHGv) and batteries (EGHGbat) were the same for all models.

3.5.2. GHG Emissions in the Vehicle Operation Phase

In this phase, the greenhouse gas emissions produced by both the driving of vehicles
and the fuel generation plants (gasoline for ICVs and electricity for EVs) were considered.
A proportional part of the power created by the electric power generation plant (1–ηTE%)
is lost during its creation and distribution [51]. ηTE refers to the efficiency of the electricity
distribution which, in Mexico, has an average value of 86.8094% [52]. Furthermore, it
was necessary to consider the amount of energy lost during local recharging of EVs:
(1–ηcharge%) [22].

The amount of fuel (electric energy) required by an EV is given by the following
equation:

CEREV =
ReqEnergyEV

EPplanta
(12)

where ReqEnergyEV is the energy required for an electric vehicle. It can be calculated
as follows:

ReqEnergiaEV =
ηEV × Di(

ηrecharga%
)
× (ηTE%)

(13)

Additionally, EP is the plant’s electricity production, which can be calculated as the
product of the efficiency of electricity production (ηEP) (38%) [53], since most electricity in
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Mexico City is produced by natural gas, and the heating value produced by the fuel used
for that production is (HVfuel). The EP was calculated by

EPplant = ηEP × HVf uel (14)

Then, the total greenhouse gas emissions during the operation stage was calculated
by Equations (15) and (16).

For EVs,
ETCO2EV =

(
CEREV × mCO2, GHG, gas natural

)
(15)

The tailpipe emissions pelled by the EVs were not considered because this type of
vehicle produces zero polluting emissions.

The equation mCO2 , GHG, gasnatural represents the GHG in CO2 terms.
For ICVs,

ETCO2VCI = CComVCI × mCO2, GHG, gas + ECGVCI × mCO2, GHG, gas (16)

where CComVCI,i is the fuel consumption in liters, which can be calculated by Equation (3)
with the fuel cost omitted.

Additionally, ECGVCI is the polluting emissions due to gasoline refining, which can be
calculated with Equation (17):

ECGVCI = CComVCI × mCO2, GHG, re f inacion de gasolina (17)

3.5.3. GHG Emissions in the Vehicle End-of-Life Phase

In this stage, emissions that only occur in the last stage of the life cycle were considered.
Thus, the same factors as in the production stage were used. These were calculated with
Equation (11) in the same way as for the production phase. Furthermore, it was assumed
that the average emissions per kilogram for vehicles (EGHGv) and batteries (EGHGbat)
during the disposal of vehicles were the same for all models. The emissions per kilogram
can be seen in Table A2.

3.5.4. Environmental Impact Analysis Data Requirements

A pollutant emissions analysis was performed for the production, operation, and
disposal phases of the different vehicles chosen using the technical parameters shown
in Table A1. Furthermore, factors and parameters such as the vehicle efficiency, GHG
emissions during the production phase, power plant electricity distribution efficiency, local
charging efficiency, and energy requirements were used. The parameters used for the
calculations can be found in Table A3. For the vehicle production phase, GHG emissions
from extraction and processing, manufacturing, and end-of-life stages were considered,
and the values can be seen in Table A2.

To calculate the values for the operation stage, the fuel heating value used for the pro-
duction of electricity in Mexico City (e.g., from natural gas) was considered (see Table A4).

4. Results

The methodologies outlined in Section 3 were used for the LCC and environmental
emissions calculations.

4.1. LCC Analysis

The results obtained for the LCC of the chosen vehicles are shown in Table 2 and
Figure 1. Furthermore, ICVs are compared with EVs.

LCC values over the EV lifetime of 8 years were far larger than those of ICVs. For in-
stance, the LCC values were USD 41,793 and USD 49,963 for the Nissan Leaf and Chevrolet
Bolt, respectively. In the case of ICVs, the LCC values were USD 25,284 and USD 21,736 for
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the Nissan Versa and Chevrolet Beat, respectively. These LCC values were calculated with
an average annual distance of 15,000 km.

Table 2. LCC results.

Calculation Leaf Bolt Versa Beat

Acquisition Cost
USD 34,890.66 39,711.73 13,116.30 10,780.32

% LCC 86.63 82.21 58.31 55.83

Operation Cost
USD 5469.80 6029.54 10,904.39 9489.92

% LCC 13.58 12.48 48.48 49.15

Preventive
maintenance cost

USD 596.42 596.42 894.63 864.21

% LCC N/A N/A N/A N/A

Corrective
maintenance cost

USD 8200.80 12,077.53 919.48 919.48

% LCC N/A N/A N/A N/A

Total maintenance cost
USD 8797.22 12,673.96 1814.12 1783.70

% LCC 21.84 26.24 8.06 9.24

Depreciation cost
USD 8880.90 10,108.04 3341.05 2746.46

% LCC −22.05 −20.92 −14.85 −14.22

LCC
USD 40,276.77 48,307.19 22,493.76 19,307.48

% LCC 100 100 100 100

Figure 1. LCC comparison of chosen vehicles with annual distance of 15,000 km.

As can be seen from Table 2, the highest percentage of the LCC is attributed to the
acquisition cost. The LCC of EVs is still far larger than that of ICVs; this difference can be
seen graphically in Figure 1. The acquisition cost for EVs was found to contribute to 86.64%
and 82.21% of the LCC for the Nissan Leaf and Chevrolet Bolt, respectively, whereas in the
ICVs, the contribution was approximately 30% less. Regarding the operating costs, the EVs
have a certain advantage because of savings in fuel costs per year, verification costs, and
holding taxes. The operating costs were found to contribute to only 13.58% and 12.48% of
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the LCC for the Nissan Leaf and Chevrolet Bolt, respectively. It can be seen in Table 2 that
the contribution of the operating costs was the lowest among all costs involved in the LCC.

The results show a benefit of EVs in terms of operation costs when the distance was
set at 15,000 km. The difference in the operation cost between EVs and the ICV with the
closest result (Chevrolet Beat) was 34.90% and 36% for the Nissan Leaf and Chevrolet Bolt,
respectively. The EV maintenance cost was identified as the second most relevant factor,
because it contributes to at least 20% of the LCC. Furthermore, the preventive maintenance
cost of EVs is almost nil because they have fewer mechanical components than ICVs.

The cost of batteries is a significant factor due to their high corrective maintenance
cost, which was found to contribute to 20% and 25% of the total LCC of the Nissan Leaf
and Chevrolet Bolt, respectively. Nevertheless, when an average annual distance of 31,066
was considered, as described in 3.3, the maintenance cost of the EVs increased drastically
to around 95.39% for the Nissan Leaf and 96.80% for the Chevrolet Beat (see Figure 2). The
increased maintenance cost was due to the battery change required after five years of EV
usage. Furthermore, the operation cost for ICVs increased to 67.74% and 70.84% for the
Nissan Versa and Chevrolet Beat, respectively. The operation costs of ICVs are larger than
those of EVs because of the holding taxes and pollutant emissions checks.

Figure 2. LCC comparison of the chosen vehicles with the real distance vs. the reference distance.

The different contributions of the operation and maintenance costs to the LCC when
the real annual average distance travelled was considered versus the annual average
distance (set as a reference) are depicted in Figure 3.

For the scrap/depreciation cost, the cost of sale was considered after the depreciation
of the vehicle, which represented a larger percentage for EVs than for ICVs.

In some areas, the LCC of EVs can be lower than ICVs, whereas in others, it can be
higher. This difference is because of the variation of factors in each country: for example,
taxes, fees, fuel prices, and electrical energy cost.
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Figure 3. LCC percentage contributions of the operation cost and maintenance cost with the real
distance vs. the reference distance.

4.2. Sensitivity Analysis

A sensitivity analysis was performed to determine the effects of different factors that
may affect the LCC, such as the acquisition, electricity, and fuel costs and the price of the
battery. The real distance traveled was set as 31,066 km for the analysis.

In order to make EVs more competitive in a market that has been ruled by ICVs, an
acquisition cost percentage decrease of approximately 40% is required. This would increase
the expansion of EVs in Mexico’s market (see Figure 4). Furthermore, it is necessary to
reduce the acquisition cost, which could be achieved through two scenarios: an increase
in production and a decrease in the cost of components used in the final product or a
government subsidy. This would give EVs a greater level of acceptance in the market [21,22].
Subsidies, including taxes of between 11% and 25% applied to an automotive credit [54],
would increase the LCC.

Figure 4. Acquisition cost percentage variation.
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As can be seen from Figure 5, the larger the annual distance traveled, the larger the
LCC, especially for ICVs. This can be observed in the curves, where the slopes are more
pronounced for the Nissan Versa and Chevrolet Beat compared with those for the EVs.
These curve shapes result from the fact that most of the LCC of ICVs is attributed to the
operating costs, which increase by approximately 4–5% if 15,000 km is covered every year.
The battery change cost was considered to decrease as the annual distance increases; this
can be seen in the change of the slopes in Figure 5.

Figure 5. LCC with different annual distances traveled.

Additionally, the price of electricity in kWh would have to increase by 3 units. There-
fore, the operating costs of EVs would be larger than those of ICVs (see Figure 6). Similarly,
in terms of fixing the operating costs of electric vehicles and changing the price of fuel
for ICVs, it would be necessary to reduce the cost of fuel by at least 15 units. Thus, the
operating costs would be similar to that of EVs (see Figure 7). It is worth mentioning that
the operating costs of ICVs are greater, because of fees and taxes that are mandatory for
their circulation. In addition, an increase in the cost of fuel by at least USD 20 per liter is
necessary. Therefore, the LCC of EVs would be similar to that of ICVs.

Figure 6. Operation cost with electricity price variations with the fuel cost fixed at USD 0.96/liter.
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Figure 7. Operation cost with gasoline price variations with the electricity cost fixed at USD
0.05/kWh.

In order to improve the feasibility of EVs being sold on the market, a different outlook
was used. Namely, the ICV fuel cost was fixed at USD 0.96/liter and the acquisition
cost was fixed at USD 30,104 and USD 26,246 for the Nissan Versa and Chevrolet Beat,
respectively. A reduction in the electricity cost of USD 1/kWh and a decrease in the EV
acquisition cost of around 40% are required (see Figure 7). The LCC of the Nissan Leaf was
USD 26,456, which was USD 3648 lower than the Nissan Versa and USD 209.72 greater
than the Chevrolet Beat (see Figure 8). Additionally, the LCC of Chevrolet Bolt was USD
32,775, which is USD 2671 and USD 6529 greater than the Nissan Versa and Chevrolet
Beat, respectively.

Figure 8. Comparison of LCC values in terms of the AC cost percentage and electricity cost variation.

Considering a free electricity scenario, it can be observed in Figures 9 and 10 that there
would be a noticeable decrease in percentage in terms of the operating costs. Compared
with the Nissan Sentra, the decrease in the OC percentage would be around 71% and
67% for the Nissan Leaf and Chevrolet Bolt, respectively. Similarly, for the Chevrolet Beat
comparison, the decrease in the OC percentage would be around 68% and 63% for the
Nissan Leaf and Chevrolet Bolt, respectively.
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Figure 9. Decrease in the operation cost percentage with electricity variations compared with the
Nissan Sentra.

Figure 10. Decrease in the operation cost percentage with electricity variations compared with the
Chevrolet Beat.

Finally, when assessing the contribution of the maintenance cost to the LCC, the
predominant factor was the cost of batteries. The effect of decreasing battery prices was
considered, as depicted in Figure 11. The total maintenance cost was found to decrease
gradually as the battery price decreased from its current value of USD 193.83/kWh to
USD 14.91/kWh. Therefore, EVs would be competitive with ICVs in terms of the total
maintenance cost. Similarly, Figure 12 shows the effect of the battery cost percentage
reduction relevant to the total maintenance cost. Battery price percentage reductions of
73.44% and 78.81% were found to be required (which represents a battery price of USD
14.91/kWh) for the Nissan Leaf and Chevrolet Bolt, respectively. Thus, EVs would be
similar to ICVs in terms of the total maintenance cost. The battery cost is expected to reduce
by 7–9%, which would significantly reduce the acquisition cost of electric cars [40].
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Figure 11. Effect of the battery price on the total maintenance cost.

Figure 12. Decrease in the battery cost percentage given a battery price of USD/kWh.

However, a battery price percentage reduction of between 73% and 78% seems un-
realistic. To balance the LCC of EVs with ICVs, a combination of different parameters
and factors that affect the LCC, such as acquisition and operation costs and battery prices,
needs to be considered.

4.3. Environmental Impact Analysis

Equations (11)–(17) were used to calculate the pollutant emissions in terms of GHG.
Figure 13 and Table 3 show the GHG emissions over an 8-year period. Figure 14 presents
the average annual GHG emissions, omitting the end-of-life or disposal stage. It can be seen
that the environmental impact of the production of EVs is a little larger than that of ICVs.
This is due to the size and weight of lithium-ion batteries. Furthermore, in the operation
stage, a decrease in polluting emissions per year can be noticed for EVs because EVs have
zero tailpipe emissions. Nonetheless, the generation of electricity is still a problem, as
compared with the generation and refinement of gasoline; in Mexico City, most electricity
is generated using fossil fuels, mainly natural gas.
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Figure 13. CO2 equivalent emissions of different vehicles.

Table 3. Average emissions for an 8-year period.

Results Nissan
Leaf

Chevrolet
Volt

Nissan
Versa

Chevrolet
Beat

Vehicle production phase CO2 equivalent
emissions in Kg 5278.64 5673.02 4667.62 4313.95

Total generation emissions in CO2 Kg 29,811.06 28,139.91 8963.74 8164.99

Total tailpipe emissions in CO2 Kg 0 0 29,584.83 26,948.55

Vehicle operation phase CO2 equivalent
emissions in Kg 29,811.06 28,139.91 38,548.57 35,113.54

End of life CO2 equivalent emissions in Kg 1310.92 1937.04 61.83 45.00

Total emissions over lifetime in CO2 Kg 36,400.62 35,749.97 43,278.02 39,472.50

Figure 14. Annual CO2 equivalent emissions of different vehicles.

4.4. Environmental Impact of EVs Applied in Taxis

We considered the introduction of EVs into public transport, specifically the case
of taxis. There are approximately 160,000 public taxis [55] and 40,000 of private origin,
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such as those used for Uber, Didi, and Cabify services. These were all considered for the
analysis, resulting in a total of 200,000. Only the polluting emissions produced during the
operation phase of the vehicles were considered: in other words, those produced through
the generation of fuel (electricity for EVs and gasoline for ICVs) and the polluting emissions
produced while driving. The results can be seen in Figure 15.

Figure 15. Annual emissions from the different vehicles used for public transport.

As can be seen in Figures 13 and 14, the greatest contributor to emissions in the
operation stage is the Nissan Versa. Compared with the Nissan Versa, the CO2 equivalent
emissions per year produced in the operation stage are approximately 22.66% and 27%
lower for the Nissan Leaf and Chevr1olet Bolt, respectively. According to the Mexico City
Emissions Inventory published by Sedema [29], the total emissions produced per year
in Mexico City is 16,745,438 tons of CO2 equivalents, which corresponds to 5.23% of the
national annual average emissions. Thus, there would be reductions of 1.30% and 1.55%
for the Nissan Leaf and Chevrolet Bolt, respectively. Nevertheless, the transport sector
contributes to 32.1% of the national emissions, which corresponds to a total of 5,375,285 tons
of CO2 equivalents. Therefore, there would be reductions in polluting emissions of 4.06%
and 4.84% for the Leaf and Bolt, respectively.

5. Discussion
5.1. Factors Affecting the LCC in Vehicles

In this study, the LCC of EVs was found to be larger than that of ICVs by approximately
USD 20,000, coinciding with [19,20,22]. However, other studies had the opposite finding,
showing that the LCC of EVs was lower than that of ICVs in countries such as the United
Kingdom, the United States, Japan [24], and Qatar [56]. Furthermore, it is important to
identify the dominant parameters that could affect the LCC and the feasibility of EV use in
the market. Therefore, in this paper, the dominant factors that affect the LCC, such as the
acquisition cost, the annual distance traveled, gasoline and electricity costs, and the battery
variation cost, were identified.

5.1.1. Acquisition Cost

It can be seen in Section 4.1 and Table 3 that the acquisition cost is the dominant
factor in increasing the LCC of EVs with percentages of around 69.73% and 63.96% for the
Nissan Leaf and Chevrolet Bolt, respectively. These acquisition percentages are similar
to those published in other studies [21,56]. The acquisition cost even overcame the fuel
savings benefit included in the operation cost, coinciding with the results of other published
studies [21,56]. In order to make EVs more affordable, there must be a decrease in the
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acquisition cost of around 40%, even though electricity is almost free at USD 0.005/kWh
(see Figure 8). The acquisition cost will reduce over time as the manufacturing scale of
EVs increases worldwide [57]. It is projected that, by the year 2030, the manufacturing cost
will reduce from a difference of USD 7000 (set in the year 2010) to only a slight difference
between EVs and ICVs. This manufacturing and purchasing reduction mixed with the
benefits of EVs, such as fuel savings, will attenuate the LCC of the vehicles’ differences [21].

5.1.2. Battery Cost

The maintenance cost is considered to be the second largest contributor to the total
LCC. The battery cost is considered the predominant factor in corrective maintenance. It is
necessary to reduce the battery cost by a huge percentage in order to reduce the total LCC
compared with that of ICVs. The maintenance cost was found to be 34.35% and 40.18% for
the Nissan Leaf and Chevrolet Bolt, respectively. The contribution of the battery cost to
the total maintenance cost was 90.21%–93.25% for each EV, which is far larger than that
reported in other papers [22]. It is projected that the battery cost will drop from 7% to 9%
annually [40]. This gives EV adoption an optimistic future.

5.1.3. Operation Costs

In this paper, fuel costs such as electricity and gasoline were considered. Insurance
coverage, verification, and holding taxes were excluded from the sensitivity analysis
because we emphasized the importance of the fuel savings cost for the operation stage. The
results show a far better benefit in terms of operation costs for EVs compared with ICVs.

Furthermore, we analyzed two different scenarios: setting the gasoline price while
changing the electricity cost and setting the electricity cost while varying the gasoline price.
The larger the ICV fuel price, the greater the benefit of EVs both in terms of the market
share and adoption [24]. Considering a free electricity outlook (see Figures 9 and 10), the
benefit in terms of the operating costs is greater. Nonetheless, in order to make EVs more
competitive in terms of the LCC, a combination of low-priced or free electricity and a high
ICV fuel price is necessary [21].

5.1.4. Annual Average Distance

Figure 5 shows the effect of varying the annual distance traveled, where the LCC is
larger as the distance increases, mainly for the ICVs. In other words, this LCC increase
is affected by the operating costs, such as fuel consumption and maintenance costs. This
results in a cost savings benefit in the operation stage for EVs. This result is in accordance
with studies by Mitropoulous et al. [19], Breetz [21], and Wu et al. [31].

In order to overcome the high acquisition cost of EVs, it is necessary to increase the
average distance travelled per year. The distance travelled would have to be increased
by at least 75,000 km per year to balance the LCC of the Nissan Leaf and Chevrolet Bolt
with that of the ICVs considered in this study. Other studies reported distances travelled
per year of around 9000 km [19] and 60,000 km [21]. Variations in papers are affected by
the use of local parameters, highlighting the need to use these to assess the feasibility of
implementing EVs in the local market.

5.1.5. Environmental Benefits of EV Introduction in Mexico City

With the introduction of EVs into the taxi market in Mexico City, the results show
decreases in CO2 of 4% and 5% for the Nissan Leaf and Chevrolet Bolt, respectively.

In order to see a greater reduction in GHG emissions, three scenarios are required:
the generation of electrical energy in Mexico must be sustainable, clean energies such as
solar or wind energy need to be considered, and an increase in electric power is needed
to increase plant efficiency [58]. However, results will clearly depend on which vehicles
are chosen for the analysis. Furthermore, it is important to consider the study area, as
different results will be obtained due to variations in different parameters, such as the local
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power generation efficiency, the annual distances traveled, and the type of fuel used for the
creation of electrical energy.

6. Conclusions

Currently, environmental pollution and global warming are increasingly threatening
natural, social, and economic environments. In Mexico, climate change is a problem that
has been suffered for more than three decades. Thus, looking for alternatives to reduce
pollution levels is not an option but a necessity. As most polluting emissions originate
in the transport sector, this paper presented a proposal for the introduction of electric
vehicles to the taxi sector in Mexico City. The main objective was to measure the decrease
in environmental pollution through an assessment of the cost-environmental impact.

Methodologies to calculate the LCC and analyze the polluting emissions from the
chosen vehicles were used to conduct an environmental impact analysis to assess the feasi-
bility of using EVs in the market. The methodologies were based on the different phases
of a vehicle’s life cycle: production, operation, maintenance, and depreciation/disposal.
Furthermore, a sensitivity analysis was performed to identify dominant factors that could
affect the LCC.

The results obtained by analyzing the LCC values of the chosen vehicles showed that
one of the main problems of EVs is their acquisition cost, as this accounts for approximately
80% of the total LCC. The maintenance cost was found to be the second greatest contributor
to the LCC, and the battery cost represents more than 90% of the total maintenance cost.
The cost of batteries is high, but in the future, this is expected to decrease by 7 to 9% per
year. One of the economic advantages of the use of EVs is that their operating costs are
lower than those of ICVs by approximately 50%. This difference is because of the significant
savings in vehicle verification costs, holding taxes, and fuel (electricity price for EVs).

In order to have a greater impact on the use and introduction of EVs into the market
in Mexico, it will be necessary to reduce the acquisition cost. This could be achieved by
increasing the production of vehicles and reducing the cost of components through an EV
government subsidy; by increasing and decreasing the costs of gasoline and electricity,
respectively; through effective implementation of recharging infrastructure; and through
technical improvements, such as efficiency and autonomy. This would provide EVs with a
greater level of acceptance in the market.

According to the sensitivity analysis that was performed, in order to make EVs more
affordable and competitive with ICVs in terms of the LCC, it is necessary to reduce the
acquisition cost of EVs by at least 40%. Thus, the LCC of EVs would be similar to that of
ICVs. A reduction in the battery cost per kWh of between 73.44% and 78.81% is needed.
The analysis of the environmental impact showed a reduction in the total amount of CO2
equivalent emissions of between 15% and 17% over a period of 8 years. Furthermore, the
CO2 equivalent emissions of EVs in the production stage were found to be larger than those
of ICVs because of the differences in weight and battery size. In addition, in the operation
stage, the polluting emissions were considered during fuel generation and driving. In the
operation stage, there was a noticeable reduction in CO2 equivalent emissions for the EVs
compared with the ICVs. This difference can be attributed to the zero tailpipe emissions of
the EVs.

When the results of this study were applied to the taxi fleet, considering the total
number of taxis in Mexico City, we found a reduction of tons of CO2 of between 22%
and 27% per year compared with the situation when ICVs were used, which represents a
reduction in the transport sector’s contribution to the total CO2 emissions of between 4%
and 5%. Nonetheless, although electric cars do not emit pollutants through combustion,
the generation of electricity using fossil fuels prevents a greater decrease in the amount of
environmental pollution.

Finally, the reduction of polluting emissions would be much more noticeable if an
electricity generation system using clean and renewable energies, such as wind and solar,
was adopted in Mexico.
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Appendix A

Table A1. Parameters used for LCC calculation.

Vehicle Leaf Bolt Versa Beat

Vehicle Type EV EV ICV ICV
Battery size (kWh) 40 60 0.6 0.6

Engine CC N/A N/A 1600 1200

Acq. Cost (AC) MXN 702,000 799,000 263,900 216,900
USD 34,891 39,712 13,116 10,780

Ann. Dist. traveled in km (real) 15,000 (31,066) 15,000 (31,066) 15,000 (31,066) 15,000 (31,066)
Average vehicle life-time 8 8 8 8

Vehicle efficiency kwh/km or L/km 0.1659 0.1566 0.0606 0.0552

Fuel cost /kWh or /L
MXN 1.1 1.1 19.25 19.25
USD 0.05 0.05 0.96 0.96

Annual holding taxes MXN 0 0 650 650
USD 0 0 32.3 32.3

Charging efficiency % 0.8 0.8 N/A N/A

Annual Verification cost
MXN 0 0 1100 1100
USD 0 0 54.67 54.67

New car Verification cost
MXN 0 0 650 650
USD 0 0 32.31 32.31

Annual insurance cover cost
MXN 10,334.85 11,934.41 8326.28 6328.15
USD 513.66 593.16 413.83 314.52

Average lifetime of tires (Km) 40,000 40,000 40,000 40,000

Cost of tires
MXN 4500 4500 4500 4500
USD 223.66 223.66 223.66 223.66

Maintenance Rate (/Km)
MXN 0.1 0.1 0.2 0.1
USD 0.005 0.005 0.007 0.007

Depreciation cost MXN 178,683.75 203,373.67 67,171.86 55,208.70
USD 8880.90 10,108.04 3341.05 2746.46

Battery cost per kWh MXN 3900 3900 N/A N/A
USD 193.84 193.84 N/A N/A

Batteries cost per n-years MXN 156,000 234,000 9500 9500
USD 7753.48 11,630.22 472.17 472.17

Sources: [2,3,5,8,9,59,60].

Table A2. Average vehicles emissions per Kg.

Production Phase GHG Emissions (Kg) CO2 (Kg) N2O (Kg)

Extraction and processing 1.930 0.012 0.005
Manufacturing 1.2278 0.00018 0.002

Total production 3.1578 0.0122 0.0070
End of life 0.014 0.00000177 0.0000358

Source: [61].
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Table A3. Parameters used for environmental impact calculation.

Parameters Leaf Bolt Versa Beat

GHG emissions produced 3.1718 3.1718 3.1718 3.1718
GHG emissions produced by battery 4.4 4.4 0.9 0.9

ηvehicle in kwh/km or L/km 0.1659 0.1566 0.0606 0.0552
ηcharge 0.8 0.8 N/A N/A

ηelect. Distribution 0.868094 0.868094 N/A N/A
EV energy requirement 3583.2813 3382.4102 N/A N/A

Electricity production efficiency ηEP 0.38 0.38 N/A N/A
Heating value kWh per unit 0.2880 0.2880 7.4839 7.4839
Fuel consumption ft3 or (L) 67,810.80 64,009.48 1882.60 1714.84

Sources: [17,18,30,32].

Table A4. Heating values of the different fuels used for calculations.

Fuel Type IC (Heating Value) Kg CO2 p/u Kg CH4 p/u Kg N2O p/u Kg CO2 Equivalent p/u

Natural gas (ft3) 0.2880 kWh per unit 0.0549 0.000001 0.0000001 0.0550
Gasoline (L) 7.4839 kWh per unit 1.9549 0.000139 0.0000211 1.9644

Source: [62].
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