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Abstract: In electric vehicle technologies, the state of health prediction and safety assessment of
battery packs are key issues to be solved. In this paper, the battery system data collected on the
electric vehicle data management platform is used to model the corresponding state of health of
the electric vehicle during charging and discharging processes. The increment in capacity in the
same voltage range is used as the battery state of health indicator. In order to improve the modeling
accuracy, the influence of ambient temperature on the capacity performance of the battery pack is
considered. A temperature correction coefficient is added to the battery state of health model. Finally,
a double exponential function is used to describe the process of battery health decline. Additionally,
for the case where the amount of data is relatively small, model migration is also applied in the
method. Particle swarm optimization algorithm is used to calibrate the model parameters. Based on
the migration battery pack model and parameter identification method, the proposed method can
obtain accurate battery pack SOH prediction result. The method is simple and easy to perform on the
electric vehicle data management platform.

Keywords: electric vehicle data; battery modelling; state of health prediction; particle swarm
algorithm

1. Introduction

At present, the technological revolution and industrial reform are taking place across
the world. The integration of traditional automobile technology, new energy technology
and information technology is accelerating. It is a research topic to apply big data, artificial
intelligence and other technologies to the new energy vehicle field. In the research of battery
management technology of electric vehicles, accurate evaluation and prediction of the state
of health (SOH) of battery can guide the reasonable use of a vehicle battery and extend
the service life of battery, which is of great significance for the life cycle management and
utilization of battery. The data management platform of electric vehicle collects real-time
data generated during the driving process of electric vehicles. Using these data to explore
the aging law of battery system is an important way of battery safety management and
residual value evaluation.

The battery state of health (SOH) is mainly determined by the battery capacity, internal
resistance and the number of cycle times. Battery SOH prediction methods can be divided
into two types, including the model-based method and data-driven method. SOH of the
battery can be predicted according to the model parameters in the model-based method.
Many Kalman filtering algorithms are often used to identify parameters and update state
variables. The data-driven method does not need to understand the working principle of
the battery. However, the reliability and accuracy are more dependent on data. Artificial
neural networks and support vector machines are commonly used in the data-driven

World Electr. Veh. J. 2021, 12, 204. https://doi.org/10.3390/wevj12040204 https://www.mdpi.com/journal/wevj

https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-7855-5685
https://doi.org/10.3390/wevj12040204
https://doi.org/10.3390/wevj12040204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/wevj12040204
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj12040204?type=check_update&version=2


World Electr. Veh. J. 2021, 12, 204 2 of 10

methods. Severson et al. [1] proposed a battery cycle life prediction method based on
capacity aging data. A total of 124 sets of aging data of LiFePO4 battery under fast
charging condition were obtained. Based on the characteristics of discharge voltage of early
cycles and machine learning method, the battery cycle life can be predicted. The results
show the prospects of artificial intelligence and data-driven modeling in battery cycle life
assessment. Dubarry et al. [2] proposed an automatic battery state of health assessment
based on the battery capacity incremental analysis method. Togasaki et al. [3] predicted
that the life attenuation of the battery capacity diving is predicted in advance through
the impedance signal analysis method. According to the perspective of electrochemical
impedance spectroscopy, the negative electrode metal lithium deposition corresponds to the
enhanced impedance signal of the charge transfer impedance and the interface capacitance.
Popp et al. [4] proposed a low-cost method for estimating the state of charge (SOC) and
SOH of lithium-ion batteries based on the ultrasonic guided wave data processing method
of flight time and signal amplitude. Xia et al. [5] proposed a general modelling method for
lithium-ion battery modules, which coupled the electrochemical, thermal, SEI formation
models, fluid dynamics, and series-parallel circuit models of the battery to establish a
battery life model with capacity decay. In order to evaluate the SOH of the lithium-ion
battery pack, Liu et al. [6] evaluated a variety of health indicators when the battery is not
fully charged or fully discharged. The best indicator is suitable for aerospace application. In
the existing researches, the data sources estimating the SOH can be divided into laboratory
data and actual vehicle data. A large number of battery cycle aging experiments under
different conditions is required for building the laboratory datasets. However, due to the
rigorous requirements for the experimental environment, the datasets do not match the
actual condition data in practice. Considering the actual vehicle data, Xiao et al. [7] selected
the capacity value of the fixed voltage segment to characterize the battery SOH. Chen
et al. [8] proposed a circuit model and a Kalman filter for SOH estimation using real vehicle
data. However, in the actual vehicle application, because the charging and discharging
segments of the vehicle are random, it is often difficult to find the overlapping regions of
all segments, leading to the failure of these methods.

The actual vehicle data is collected by the battery management system (BMS), and
uploaded to the electric vehicle data management platform. The datasets have the advan-
tages of large amount of data and long-time span, which is suitable for the performance
evaluation of battery pack on long-term trend. However, there are some shortcomings,
such as data confusion and lack of data, for example. The data need to be cleaned and
optimized for SOH prediction method design.

In this paper, the actual driving data of the electric vehicle is used to realize the
battery SOH prediction. The organization of the paper is as follows. In Section 2, data
cleaning and feature engineering is performed on the original data. In Section 3, two
battery equivalent circuit models are established for the charging data and discharging
data. Open circuit voltage of the battery is obtained by analyzing the voltage and current
data of the battery. The increase in capacity with the same open circuit voltage segment
is calculated. Additionally, a temperature correction model is selected to eliminate the
influence of temperature on SOH prediction results. A more realistic battery state of health
estimation result is obtained in this section. In Section 4, based on the SOH obtained in the
previous sections, a SOH prediction model and Particle swarm algorithm is established to
obtain the SOH prediction result.

2. Data Cleaning and Feature Engineering

The electric vehicle driving data used in this paper is provided by the National
Big Data Alliance of New Energy Vehicles (NDANEV). The data was collected from the
national Monitoring and Management Platform for New Energy Vehicles (NEVs). The
data format specification adopts GB/T 32960.3-2016 Electric Vehicle Remote Service and
Management. The data sampling period is 10s. The electric vehicle dataset includes sample
time, charge/discharge status, temperature, total voltage, total current, and SOC, etc. As
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several data is missing or confusing in wireless transmission process, it is necessary to
clean and optimize the original data. As can be seen in Figure 1a, some values of SOCs are
null and zeros. The error data should be replaced for the battery SOH assessment. Due to
the lack of data in the data acquisition process, the time interval of vehicle data acquisition
is not constant. For the convenience of battery SOH analysis, the data is interpolated
according to the time stamp. The processed SOC data is shown in Figure 1b.
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In the electric vehicle data, the charging and discharging segments should be separate
from the data sequence for SOH prediction method design. The difference in SOC and cur-
rent values during the charging and discharging processes can be used to divide the charg-
ing and discharging segments. After the treatments, hundreds of charging/discharging
segments can be obtained.

3. Battery Pack SOH Indicator and Estimation
3.1. Battery SOH Calculation

In real vehicle applications, the battery pack is usually not completely discharged.
The SOC regions are mainly concentrated between 20% and 90%. The data of each segment
is extremely random. As the SOC data is the estimation result, the reliability cannot be
ensured. As a result, the battery SOH indicator is calculated based on the capacity fragment
and the voltage fragment. The segment with a large charge/discharge voltage span can be
selected for SOH evaluation. The capacity ∆QNew of the fresh battery is written as:

∆QNew = ∑ INew∆tNew (1)

where INew is the charge/discharge current of the first cycle, ∆tNew is the time difference of
the data fragment.

The current capacity ∆QNow is written as:

∆QNow = ∑ INow∆tNow (2)

where INow is the charge/discharge current of the recent cycle, ∆tNow is the time difference
of the data fragment.

Then, the battery pack SOH is defined as:

SOHNow =
∆QNow
∆QNew

(3)

Figure 2 shows the capacity increment curves of the data segments. The two bound-
aries in the figure are determined according to the overlap between the IC curve at the
current time and the reference IC curve. In this paper, the IC curve calculated from the
battery data with large charge discharge interval in the early stage is used as the reference
IC curve. When calculating the SOH of the current segment, the capacity increment curves
of the initial time and the current time are amalgamated. The overlapped section is ex-
tracted from the curve, and the capacity value corresponding to the overlapped section is
calculated. The current SOH of the battery is expressed as the ratio of the capacity of two
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fragments. Herein, it should be noted that due to the small amount of data in some data
segments, five adjacent data segments are combined in this paper. As a result, the data
segments with large voltage range can be constructed.
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3.2. Temperature Correction of Battery SOH Indicator

The ambient temperature has a great influence on the electrochemical reaction and en-
ergy consumption rate of the lithium battery. In a low temperature environment, the battery
capacity is significantly reduced compared the battery capacity in a normal temperature
environment. Li et al. [9] carried out a capacity-temperature model and the effectiveness of
the model is verified by the experimental results. The relationship between battery capacity
correction factor r(t) and the ambient temperature t can be written as:

r(t) = 1.7 × e−0.005059t − 0.8204 × e−0.01984t (4)

The battery capacity correction equation can be used to correct the battery capacity to
the capacity value when the ambient temperature is 25 degrees:

∆Qt =
∆Q
r(t)

(5)

where ∆Qt is the corrected battery capacity, the temperature corrected battery SOH indica-
tor is written as:

SOHt
Now =

∆Qt,Now

∆Qt,New
(6)

3.3. Extraction Methods of Battery Open Circuit Voltage

In Figure 3a, a three-stage charging procedure is often adopted for electric vehicle
charging. As the current is not constant during charging, the change in the capacity incre-
ment with the voltage fragments cannot be directly calculated. Therefore, it is necessary
to extract the stable open circuit voltage (OCV) data from the charging voltage data, and
then calculate the battery SOH. Compared with the charging process, seen in Figure 3b,
the discharge current in the discharging section is more complicated. It is necessary to
calculate the OCV curve for battery SOH evaluation.
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Regarding the battery models, the first-order RC model is commonly used for battery
state estimation. In this paper, the first-order RC model is also selected for the OCV curve
calculation. The model is shown in Figure 4.
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Theorem-type environments (including propositions, lemmas, corollaries etc.) can be
formatted as follows:

Among them, RP and CD are polarization internal resistance and polarization capac-
itance, respectively, UD is the voltage drop of the RC parallel link and RO is the internal
resistance of the battery, UT is the terminal voltage of the battery,il is the current flowing
through the circuit. The circuit equation of the model is written as:

UD =
il

CD
− UD

RDCD
(7)

UT = UOC − UD − il RO (8)

Since the discharge current changes continuously according to the driving conditions,
the polarization voltage is continuously changed during the battery discharging process.
The open circuit voltage UOC of the discharge data segment can be obtained according to
the recursive least square (RLS) method.

For the battery charging data, the polarization voltages with constant currents can be
regarded as the constant values. As a result, the battery model can be modeled as a Rint
model with two electrode open circuit voltages and one internal resistance element. The
simple Rint model is shown in Figure 5.
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In Figure 5, EOCV,P and EOCV,N are the open circuit potentials of the positive and
negative electrodes, respectively. RO is the equivalent internal resistance of the battery, and
UT is the terminal voltage of the battery. The relationship between the battery OCV and
the terminal voltage UT of the Rint model can be obtained as:

UOC = EOCV,P − EOCV,N = UT − il RO (9)

The open circuit voltage UOC of the charge data segment can be obtained according to
the voltage curve fitting method.

3.4. Battery Pack SOH Prediction Method

In order to predict the future trend of battery pack SOH, the double exponential
polynomial battery remaining useful life model established by Xu et al. [10] is used to
describe the aging trend of battery pack SOH. The model is shown as follows:

SOH(x) = β1e(β2x) + β3e(β4x) (10)

where β1, β2, β3, β4 are the parameters to be fitted, and x represents the mileage of the
electric vehicle. The unit of the mileage in the model is 100 km. In order to obtain the
parameters of β1~β4, the optimization algorithm is used to identify the parameters of
the model.

In the actual SOH prediction applications, the dataset is always relatively limited.
Hence, the migration learning approach [11] is added into the method. Transfer learning
has the ability to adapt the original model to new data. Under the constraints of the
previous working condition, the current working condition can use less data to predict the
SOH result. In this paper, we choose to use the charging data to fit the parameters passed
down. Then, the discharge data is regarded as new data. The original battery pack aging
model is written as:

SOHcharge(x) = β1e(β2x) + β3e(β4x) = f (x, β) (11)

For the battery pack prediction using discharging data, the migration battery pack
model is written as:

SOHdischarge(x) = k1 f (k2x + k3, β) + k4 (12)

Equation (12) retains the parameter β fitted by Equation (11). k1, k2, k3, k4 are the new
parameters to be fitted. Due to the similarity of the two working conditions, the results
can be obtained with less data in the discharge data. It should be noted that due to the
limited data resources used in this paper, only the charging data can be used to train the
original model. When there are historical data of multiple vehicles, a small number of
vehicles driving data can be used to train the original model, and model migration and
SOH prediction can be carried out on other vehicles.

Regarding the identification of parameters, the Particle swarm algorithm (PSO) is
selected in this article. PSO is an optimization algorithm based on iteration. The system is
initialized as a set of random solutions, searching for the optimal value through iteration.
The advantage of PSO is that it is easy to implement and does not have many parameters
to adjust. Compared with least squares, the algorithm is easier to converge. Therefore, the
fitting parameters of this algorithm are selected in this paper. The particle swarm algorithm
can be mathematically expressed as follows. Supposing in a D-dimensional target search
space, there is a community composed of N particles and the i-th particle is represented as
a D-dimensional vector:

Xi = (x1
i , x2

i , . . . , xD
i ), i = 1, 2, . . . , N (13)
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The flight speed of the i-th particle is also a D-dimensional vector, and can be de-
noted by:

Vi = (v1
i , v2

i , . . . , vD
i ), i = 1, 2, . . . , N (14)

The optimal position of the i-th particle to be searched is called the individual ex-
tremum:

Pi = (p1
i , p2

i , . . . , pD
i ), i = 1, 2, . . . , N (15)

The flight speed and the optimal position on the path of i-th particle can be updated by:

vd
i = ωvd

i + c1r1(pd
i − xd

i ) + c2r2(pd
g − xd

i ) (16)

xd
i = xd

i + αvd
i (17)

where i = 1, 2, 3, . . . , N represents the particle number. d = 1, 2, 3, . . . , D represents the
dimension number. ω is the inertia factor. c1 and c2 are acceleration constants. r1 and r2
are constraint factors with the range of 0 to 1, which are used to control the weight of flight
speed.

4. Results and Discussion
4.1. Battery Pack SOH Calibration Results

The SOH in this paper is defined as the ratio of current interval capacity to reference
interval capacity. Since there is a certain conversion relationship between interval capacity
and battery capacity, to obtain the battery capacity value, please refer to the relevant
contents proposed by Tang et al. in paper [12].

Based on the method designed in this paper, the OCV data of the battery can be
extracted. Figure 6a,b show the increment capacity curve of each charge/discharge segment;
due to the chaotic real vehicle data, there is a lot of noise in the IC curve. It can be seen that
the increment capacity of the battery between 320 V and 330 V increases, indicating that
the voltage is charged with more capacity in this interval. Figure 6c,d show the results of
the battery SOH estimation without correction. Based on the results, it can be seen that the
battery temperature has a great influence on the SOH indicator. Figure 6e,f are the battery
pack SOH estimation results after temperature correction. It can be seen that battery pack
SOH declined obvious with the electric vehicle milage increase. Moreover, it can be seen
from the results that both the results of charging data and discharging data are consistent.

4.2. Battery Pack SOH Prediction Results

Herein, the temperature corrected SOH is regarded as the reference battery pack SOH.
Based on an electric vehicle data with 1.5 years’ usage, there are 105 battery pack SOH
points can be obtained. The vehicle mileage ranges from 0 km to 90,000 km. In order to
evaluate the effectiveness of SOH prediction method, the first 80, 60 and 50 SOH point were
selected as training sets, respectively. The following 25, 45 and 55 SOH points are adopted
as the test set to evaluate the model accuracy. The SOH prediction results based the charge
data and discharging data are shown in Figure 7. Figure 7a,b shows the results of ordinary
fitting and transfer learning. It can be seen that the battery pack SOH prediction results can
track the change trend of real data well. For original battery pack model, the relative errors
of test sets with 80, 60, and 50 points using the ordinary fitting method are, respectively,
1.0%, 3.1%, 5.7%. However, considering the migration learning approach, the errors of
the results obtained with the migration battery pack model and PSO method are below
1.5%. The results show the method proposed in this paper is very suitable for real vehicle
applications.



World Electr. Veh. J. 2021, 12, 204 8 of 10
World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 8 of 10 
 

  
(a) (b) 

(c) (d) 

  
(e) (f) 

Figure 6. Battery pack SOH calibration results, (a) general charging trend, (b) general discharging 
trend, (c) before temperature correction with charging data, (d) before temperature correction with 
discharging data; (e) after temperature correction with charging data; (f) after temperature correc-
tion with discharging data. 

4.2. Battery Pack SOH Prediction Results 
Herein, the temperature corrected SOH is regarded as the reference battery pack SOH. 

Based on an electric vehicle data with 1.5 years’ usage, there are 105 battery pack SOH 
points can be obtained. The vehicle mileage ranges from 0 km to 90,000 km. In order to 
evaluate the effectiveness of SOH prediction method, the first 80, 60 and 50 SOH point 
were selected as training sets, respectively. The following 25, 45 and 55 SOH points are 
adopted as the test set to evaluate the model accuracy. The SOH prediction results based 
the charge data and discharging data are shown in Figure 7. Figure 7a,b shows the results 
of ordinary fitting and transfer learning. It can be seen that the battery pack SOH predic-
tion results can track the change trend of real data well. For original battery pack model, 
the relative errors of test sets with 80, 60, and 50 points using the ordinary fitting method 
are, respectively, 1.0%, 3.1%, 5.7%. However, considering the migration learning ap-
proach, the errors of the results obtained with the migration battery pack model and PSO 
method are below 1.5%. The results show the method proposed in this paper is very suit-
able for real vehicle applications. 

Figure 6. Battery pack SOH calibration results, (a) general charging trend, (b) general discharging
trend, (c) before temperature correction with charging data, (d) before temperature correction with
discharging data; (e) after temperature correction with charging data; (f) after temperature correction
with discharging data.



World Electr. Veh. J. 2021, 12, 204 9 of 10World Electr. Veh. J. 2021, 12, x FOR PEER REVIEW 9 of 10 
 

   
(a) 

   
(b) 

 
(c) (d) 

Figure 7. Battery pack SOH prediction results, (a) training set using 80, 60 and 50 SOH points with 
charging data, (b) training set using 80, 60 and 50 SOH points with discharging data, (c) SOH pre-
diction error with charging data and (d) discharging data. 

5. Conclusions 
In this paper, the battery system data collected on the electric vehicle data manage-

ment platform is used to model the battery pack state of health of the electric vehicle dur-
ing charging and discharging processes. The increment in capacity in the same voltage 
range is used as the battery state of health indicator. The influence of ambient temperature 
on the capacity performance of the battery pack is also considered in the method. The 
double polynomial model and the particle swarm optimization algorithm is used to obtain 
battery pack SOH. Based on an electric vehicle data with one and a half years’ usage, the 
proposed method can obtain accurate battery pack SOH prediction result. The errors of 
the results obtained with the migration battery pack model and PSO method are below 
1.5%. 

In future research, we will further improve the model, such as considering the use of 
battery aging mechanism model to make the prediction results more convincing. In addi-
tion, we also want to verify the method more comprehensively. 

Author Contributions: Conceptualization, X.L.; methodology, software, data curation, and valida-
tion, X.L., T.W. and C.W.; formal analysis, X.L., J.T. and Y.T.; investigation, C.W.; resources, J.T., 
Y.T. and X.L.; All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Natural Science Foundation of Guangdong Province 
(2021A1515010525), the National Natural Science Foundation of China (No. 51807121). 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results. 

Figure 7. Battery pack SOH prediction results, (a) training set using 80, 60 and 50 SOH points
with charging data, (b) training set using 80, 60 and 50 SOH points with discharging data, (c) SOH
prediction error with charging data and (d) discharging data.

5. Conclusions

In this paper, the battery system data collected on the electric vehicle data management
platform is used to model the battery pack state of health of the electric vehicle during
charging and discharging processes. The increment in capacity in the same voltage range
is used as the battery state of health indicator. The influence of ambient temperature on
the capacity performance of the battery pack is also considered in the method. The double
polynomial model and the particle swarm optimization algorithm is used to obtain battery
pack SOH. Based on an electric vehicle data with one and a half years’ usage, the proposed
method can obtain accurate battery pack SOH prediction result. The errors of the results
obtained with the migration battery pack model and PSO method are below 1.5%.

In future research, we will further improve the model, such as considering the use
of battery aging mechanism model to make the prediction results more convincing. In
addition, we also want to verify the method more comprehensively.
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