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Abstract: Exploring the system-level interactions within the modern urban transportation system,
factors such as human health, vehicle exhaust pollution, air quality, emerging personal transportation
technologies, and local weather events, are increasingly expedient considering the growth of human
population centers projected in the 21st century. Pollutants often accumulate to unhealthy concentra-
tions during winter inversion events such as those that commonly occur in Utah’s Salt Lake valley
and other mountainous regions. This work examines the degree to which replacing conventionally
powered vehicles with electric vehicles (EV) could reduce the near-road accumulation of criteria
pollutants under various degrees of inversion depth and wind speed. Vehicle emissions data are
combined with inversion and wind factors to determine changes in the Air Quality Index, and a
first-order estimate of the cost required to build an EV charging infrastructure to support a given EV
adoption scenario is also derived. Results are presented in the form of multiple Pareto frontiers and a
simplified cost–benefit formula that inform potential public and private EV charging infrastructure
investments to drive the EV adoption that would result in optimal air quality improvements during
average weather and winter inversion events.

Keywords: environmental impact; electric vehicles; air quality; criteria pollution; modeling and
simulation

1. Introduction

The smolderings of an electric vehicle (EV) revolution evident in the early 2000s have,
in recent years, grown into a fast pace roll-out of dozens of new EV models sporting
increasingly longer range batteries, class-leading performance statistics, and state-of-the-
art technologies that promise a future of fully autonomous vehicles and emissions-free
transportation. One of the strongest arguments in favor of pursuing accelerated EV adop-
tion is the reality that they produce zero tail-pipe emissions. Transportation accounts for
approximately 30% of greenhouse gas emissions in the US and anywhere between a few
percent and 55% of criteria pollution [1,2]. In the state of Utah, for example, transportation
is responsible for 12% of PM2.5 emissions [3].

Criteria pollution concentrated near human populations is responsible for a variety
of pulmonary health problems, including acute bronchitis, pneumonia, and early onset
asthma [4,5]. These effects are primarily seen in individuals exposed to bad air over a
long period of time or in at risk groups such as children and the elderly [6,7]. There are
however, two exceptions to these trends: individuals that are exposed to exceptionally high
particulate matter buildup over shorter periods of time [8,9] and individuals that live in
areas with high vehicle traffic [5,9,10].

Criteria pollutants are particularly concerning in Utah and other regions that ex-
perience severe winter inversion events. In and of themselves, the inversions are not
particularly dangerous to humans—they only involve a layer of cool air close to the ground
being overlaid by a layer of warm air higher in the troposphere. However, these phenom-
ena tend to trap pollution near the ground in the mountain valleys in which the majority of
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Utah’s population lives [11]. Depending on the length of the inversion, criteria pollutant
accumulation can become dangerous. During a severe inversion, for example, PM2.5 levels
can exceed 150 on the air quality index (AQI) [12]. An AQI of between zero and 50 is
considered “good”, an AQI between 50 and 150 indicates that the air may be unhealthy for
various sensitive or at-risk groups of people, and an AQI of above 150 is considered to be
unhealthy for all groups [8]. Such high levels of pollution accumulation during inversion
events put local populations at risk of both long-term and acute negative health effects.

Among criteria pollutant sources in Utah, on-road internal combustion engine (ICE)
vehicles account for 12% of total PM2.5 emissions and between 1% and 38% of other criteria
pollutant emissions [3]. Though those statistics are reduced from similar ones from the
1980s and 1990s, vehicle emissions still account for hundreds of thousands of pounds of
criteria air pollution every year in the state [13].

Unlike ICE vehicles, electric vehicles (EVs) produce zero tailpipe emissions. Conse-
quently, EVs have been presented as part of a broader solution to poor air quality around
the world [14–16]. This study examines hypothetical situations in which EVs compose
different percentages of the total vehicle population and the resulting impact that those
EV adoptions could have on air quality. Additionally, it examines the financial costs as-
sociated with purchasing and installing the physical charging infrastructure required to
support each hypothetical EV population. The resulting model employs traffic throughput
data; US Department of Energy (DOE) predictions for EV infrastructure costs; and over
161,000 unique combinations of light duty vehicle (LDV), light duty truck (LDT), and heavy
duty vehicle (HDV) electrification, inversion events, and wind conditions to predict air
quality improvement and the financial costs associated with supporting that improvement.

The traffic along a 32 km stretch of I-15 (Utah’s most heavily traveled interstate
freeway) in Salt Lake County is used as a model test case. Results from the test indicate
generally that, though environmental factors such as wind and inversion are massively
influential in determining local air quality, widespread vehicle electrification can be a
significant factor in improving air quality. During typical winter and summer weather,
with minimal inversion and average winds of five and seven miles per hour, respectively,
electrification scenarios in which at least one vehicle class has between 75% and 100% EV
adoption can yield an air quality improvement of between six and nine AQI points. This is
a respectable and valuable improvement. Furthermore, during a strong inversion event
and when winds are below three miles per hour, similar electrification scenarios could
result in improvements of between 30 and 50 AQI points. Such a significant improvement
in air quality could dramatically reduce the risk to human health associated with poor local
air quality, especially to at-risk populations. The cost associated with building a charging
infrastructure capable of supporting the EV population needed to drive such air quality
and human health improvements varies between USD 100 to USD 320 million dollars,
depending on the specific EV adoption strategy.

This work’s scope is confined to vehicle tailpipe emissions, and does not examine
life-cycle ICE vehicle or EV pollution (e.g., pollution from vehicle and battery manufacture,
energy production, fuel refinement, battery disposal) or non-fuel-related pollution (e.g.,
tire and road wear), though those factors are important and are well considered in the
larger conversation regarding EV adoption strategies. Its purpose is not to directly promote
EV adoption or argue against the continuation of ICE production. Rather, it constitutes a
systems-level examination of the relationship between traffic along major transportation
corridors, environmental factors, vehicle-generated tailpipe pollution, air quality, human
health, and infrastructure requirements.

The value presented by this work is the examination of multiple factors that influence
public health, spending, and opinion—few other analyses simultaneously consider the syn-
ergies between technological, social, and environmental issues. The issues examined in this
work comprise the urban ecosystem in which most of Utah’s, and the world’s, population
lives. As the human population within the system grows, vehicle traffic increases, and the
negative impact of vehicle emissions on human health must be understood and alleviated.
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Local weather patterns can aggravate those health impacts. Emerging personal transporta-
tion options such as the proliferation of EV technology should be examined as possible
methods for pollution mitigation, especially in the context of pollution-aggravating local
weather patterns.

1.1. Background

Since the early 1990s, research has shown that vehicle pollution emissions have
a negative effect on human health [4–6,10,17,18]. Additionally, publications about EV
technology and its effect on human-generated pollution have increased in number since
the early 2000s [13,19–21]. Some of these studies are briefly presented below to establish
the context and background information for this work.

1.1.1. Negative Physical and Social Health Effects of Criteria Pollution

The negative effects of criteria pollutants on human health are well documented.
Researchers and government organizations classify criteria pollutants as contributors to
the development of common pulmonary and cardiovascular sicknesses [18,22]. Multiple
studies have found evidence linking an increase in adolescent asthma cases to increased
criteria air pollutant concentrations in urban settings [10]. Analysis of criteria air pollu-
tant emissions and the health risks they present to on- and near-road populations is also
extensive [5]. Beyond localized communities, the negative health effects associated with
prolonged exposure to particulate matter have been observed across multiple geographic
regions [9]. All of these studies should cause concern among policy makers and local stake-
holders as increasing numbers of vehicles traverse roadways and urbanization continues
near and around major transportation thoroughfares.

The negative health effects associated with criteria pollution have also been observed
as being disproportionately present in certain low income and underrepresented popula-
tions [23,24]. Other studies have found correlations between the locations of these at-risk
populations and major highways [25,26]. The resulting correlation seems to indicate that
vehicle-sourced pollution may have a disproportionately large effect on populations that
have less opportunity than others to change their situation. Consequently, it is likely that
improving air quality near major roadways may also help to address the issues of social
inequality that plague modern urban areas.

1.1.2. Pollutant Emission, Accumulation, and Dispersion Models

Models that determine the type and rate of vehicle emissions range from simplistic to
incredibly complex. The national and industry standard is the US EPA MOVES model [27].
However, to the authors’ knowledge, MOVES does not provide the flexibility required
to explore different EV adoption strategies as per this work’s objective. Consequently, it
was used primarily as a reference point to validate the method used herein, i.e., to use
vehicle miles traveled data, vehicle age and class distributions, and government emissions
standards to estimate the volume of pollution produced in a certain area over a certain time.

Pollution accumulation and dispersion modeling is a well-developed field within
environmental health research. Some models, such as the QUIC-URB model developed
at Los Alamos National Laboratory, examine the effect of building height and spacing as
well as street-level wind patterns on urban pollution dispersion [28–30]. Others focus on
larger urban areas and pollution/particle movement within the lower atmosphere [31,32].
Of particular interest to this study are models that specifically target near-road, vehicle-
emitted pollution [33]. The EPA has also developed and published a set of guidelines for
forecasting air quality [34].

1.1.3. Weather Pattern Analysis

Winter weather patterns in Utah are of particular interest to this work because of the
effect that inversion events have on pollutant accumulation. Multiple studies have been
conducted examining wintertime air movement in the Salt Lake Valley [35,36]. Additionally,
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studies on deep inversion events in Utah’s Cache Valley were beneficial in determining
the extreme extent to which pollution can accumulate during inversions [12]. The general
principles of inversion development presented by Neuberger were also useful [37].

1.1.4. Environmental Benefits of EVs over ICE Vehicles

Because EVs are largely viewed as an alternative to traditional ICE vehicles, the
two are commonly compared to determine the extent to which they impact pollution
emissions [20,38,39]. The conclusion of life-cycle studies, including a recent study on
urban air pollution in Mexico City, that include analysis of tailpipe, energy production
and refinement, and manufacturing-related pollution is that impact largely depends on
the type of fuel source used for electricity generation (i.e., well-to-tank emissions) [40,41].
However, the reduction in tailpipe emissions, and thus the impact on air quality in densely
populated regions, related to EVs is undeniable [19,42]. It has been shown that, in countries
with high vehicle sales (e.g., the United States), replacement of ICE vehicles with EVs
reduces greenhouse gas emissions [43]. It follows that criteria pollutant emissions could
be similarly reduced, in particular via aggressive EV adoption strategies. Other studies
indicate that, while ICE vehicles do produce more source (i.e., tailpipe) emissions than
EVs, those emissions have been in continuous decline since the turn of the century [13],
insinuating that they may become less problematic in the future, depending on federal and
state regulations.

1.2. Summary

While each of these studies provides excellent insight into various aspects of the
overall system, and some do cross over into the other subsystems to varying degrees,
seldom do they simultaneously consider the systems-level relationships between human,
vehicle, economic, and environmental factors. This work’s contribution is filling that
space by providing an interdisciplinary, techno-socio-economic analysis of the impact that
increasing EV populations could have on tailpipe emissions, the costs associated with
that increase, pollution accumulation during typical local weather patterns, and human
health. While the model presented in the following sections employs a lower level of
fidelity than that found in other subsystem models, its synthesis of critical information
from technological, social, environmental, and economic disciplines allows for a holistic
analysis of the multifaceted, complex human–transportation–environment ecosystem.

The work’s purpose is to allow stakeholders in the human–transportation–environment
ecosystem to explore trade offs between EV infrastructure investment and local air quality
improvements resultant from the increased EV adoption supported by that infrastructure
investment. In continuation, this article develops the data gathering and modeling methods
used to synthesize data from each of the areas of study discussed above into a high-level
systems model for the entire ecosystem. Figure 1 provides an outline for the structure of
the rest of this document.

• Section 2 discusses the methods for creating the Compiled Data repository and Design
of Experiments (DOE), Cost Model, and AQI Model sub-models.

• Section 3 discusses the results from each sub-model and details the creation of the
Decision-Making Surrogate Model based on the results of those analyses.

• Section 4 provides conclusions drawn from each of the sub-model analyses and the
decision-making model, a discussion of their merit and utility, and a brief outline of
work that may be pursued to improve upon the work presented herein.
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Figure 1. The structure and method of analysis developed in this work. Citations for each data source
are provided in context in the article’s main body.

2. Methods

This section describes the data collection and analysis, assumptions, and mathematical
models used in the model’s development. It first describes the data and assumptions used
to inform the model. The second section describes the individual components of the model
and their coordinating relationships. The mathematical models were all developed in
MATLAB and the SAS-developed dynamic statistical analysis software JMP was used to
post-process and interpret the results data.

2.1. Data Analysis and Assumptions

In order to achieve the project’s goal of modeling the effect of EV populations on
air quality improvement near major highways and the costs associated with supporting
those EV populations, data were acquired from repositories created or sponsored by the
Utah Department of Transportation (UDOT), the Utah State Tax Commission [44], the
United States Environmental Protection Agency (EPA) [45], the United States Department
of Energy (DOE) [46,47], the Ford Motor Company [48], and from various academic and
database sources [36,49,50]. The following sections summarize the various data gathered,
the sources for each data set, and the assumptions made by the model regarding unknown
or unquantifiable data properties.
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2.1.1. Vehicle Miles Traveled

Traffic data for the test case area (Salt Lake County, UT, USA) were compiled in the
form of vehicle miles traveled (VMT) data from the UDOT Performance Measurement
System (PeMS) [51]. The PeMS database monitors over 1500 traffic measurement stations
along Utah’s highways. For the test case, only the north-bound section of I-15 between
mile markers 290 and 310 (approximately the section that transects Salt Lake City) was
considered. However, the same analysis could be performed on other highway sections.

The PeMS system intakes traffic flow data from radar sensors and aggregates this
into VMT, flow, and density data sets. For this study, the model samples VMT data
from approximately every tenth of one mile at one hour intervals. The data used for
computations in the test case are from the first week of August 2017. Traffic from that week
closely matches the average weekly VMT for the entire year and thus is used to represent
year-round traffic in this work.

2.1.2. Vehicle Categories

The vehicle population within the model is divided into three general categories:
light duty vehicles (LDV), light duty trucks (LDT), and heavy duty vehicles (HDV). The
LDV category consists of street-legal, four-wheeled vehicles that are not considered to
be trucks (e.g., passenger cars) and must have a gross vehicle weight rating (GVWR)
of less than 8500 lbs. LDT vehicles abide by the same weight constraints as LDVs, but
differ in body type and emissions regulation. Examples of LDTs are pickup trucks, SUVs,
and crossovers. The HDV category consists of all trucks or passenger vehicles with a
GVWR greater than 8500 lbs. Semi tractor trailers, city buses, snow plows, and garbage
collection vehicles are examples of HDVs. Medium duty passenger vehicles (MDPV) such
as large vans are included in the HDV class, as they have similar GVWRs and emissions
standards and represent a tiny portion of the total vehicle population in Utah. Several
categories of vehicles were not included in this study because their total emissions in
Salt Lake County can be considered negligible when compared to those of vehicles in
the classes described above, either because the vehicles do not frequently drive on major
roadways (e.g., agricultural and mining vehicles) or because their emissions are so low
that their replacement with electric equivalents would not significantly change air quality
(e.g., motorcycles). Information regarding vehicle classifications can be found on the EPA
website [52].

The number of vehicles used in the study is the number of vehicles from each class
registered in Salt Lake County in 2018, as per the Utah Tax Commission [44]. Figure 2
shows the distribution of vehicle registrations from 1902 to the present, with the vast
majority of registered vehicles being produced after 1985. As of the end 2018, there are
509,154 LDVs, 347,332 LDTs, and 29,006 HDVs registered in Salt Lake County.

2.1.3. Vehicle Emissions Standards

The model operates under the assumption that the vehicles produced in any given
year adhere to the EPA-defined emissions standards for that year. The emissions standards
specify that, for a given vehicle type and bin number (a subcategory of vehicle type
used interchangeably with vehicle emission category), a vehicle can only produce up to a
specified mass of a given pollutant per mile traveled. Emission standards are assigned to
vehicles in two primary groups, each corresponding to the weight classifications identified
by the EPA [52]. LDVs and LDTs are divided into three groups: Tier 1, Tier 2, and Tier 3
vehicles and HDVs are presented in one group.

LDV and LDT Group

In this work, the three LDV and LDT emissions standards are assigned to vehicles as
follows: vehicles produced before 2004 follow Tier 1 standards, vehicles produced between
2004 and 2016 follow Tier 2 standards, and vehicles produced after 2016 follow Tier 3
standards. All emissions standards used by the model for LDVs and LDTs are listed in
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Table 1. Though the Tier 1, Tier 2, and Tier 3 EPA standards officially took effect in 1994,
2004–2008, and 2012, respectively, their implementation by automobile manufacturers
was only slowly phased in. For example, though Tier 3 standards were published in
2012, the first Ford vehicles that adhered to those standards were not sold until 2016 [48].
Additionally, the Tier 1 vehicle emission standard is applied to all vehicles produced before
2004 because the Tier 1 standard is the first widely applied vehicle emissions standard. The
model assumes that all vehicles produced before the Tier 1 standard’s publication would
emit at least at the levels it specifies.

N
u

m
b

e
r 

o
f 

V
e

h
ic

le
s

0

20,000

40,000

60,000

80,000

100,000 LDV LDT HDT

1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

Figure 2. Number of registered LDVs, LDTs, and HDVs by production year in Salt Lake County in
2018 [44].

Table 1. LDV and LDT emissions standards for all tiers and bin numbers, as presented by the model
(note that some bin numbers have been changed from those assigned by the EPA for modeling
simplicity and that the PM column includes aggregated data for all measured particulate matter,
including PM2.5 and PM10) [53]. Units shown are g/mi.

Year Tier Bin # NOx CO PM HCHO

2004 Tier 1 1 0.91 4.2 0.01 0.8

1 0 0 0 0
2 0.03 2.1 0.01 0.004
3 0.085 2.1 0.01 0.011
4 0.11 2.1 0.01 0.011
5 0.16 4.2 0.01 0.018

2016 Tier 2 6 0.19 4.2 0.01 0.018
7 0.24 4.2 0.02 0.018
8 0.325 4.2 0.02 0.018
9 0.39 4.2 0.06 0.018

10 0.756 4.2 0.08 0.018
11 1.18 7.3 0.12 0.032
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Table 1. Cont.

Year Tier Bin # NOx CO PM HCHO

1 0 0 0 0
2 0.02 1.0 0.01 0.004
3 0.03 1.0 0.01 0.004
4 0.05 1.7 0.01 0.004
5 0.07 1.7 0.01 0.004
6 0.125 2.1 0.01 0.004

2018 Tier 3 7 0.160 4.2 0.01 0.004
8 0.150 1.5 0.06 0.006
9 0.170 1.5 0.06 0.006

10 0.200 2.6 0.06 0.006
11 0.250 2.6 0.06 0.006
12 0.340 3.2 0.06 0.006
13 0.395 6.4 0.12 0.006

HDV Group

The other group comprises all HDV emissions standards published by the EPA be-
tween 1988 and the present. Published standards exist from as early as 1974, but they are
the same as the 1988 standards. Consequently, it is assumed that all HDVs built before
1988 emit at or above the levels specified by that year’s standards. The EPA gives the
emissions standards for HDVs in units of grams per bhp-hour (g/bhp-hr), a measure of
engine horsepower before losses to mechanical inefficiencies. To convert this measure
into grams per mile (g/mi), as emissions are measured for LDVs and LDTs, the following
equations presented by the EPA in [54] are used.

γcon =
ρ

BSFC × MPG
(1)

where γcon is the conversion factor in units of bhp-hr/mi, ρ is the density of fuel in units of
lb/gal, BSFC is the brake-specific fuel economy (estimated at 0.4 for buses and trucks that
use diesel fuel [54]), and MPG is the vehicle fuel efficiency in mi/gal of an average diesel
truck or bus (population average estimated at 5 MPG [55]). Hourly emissions for HDVs
are calculated as follows.

Eg/mi = γconEg/bhp−hr (2)

where Eg/mi and Eg/bhp−hr are the emissions of pollutant per mile and per bhp-hour,
respectively, of a given vehicle, and γcon is derived in Equation (1). The HDV standards are
shown in Table 2.

Table 2. EPA emissions standards for compression-engine (i.e., diesel-powered) HDVs built between
1988 and 2018. Units shown are g/mi (g/(bhp-hp)).

Year NOx CO PM HCHO

1988 14.6 (6.0) 37.8 (15.5) 1.46 (0.60) 3.17 (1.3)
1991 12.2 (5.0) 37.8 (15.5) 0.42 (0.17) 3.17 (1.3)
1994 12.2 (5.0) 37.8 (15.5) 0.21 (0.09) 3.17 (1.3)
1998 9.74 (4.0) 37.8 (15.5) 0.17 (0.07) 3.17 (1.3)
2004 5.85 (2.4) 37.8 (15.5) 0.17 (0.07) 3.17 (1.3)
2007 5.85 (2.4) 37.8 (15.5) 0.02 (0.01) 3.17 (1.3)

2.1.4. Vehicle Bin Distributions

In order to take advantage of the bin-level fidelity of the EPA emissions standards,
it is necessary to identify how many LDVs and LDTs in Salt Lake County fall into each
emissions standards bin. Because the Utah Tax Commission data are only defined in terms
of vehicle type and does not provide any information regarding vehicle pollution categories
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(i.e., bin numbers), it is appropriate to find these data for a sufficiently large sample of the
population.

The major automotive OEMs report vehicle compliance with EPA emissions standards,
and are consequently an excellent source for vehicle pollution bin data. Among the big
three US automobile manufactures (Ford, GM, Fiat-Chrysler), Ford’s vehicles represent
14.5% of total light duty vehicles and trucks sold in Utah during 2017. Consequently, this
work assumes that Ford vehicles are adequately representative of the Utah and Salt Lake
County vehicle populations [56]. The Ford Fleet Emissions Guide is a comprehensive
database of all Ford-built vehicles from 2004 to the present [48]. In addition to vehicle
category (e.g., LDV, HDV), it indicates the EPA-assigned vehicle pollution category, or bin
number, for each vehicle in the Ford fleet.

The emissions bin data for all available years are processed to model the number of
vehicles in each EPA emissions bin in Salt Lake County as follows. For every year, the
number of vehicles in each bin is recorded and, because of the progressive nature of vehicle
emissions regulations over time, the vehicles are divided into the three tier categories
explained in Section 2.1.3. Then, a probability mass distribution (PMD) and corresponding
probability mass function (PMF) are created by dividing each category by the total number
of Ford vehicles in each tier. Equation (3) shows how the PMF is created.

ε(i) =
Ni

∑k
j=1 Nj

(3)

where ε(i) is the PMF of the percentage of vehicles in the ith emissions bin, Ni is the number
of vehicles in the ith emissions bin, k is the total number of bins, and Nj is the number of
vehicles in the jth bin. The PMF can then be multiplied by the number of vehicles in Salt
Lake County to determine the number of vehicles in each emissions tier and bin in Salt
Lake County.

2.1.5. Environmental Factors

The process for determining criteria pollutant emissions’ impact on air quality is
extraordinarily complex. In the case of PM2.5, it involves not only the primary pollutant
form that is directly output in engine exhaust, but also the volatile organic and inorganic
aerosols that react with each other and other airborne criteria pollutants such as nitrogen
and sulfur oxides to form secondary particulates. In some cases, these secondary particu-
lates constitute more than half of the total PM2.5 pollution present in urban areas [57]. This
model does not consider these secondary pollutants, as it considers them life-cycle vehicle
emissions rather than primary tailpipe emissions. Thus the results for total pollution
accumulation provided by the model only consider tailpipe emissions. Measuring primary
emissions alone still provides a clear, if conservative, estimate of the impact of electric
vehicle adoption on air quality.

Atmospheric and weather conditions can have an impact on the accumulation of
primary and secondary particulate pollution. Among the most influential factors in the
transport, distribution, and accumulation of particulate air pollution are wind and atmo-
spheric conditions (e.g., inversions, which concentrate pollutants at low altitudes) [58].
Consequently, this work considers wind speed and inversion magnitude, or depth, as
the primary environmental factors that impact pollutant accumulation. In the model, the
two are compiled into a general accumulation coefficient that is used to determine the
percentage of tailpipe-emitted pollution that accumulates from hour to hour.

The general accumulation coefficient is generated using Equations (4)–(7).

α = I − W (4)

where α is the dimensionless accumulation coefficient, I is the dimensionless inversion
factor, and W is the dimensionless wind factor.
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It is difficult to measure the depth of an inversion quantitatively in terms of pollu-
tion accumulation, other than by recording its duration and effect on the AQI during
its occurrence. This presents a problem because, in this study, the AQI is the model’s
objective function and cannot be used to compute itself. Additionally, the duration of the
inversion is an unknown factor and must therefore be assumed. Though very few deep
inversion events last longer than one to three days, winter weather and surface temperature
conditions in mountain valleys can cause multiple, near-simultaneous inversion events
over longer periods of time [11,35]. Because the instantaneous inversion depth could range
from mild to severe at any time during a one-week period with several near-simultaneous
inversion events, a qualitative, average inversion factor is assumed and used in the model.
Consequently, this work assumes an average inversion effect over a week-long period with
an initial condition of zero accumulated pollution.

The inversion factor occurs in two cases. In the general case, it is an assigned value on
the continuous scale between zero and 0.9, with zero signifying that there is no significant
inversion affect and 0.9 signifying a deep inversion that can dramatically increase local
pollution accumulation. The mathematical definition of the general inversion factor (Igen)
can be seen in Equation (5).

Igen =


0 no influence on accumulation
...
0.9 heavy influence on accumulation

(5)

The general inversion coefficient is sometimes insufficient because the affects of an
inversion can be aggravated by calm winds [11]. Consequently, when wind speeds are
below four miles per hour, Equation (6) describes the inversion factor.

Icalm = Igen + δ − W (6)

where Icalm is the calm wind inversion factor, Igen is the general inversion factor, δ is an
offset representing the aggravation of an inversion by calm winds, and W is the wind factor.
The aggravation offset δ is set to 0.5, which allows for an increase in the inversion factor at
a wind factor of between 0.0 and 0.4 (corresponding to zero and four mph, respectively)
but still allows winds speeds at the higher end of that range to affect the accumulation of
pollutants, as described below. Note that for any value of Icalm greater than 0.9, the value is
adjusted to 0.9 in the model.

The wind factor serves as a qualitative counterbalance to the inversion factor. It is
calculated based solely on wind speed, and not wind direction. A study in Kuwait City has
shown wind speed to be a significant factor in the development or dispersal of inversions.
Though wind direction can be a major influencing factor on inversion development in
the mountain valleys where inversions commonly occur, this work is only focused on
the air immediately surrounding a roadway, and wind direction will not likely affect the
immediately local air quality as much as wind speed. Though some wind speeds can
promote the occurrence of inversion events, as discussed above, wind generally tends to
disperse accumulated pollutants [59]. Consequently, it serves to decrease the accumulation
coefficient, as shown in Equation (4). Equation (7) shows the calculations for wind factor.

W =


0 v = 0 mph (v = 0 k/h)
v

10 0 < v < 9 mph (0 < v < 14.5 k/h)
0.9 9 ≤ v mph (14.5 ≤ v k/h)

(7)

where W is the wind factor and v is the wind speed in miles per hour. Note that for wind
speeds greater than 9 mph, it is assumed that the wind has a similarly high effect on
dispersing air pollution in the form of vehicle exhaust emissions.
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2.1.6. Air Quality Index

The Air Quality Index (AQI) is a public service project sponsored by the EPA, National
Oceanic and Atmospheric Association, National Parks Service, and multiple state and local
governments in the United States. Its primary goal is to translate air quality information into
visual information accessible to the public [8]. The data are represented on a color scale in
Table 3. Table 4 represents the correlation between small particulate matter (PM2.5) pollution
concentration and AQI. The AQI can also be measured in terms of carbon monoxide and
sulfur dioxide. However, because particulate matter concentrations are a commonly, if not
the most commonly, used metric for air quality, this model only considers them in terms of
vehicle pollutant output. In the model, exact values for pollutant concentration and AQI
level are computed using linear interpolation between the provided values.

Table 3. Color Scale for the AQI system with corresponding AQI ranges and air quality condition
classifications.

Air Quality Index (AQI) Range Colors Air Quality Conditions

0–50 Green Good
51–100 Yellow Moderate

101–150 Orange Unhealthy for Sensitive
Groups

151–200 Red Unhealthy
201–300 Purple Very Unhealthy
301–500 Maroon Hazardous

Table 4. Interpolation constants for PM2.5 AQI [60].

Concentration (ρ ) in µ g/m3

ρlow ρhigh χlow χhigh

0 12.0 0 50
12.1 35.4 51 100
35.5 55.4 101 150
55.5 150.4 151 200
150.5 250.4 201 300
250.5 350.4 301 400
350.5 500.4 401 500

2.1.7. Charging Infrastructure

In order to calculate the costs associated with building the public and private charging
infrastructure needed to support an EV population, the type of charging stations needed
must be considered. In order to accomplish this, the model employs the Electric Vehi-
cle Infrastructure Projection Tool (EVI-Pro), a charging-infrastructure calculator created
and operated by the Alternative Fuels Data Center in the US EPA [47]. The EVI-Pro tool
projects the number of workplace level 2, public level 2, and public level 3 DC fast charging
plugs needed to support a given EV population. Its calculations are based on the state or
metropolitan area in which the EVs will be driven, how much of the vehicle population is
composed of different types of electric vehicles, and the level of support that the infras-
tructure must provide to the vehicle population. This work does not account for the costs
associated with upgrading the electrical grid infrastructure needed to support the designed
charging infrastructures.

Using the EVI-Pro tool to manually calculate the number of charging plugs needed
for every scenario in a DOE with thousands of entries is not practical. Instead, a range
of vehicle population inputs from the Utah State Tax Commission [44] were provided
to the EVI-Pro tool and the tool’s outputs were used to generate first and third-order
linear regression equations that predict the number of chargers needed for any rate of
EV adoption input into the model. Thus, the cost models discussed in continuation are
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validated based on their derivation from a pre-validated EPA tool and their source data’s
origination in a responsible government institution.

The third-order equations are given in Equation (8), and, with R-values of 0.999, very
closely follow the data points available from the EVI-Pro tool.

ηL2w = 0.015n − (1.23 × 10−8)n2 + (3.24 × 10−14)n3

ηL2p = 0.007n − (1.01 × 10−8)n2 + (1.40 × 10−14)n3

ηL3p = 0.009n − (2.25 × 10−8)n2 + (2.95 × 10−14)n3

(8)

where ηL2w is the number of workplace level 2 chargers, ηL2p is the number of public level
2 chargers, ηL3p is the number of public level 3 DC fast chargers, and n is the number of
EVs (LDVs, LDTs, and HDVs combined) in the vehicle population.

Unfortunately, however, the EVI-Pro tool only supports charging infrastructure es-
timations for between one and ten percent of the total vehicle population of an area. For
EV adoption rates greater than ten percent, then, a certain degree of extrapolation is re-
quired. The third-order equations are inappropriate for use in extrapolation because, at
high EV adoption rates, the number of charging plugs they predict is quite unreasonable.
Consequently, the simple first-order regression model, given in Equation (9), is used in
the model. With R-values of between 0.98 and 0.99, the three equations in the model still
provide an accurate prediction for data points within the EVI-Pro range and represent a
more conservative model from which to extrapolate the infrastructure needs for higher
EV adoption rate scenarios. In any case, however, it must be acknowledged that cost
predictions where EV adoption rates are above ten percent are speculative and intended
only as ball-park estimates.

ηL2w = 0.010n

ηL2p = 0.006n

ηL3p = 0.005n

(9)

where the variables are as in Equation (8).

2.2. Mathematical Model

The primary mathematical model used in this analysis was created in MATLAB and
incorporates probabilistic methods for determining the impact that a given EV adoption
strategy could have in improving air quality around major roadways. The primary inputs
are as follows: (1) percentage of LDVs to be replaced by EVs, (2) percentage of LDTs to
be replaced by EVs, (3) percentage of HDVs to be replaced by EVs, (4) inversion factor,
and (5) wind speed. Additionally, and as discussed in Section 2.1, the model also requires
information about VMT, vehicle population numbers and distributions, existing vehicle
emissions standards, and environmental factors.

As primary outputs, the model provides the amount by which air quality is improved
in terms of reduction in AQI (e.g., holding the weather patterns constant, one candidate
design might reduce AQI by eight points versus the AQI associated with the same scenario
without EV adoption) and the costs associated with building, but not maintaining, the
charging infrastructure needed to support the EV adoption present in each design run.

2.2.1. Design of Experiments

The first step of the mathematical model is to generate an appropriate sampling of
the design space represented by EV adoption within the LDV, LDT, and HDV vehicle
populations and the weather patterns associated with inversions and wind factors. For this
study, EV adoption ranged between zero and 100 percent (0.0–1.0), the inversion factor
between zero and 0.9, and the wind speeds between 0 and 10 mph. For the Salt Lake County
test case discussed in Section 3, a full factorial DOE was created to test 161,051 unique
candidate scenarios. A small sample of the design of experiments is provided in Table 5.
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Table 5. Sample of the design of experiments with several test case model inputs. Units for the three
vehicle-type (LDV, LDT, HDV) EV adoption columns are percent (i.e., 0.8 = 80%), Inv stands for
inversion and is a dimensionless factor, and wind is in mph (k/h).

% LDV % LDT % HDV Inv Wind

0.8 0.6 1 0.4 2 (3.2)
0.7 0.9 0.5 0.6 6 (9.7)
0.3 0.9 0.3 0.5 6 (9.7)
0.8 0.8 0 0.9 2 (3.2)
0.9 0.6 0.2 0 2 (3.2)
0.7 0.6 0.7 0.5 2 (3.2)
0.4 0.4 0.6 0.8 0 (0)
0.7 0.7 0.6 0.2 9 (14.5)
0.9 0.2 0.4 0.1 8 (12.9)
0.4 0.4 0.2 0.6 10 (16.1)

2.2.2. AQI Calculations for Candidate EV Adoption Scenarios

For each candidate EV adoption scenario in the DOE, the air quality (given in AQI) is
calculated for both the designed EV adoption scenario and the current vehicle population.
There are many paths by which the air quality impact of EV adoption could be estimated,
ranging from a simple emission coefficient multiplied by average speed to stochastic meth-
ods based on Markov processes used in approximating local drive-cycles [61]. This method
relies largely on aggregate and estimated values for factors such as vehicle emissions
standards and the measured VMT along a section of roadway and represents a middle road
compromising between computational efficiency and accuracy. The process for calculating
AQI proceeds as shown in Equations (10)–(14).

dMbin(i) = εbin × Vvmt(i) (10)

where dMbin(i) is the number of miles driven by vehicles in each emissions bin in the ith
hour, εbin is from the PMF value for each bin from Equation (3), and Vvmt(i) is the vector of
vehicle miles traveled in the ith hour for the chosen section of highway.

dM(i) = dMbin(i)× Ebin (11)

where dM(i) is the mass in grams of pollutant emitted in the ith hour along the section
of highway, dMbin(i) is from Equation (10), and Ebin is the vector of PM2.5 emissions
regulations for each emissions bin given in the column headed “PM” in Tables 1 and 2.

M =
k

∑
i=1

α × dM(i − 1) + dM(i) (12)

where M is the total mass in grams of accumulated PM2.5 pollution for one candidate
design at the end of the design run, k is the total number of hours in the test run, α is the
accumulation coefficient from Equation (4), dM(i − 1) is the mass of pollution emitted in
the hour previous to the nth hour, and dM(i) is the mass of pollution emitted in the ith
hour both dM values are calculated in Equation (11).

ρ =
Mλ

V
(13)

where ρ is the pollutant concentration, M is from Equation (12), λ is a mass conversion
factor, and V is the volume of the area containing the pollutants. This study considers
PM2.5, with λ = 1 × 106 to convert grams to micrograms. Additionally, V = 5.06 × 108 m2

for a 32 km long section of highway with an estimated immediate dispersion radius of
100 m, after which line-source pollution such as that emanating from roadways becomes
an insignificant contributor to overall air quality [32,62]. While this equation does not



World Electr. Veh. J. 2021, 12, 207 14 of 24

incorporate any dispersion models, it is assumed that as per [32], tailpipe emissions within
a 100 m radius or major roadways are, if not uniformly distributed, at least present in
significant concentrations to majorly influence air quality.

χ =
χH − χL
ρH − ρL

(ρ − ρL) + χL (14)

where χ is the AQI, ρ is the calculated pollutant concentration from Equation (13), χH and
χL are upper and lower AQI interpolation constants given in Table 4, and ρH and ρL the
upper and lower concentration bounds for each AQI color category (Tables 3 and 4).

∆χ = χactual − χscenario (15)

where ∆χ is the difference between the actual and scenario AQIs, χactual is the AQI as
determined by the existing vehicle population and the hypothetical inversion and wind
conditions, and χscenario is the AQI as determined by the EV adoption scenario and the
same environmental factors.

2.2.3. Cost Model

After determining the change in AQI caused by each EV adoption scenario, the model
also computes the costs involved in building, but not maintaining, the required charging
infrastructure for each scenario. Section 2.1.7 explains the process used to determine how
many public and workplace level 2 charging plugs and public level 3 fast-charging plugs
would be needed in each scenario.

The cost per charging plug was taken from a study conducted in 2015 by the US
DOE [46]. The study presents average costs per plug for various charger types. For level
2 charging plugs, it shows USD 3000 for installation costs and USD 3500 for component
costs. For level 3 fast-charging plugs, it indicates USD 21,000 and USD 25,000 for the same
cost categories. These numbers are similar to those presented by the International Council
on Clean Transportation in 2019, though their estimates for L1/L2 chargers are somewhat
lower and their estimates for L3 chargers are either closely matching or significantly higher,
depending on the power capacity of the charger [63]. Equation (16) shows how these costs
are used in the model.

C = 6500(ηL2w + ηL2p) + 46,000ηL3p (16)

where C is the total charging infrastructure installation and component cost, 6500 is the
total cost per level 2 charger, 46,000 is the total cost per level 3 fast-charger, and the η terms
are found using Equation (9).

Note that these cost figures were derived for LDV and LDT charging needs, and not
for HDVs. In the same way that engine size and horsepower increase dramatically for
diesel-fuel HDVs as opposed to conventional-fuel LDVs and LDTs, electric HDVs will have
much larger battery capacities than electric LDVs and LDTs. In order to achieve practical
HDV charging times, recharge rates will have to be much higher at HDV charging plugs
than at the LDV and LDT charging plugs referenced by this work. Such an increase in
charging rate could require special equipment or grid access that could increase the cost
associated with installing HDV charging infrastructure [64]. However, because little is
known at this point about HDV charging infrastructure, the model simply assumes that it
will cost the same as LDV and LDT charging infrastructure. Consequently, the projected
costs associated with HDV infrastructure installation are likely an underestimate due to
technological uncertainty.

3. Results and Discussion

The results discussed in this section are derived using sample vehicle population and
VMT data from Salt Lake County, Utah [44,51]. The VMT data were taken from a 32 km
segment of Interstate 15 that directly transects several of the major population centers in
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the greater Salt Lake City metropolitan area. This corridor was chosen because over one
million people live in its vicinity and it is the most heavily transited highway in the state.

Determining the AQI Reduction–Infrastructure–Cost relationship relies on multiple
non-linear interactions between the five model input variables. The following sections
describe these interactions generally and discuss the influence of the two major groups of
independent variables, EV adoption rates and environmental factors, on both AQI levels
and infrastructure costs. Additionally, a simplified, surrogate model that can quickly and
reliably determine either air quality improvement or infrastructure cost as a function of the
input variables and one of the two model outputs (AQI or infrastructure cost) is presented
for use by decision makers and other system stakeholders.

3.1. Air Quality Improvement and Infrastructure Cost

Figure 3 shows the set of AQI improvement results from running a full factorial DOE
with five inputs (LDV % EV, LDT % EV, HDV % EV, Inversion Factor, and Wind Factor)
and 161,051 unique candidate scenarios. As can be seen, various echelons form within
the results matrix (most notably at the extreme range for cost). Each echelon corresponds
to a combination of inversion factors and wind speeds (i.e., accumulation coefficients).
They form because the accumulation coefficient is a discrete, and not a continuous, value.
Consequently, the results are not continuously distributed over the entire potential design
space. Figure 4 shows specific results echelons for average summer and winter conditions
and winter inversion conditions, respectively.

Pareto fronts can be used to easily determine the optimal set of vehicle electrification
scenarios based on a given weather pattern. The overall Pareto front exists at the lower
right edge of the data shown in Figure 3. In practice, however, that Pareto front is limited
in its application to the specific echelon of pollution accumulation scenarios from which
those data points were derived (in this case, extremely high inversion factors and low
wind conditions that result in an accumulation coefficient of α = 0.9). Though it shows
density plots depicting the most likely AQI improvements versus infrastructure investment
costs instead of Pareto fronts, Figure 4 provides a view of both low and a high pollution
accumulation environmental scenarios that is generally consistent with the results from a
similar but more detailed study in Kuwait City [59].

3.2. Pollution Accumulation Effects

The accumulation coefficient used to incorporate inversion patterns and wind speeds
into the model is the first primary influencing factor on air quality predictions within the
model. Pollution accumulation is only indirectly related to charging infrastructure costs
through its impact on air quality and the need to adopt EVs at a higher rate to achieve the
desired improvement in AQI.

Figure 5 shows the influence of increasing or decreasing wind speeds on a given
EV adoption scenario’s ability to improve air quality. There is a slight exponential effect,
where high and medium wind speeds very successfully dissipate pollution, even during
inversion events, and preempt the drastic impact that EV adoption can have on pollution
accumulation when wind speeds are much lower. Conversely, however, it is evident that
in low wind areas, high EV adoption can be more strongly correlated with substantial
improvements in air quality.
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Figure 3. The full set of results from the Salt Lake County design of experiments input matrix.
“AQI Reduction” on the x-axis shows the magnitude of air quality improvement in terms of AQI
point reduction between the current and hypothetical vehicle populations’ pollution outputs. “Cost
(Millions USD)” shows the infrastructure costs in millions USD to install the charging infrastructure
to support the hypothetical vehicle population.
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Figure 4. Model results for a typical winter inversion event (INV = 8, W = 3 MPH), such that
α = 0.8 as per Equations (4) and (6), are shown in red toward the right side of the chart. Model results
for a typical summer or winter non-inversion weather pattern (INV = 5, W = 5 MPH), such that
α = 0 as per Equations (4) and (6), are shown in blue toward the left side of the chart [49].
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Figure 5. The correlation between AQI Reduction, LDV % EV (LDV EV adoption rate), and wind
speed. LDT and HDV EV adoption follow very similar correlations.

Figure 6 shows the influence of varying magnitudes of inversion events on a given
EV adoption scenario’s ability to improve air quality. The apparent relationship between
inversion events, EV adoption, and AQI reduction is not as strong as it is for wind speeds.
At low EV adoption rates, inversion magnitude seems to have almost no relative effect on
AQI improvement. Only at very high adoption rates is there a distinguishable difference
between the impact a low magnitude inversion event would have on AQI and the impact
that a more severe inversion event would have. This would indicate that, though inversion
events are important in determining how much pollution might accumulate, the severity
of the event has less to do with that accumulation than the fact that there is an inversion
event in the first place.
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Figure 6. The correlation between AQI Reduction, LDV % EV (LDV EV adoption rate), and inversion
events. LDT and HDV AQI-EV adoption correlations are very similar.
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3.3. Vehicle Type Effects

Conversion from ICE vehicles to EVs is the second primary influencing factor on
air quality and the only direct influencing factor on infrastructure cost in the model. EV
conversion directly influences air quality by changing the amount of vehicle emissions
along a highway and, after factoring in the pollution accumulation rate, the AQI level.
Using the estimations provided by the DOE EVI-Pro calculator and INL charging plug cost
estimation model, the size of the EV population is also used to directly compute the cost of
EV supporting infrastructure for each EV adoption scenario.

Figure 7 shows the impact that exclusively adopting EVs from one of the vehicle
categories (LDV, LDT, HDV) has as compared to adopting EVs at varying levels from
each of the categories. The figure shows that, despite the likely underestimation of HDV
charging infrastructure costs, an exclusive investment in HDV charging infrastructure and
the corresponding support for HDV EV adoption could lead to marked improvements in
air quality (an AQI reduction of up to 12 points). The HDV-first EV adoption scheme has
been proposed and validated by studies in Germany and California [65,66]. By contrast,
investment in LDV or LDT EV adoption and charging infrastructure would provide the
same air quality improvement at costs an order of magnitude greater.

The exclusive adoption of one vehicle type or another, however, can only result in a
limited improvement in air quality. While hybridizing the approach to EV adoption, as
shown by the “non-exclusive” line in Figure 7, can be a more expensive option, it can also
result in greater returns in terms of AQI reduction. Of particular note is the non-exclusive
EV adoption strategy line’s low slope between 20 and 30 AQI. Though the model is subject
to significant noise due to the effects of inversion events and wind speed across the EV
adoption design space, that line segment shows that, for a marginal increase in cost (directly
correlated with EV adoption rate), a significant improvement in air quality can be achieved.
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Figure 7. Infrastructure costs and air quality improvements based on vehicle type-exclusive EV
adoption scenarios compared to the same results for vehicle type-hybrid EV adoption scenarios.

3.4. Decision Making Surrogate Model

The model presented in this paper is computationally expensive and requires some
technical expertise to interpret. To help decision makers and other system stakeholders
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decide how to best invest in EV adoption strategies that will achieve a certain air quality
improvement within a certain budget, it must be more accessible and easily used [67]. Con-
sequently, a surrogate model was developed using the same inputs and results discussed
previously to allow for a set of candidate designs to be explored very quickly. Its intended
purpose is to limit the users’ interaction with the model to providing a few specified inputs
and receiving the resultant outputs. Note that, because it was developed using the Salt Lake
County test data, this surrogate model is only applicable in Salt Lake County; however, a
similar model could be developed for other geographical regions using the primary model.

The surrogate model is a second-order linear regression equation. It was developed
using forward sequential variable selection with the criteria of minimizing BIC (Bayesian
information criterion) [68]. It incorporates each of the vehicle EV adoption rates, the
pollution accumulation coefficient, and the cost in millions USD to identify the resulting
reduction in AQI.

∆χ = −0.3 + 0.12C + α(2.98 + 0.10C)

− PLDV(14.95 + 5.59α + 0.01C)

+ PHDV(0.96 + 5.52α − 0.005C)

− PLDT(9.01 + 0.01C)

(17)

where ∆χ is the number of points by which the AQI is reduced; PLDV , PLDT , and PHDV are
the percentage of each vehicle class that will be converted to EVs; α is the accumulation
coefficient from Equation (4); and C is the total infrastructure cost from Equation (16)
converted into millions USD.

The surrogate model results fit the full model’s results with a R2 value of 0.903,
indicating a reasonably tight fit with some marginal error. Much of the error likely results
from the linear regression assumption that all input variables are normally distributed,
which may not be the case for all input variables for the model. Mapping the residual
values between the surrogate and full model AQI reduction values shows that the mean
difference between surrogate and full model outputs is effectively zero (−1.3 × 10−12)
and the residuals are distributed along a standard deviation of σ2 = 2.11. The surrogate
model tends to produce larger residuals at extremely high values of the accumulation
coefficient (i.e., α = 0.9). An important attribute of the surrogate model is that large
residuals produced by the model are almost exclusively conservative, which ensures that,
when it is not as accurate as the full system dynamics model, it does not over-promise in
terms of the air quality improvements that could be provided by an EV adoption strategy.

In any case, however, high accumulation events rarely occur in real life and users of
the model should be cautious when considering in such extreme events. Considering its
intended use case and the first-order approximation nature of this work, the surrogate
model provides an appropriate substitute for the full model and is particularly accurate for
more normal weather events with representative accumulation coefficients between 0.2
and 0.7.

3.5. Future Work

This work should be used as a springboard for additional research either in direct
follow up or in related fields. Of particular potential value are the following opportunities.

• Developing a generalized traffic model from data from multiple locations that could
be applied with greater confidence in major metropolitan areas where EV adoption
could significantly improve air quality, (e.g., Los Angeles, Shanghai, London, Tokyo).

• Developing a more mature cost model using emerging data on the possible infras-
tructure costs associated with installing and maintaining (1) in-road wireless power
transfer networks for LDV and HDV charging and (2) plug-in charging networks for
LDV and HDV charging.
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• Developing a model to identify the precise number and location of charging stations
needed to support different electrification scenarios for LDV, LDT, and HDV segments
in Utah and/or other locations.

While these suggested areas of research are by no means the only areas in which future
research could be conducted adjacent to that presented in this work, they do represent
areas of special concern in regions where EV adoption is on the rise and local governments
have minimal knowledge to predict how infrastructure demands will change in parallel
with those EV adoption rates.

4. Conclusions

This work’s primary objective is to examine the effects of EV adoption across all vehicle
types and environmental events on air quality near highways. Its secondary objective is
to provide a reasonable estimate of the infrastructure costs associated with supporting
an EV population capable of improving air quality to a predetermined level. Because
pollution-trapping inversion events frequently occur in mountain valleys where pollution
accumulation is already a concern, this study takes special interest in mapping these effects
during such events.

The results of the Salt Lake County test case clearly indicate that high rates of EV
adoption could drastically improve air quality, in particular during inversion events.
Even during normal summer and winter weather scenarios, when exceptional pollution
accumulation is not a concern, an AQI reduction of eight points when the typical AQI
level in such conditions is between 20 and 50 cannot be considered insignificant. During
inversion events, when the PM2.5 AQI can reach upwards of 150 points [69], an AQI
reduction of 20 points (or 40 to 50 points, as the 100 percent EV adoption scenarios estimate)
is a massively important impact. Under the assumptions laid out for the model presented
in this work, a 20 point reduction in PM2.5 AQI would all but eliminate traffic-caused and
weather-exacerbated “red air” conditions in Salt Lake County.

While a complete conversion from a conventional to an electrical-powered vehicle
population may become a viable transportation scheme in the future, such a policy does not
currently hold sufficient political or social priority. EV battery and charging technology and
implementation strategies need to improve and be defined in order to meet the demands of
a modern urban population [70,71]. Additionally, a sufficiently high capacity EV charging
infrastructure does currently not exist, nor would the existing electrical grid infrastructure
be capable of supporting it if it did [72–74]. These issues and others must be confronted
and addressed before large-scale EV adoption can occur and its benefits discussed herein
can be reaped; however, the outlook is by no means dim. Building the charging station
infrastructure needed to support over two million electric vehicles of varying sizes in Salt
Lake County would cost in the neighborhood of USD 300 million (Figure 3), an amount that
seems large, but actually reduces to about USD 150 per vehicle. Added to the sticker price of
a new EV or as a fraction-of-one-cent energy tax increase, for example, the number is almost
unnoticeable. Though not considered by this work, updating the electrical grid would
likely prove to be more expensive, though it could be incorporated into existing renovation
projects and could even be supported by the EV population itself [75]. Charging station
maintenance and staffing costs would also have to be considered. In short, though neither
Salt Lake County nor most developed regions are fully prepared for rapid electrification,
they are likely quite capable of a considered and aggressive movement in that direction.

As an intermediate step, this work presents an incremental EV adoption scheme.
Because HDVs are much less heavily regulated in terms of emissions outputs than LDVs
and LDTs, and simultaneously comprise a much smaller percentage of the total vehicle
population than the other vehicle classes, they present an opportunity for early fleet
electrification [76,77]. Figure 7 shows that even partial electrification of the HDV population
in Salt Lake County could yield non-trivial results in air quality improvement at a very
low relative price when compared to LDV and LDT fleet electrification. There is significant
market potential and demand for HDV electrification, though the technology to support
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that demand has yet to sufficiently develop [78]. Battery capacity, battery energy density,
and charging technologies have not quite reached the levels needed to fully provide for all-
electric HDVs [79–82]. However, as shown by the new developments in HDV electrification
showcased by Tesla, Nikola Motors, and Daimler, among others, OEMs are more than
capable of developing the required technologies [83–85]. The incentive need only be
provided by regulators and other system stakeholders for the required improvements in
electric HDV technology to be produced.

In addition to the direct positive results of an immediate push for HDV electrification,
such a movement could also have an indirect impact on general transportation electrifi-
cation. Market demand is already rapidly pulling LDV and LDT EV technology into the
social and political mainstream. As an HDV charging infrastructure is developed, the
increased access to charging locations could promote increased LDV and LDT EV adoption,
which would provide an additional positive impact on air quality.

The background research, modelling, and analysis conducted by this work also indi-
cate that both the inversion events and the wind patterns that contribute to their formation
and help dissipate the pollutants that accumulate during them are important in considering
future EV adoption strategies. Of particular note to policy makers are the exponential effect
of wind on pollutant dispersal and the principle that inversion events, regardless of whether
they are extreme or not, can cause significant pollution accumulation over time. Because of
increasing urbanization and the ubiquity of personalized transport (i.e., LDVs and LDTs)
and long-haul delivery (i.e., HDVs) in Utah and the world generally, government and
community decision makers must realize the impact that natural weather patterns have on
pollution accumulation. In particular, urban areas in mountain valleys, or even low-lying
regions along the coast, are prone to having their human-caused pollution problems exac-
erbated by inversion events. Consequently, stakeholders in those regions must consider
methods such as those proposed in this work to alleviate the negative consequences of
interactions between human-generated pollution and natural weather patterns.

It follows further that by reducing vehicle pollution emissions in highly urbanized
areas, especially during weather events such as inversions when that pollution can easily
accumulate, human health can be improved. As discussed earlier, many acute and chronic
respiratory diseases, especially in at-risk populations such as young children and the
elderly, have been linked to the criteria pollutants that are emitted as part of vehicle
exhaust. The observed concentration of low-income and underrepresented populations
around major highways is also correlated with exposure of those populations to higher
than average levels of dangerous pollution. The predicted improvement in air quality
around roadways from transportation electrification would do a great deal in alleviating
some of the physical and social health issues experienced by these groups.

As a final contribution, the decision-making surrogate model presented by this study
provides policy influencers and other system stakeholders with an excellent tool for mak-
ing informed decisions regarding vehicle electrification policies and opinions based on
available funds, needed air quality improvements, and environmental factors. While the
specific surrogate model provided here is specifically applicable to Salt Lake County, the
principles behind its development can easily be translated for application in other cities
and regions and allow for the development of informed and scientifically sound opinions
and policies regarding key urban issues that involve the relationship between air quality,
transportation, and public health.

In summary, this work concludes that HDV-oriented EV adoption and infrastructure
development provides the best near-term option for air quality improvement by means of
transportation electrification. It indicates that in near-term, and even more so in long-term,
transportation electrification scenarios, EV adoption could drastically improve air quality
around highways. That positive effect is crucially magnified in areas that are prone to
winter inversion events. Finally, because an increasingly large segment of the general
population lives near highways, such an improvement in air quality would undoubtedly
have a meaningful and positive effect on human and societal health.
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