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Abstract: High voltage LCC resonant converters have been widely used in X-ray imaging systems in
automobile nondestructive testing (NDT) applications. Low ripple voltage waveforms with fast-rising
time under no-overshoot response are required for safety in such applications. The optimal state
trajectory control (OTC) based on the state plane model is one of the most effective control methods to
optimize transient response. Dynamic variations of the resonant voltages/currents are described as
corresponding trajectories on the state plane. The transient relations can be determined by evaluating
the geometric relationships of the trajectories. However, the LCC resonant converter has more state
variables, resulting in more complex calculations that make the state trajectory control challenging.
Furthermore, the startup duration is the most demanding process of the state trajectory control.
In this paper, a digital implementation based on a hybrid controller built in a field-programmable
gate array (FPGA) is proposed for LCC resonant converters with optimal trajectory startup control.
A coordinated linear compensator is employed to control the switching frequency during steady-state
conditions, hence eliminating the steady-state error. The experimental results were conducted on
a 140-kV/42-kW LCC resonant converter for an X-ray generator. It achieves a short rising time
of output voltage with no additional current or voltage stress in the resonant tank during startup
compared to the conventional digital implementation control.

Keywords: digital control; LCC resonant converter; X-ray generator; optimal trajectory control

1. Introduction

Effective detection and identification must be carried out to ensure the product quality
of the automobile hub. Nondestructive testing technology (NDT) plays an essential role in
improving product quality and production efficiency. At the same time, it is one of the most
effective testing methods in testing technology. X-ray imaging technology is widely used in
nondestructive testing because of its intuitive and accurate test results [1]. Due to the high
quality of X-ray imaging, it can accurately provide real information about automobile hub
defects. Therefore, the digital image of the wheel hub can be obtained through the X-ray
imaging system.

The X-ray generator is a device that supplies electric power to the X-ray tube and
permits the selection of X-ray energy (voltage), X-ray quantity (current), and exposure time.
The generator has three main interrelated electric circuits to serve three main functions:
(1) The power supply for heating the cathode filament and evaporating electrons is provided
by the filament circuit; (2) the high-voltage circuits are used to increase the speed of
electrons from the cathode to the anode to produce X-rays; (3) the timer circuit (exposure
timer) controls the duration of X-ray. Figure 1 shows a block diagram of a typical X-ray
generator [2]. The X-ray tube application presented in this paper utilizes an Input Single
Output Series (ISOS) LCC resonant converter [3], as illustrated in Figure 2, which features
a multilevel series arrangement with diode rectified output capacitors [4], increasing
flexibility and scalability.
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which features a multilevel series arrangement with diode rectified output capacitors [4], 
increasing flexibility and scalability.  

Researchers have proposed various modeling methods to operate resonant convert-
ers properly. Fundamental harmonic approximation (FHA) is widely utilized, but the 
ignorance of harmonic components reduces the accuracy of circuit analysis [5]. Extended 
describing function (EDF) modeling methods [6] or time-domain analysis methods [7] 
are adopted to solve such problems. A state trajectory analysis was proposed to achieve 
higher accuracy of resonant tank behavior control [8]. The resonant process was analyzed 
in the state plane, and the analytical formula can be obtained based on geometric rela-
tionships of the trajectory [9]. For series resonant converter (SRC), parallel resonant 
converter (PRC), and LLC resonant converters [10], state trajectory analysis and control 
have been applied in addressing unpredictable dynamics, burst mode for light load [11], 
soft startup, and short circuit protection [12]. However, more state variables make it more 
complicated for LCC resonant converters to present their relationships in a 2-D plane 
coordinate system. Therefore, it is very challenging to implement the state trajectory 
control. Furthermore, the startup duration is the toughest process of the state trajectory 
control [13].  
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Figure 1. Block diagram of an X-ray generator. 
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Figure 2. The topology of LCC resonant converter. 
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Researchers have proposed various modeling methods to operate resonant converters
properly. Fundamental harmonic approximation (FHA) is widely utilized, but the ignorance
of harmonic components reduces the accuracy of circuit analysis [5]. Extended describing
function (EDF) modeling methods [6] or time-domain analysis methods [7] are adopted to
solve such problems. A state trajectory analysis was proposed to achieve higher accuracy
of resonant tank behavior control [8]. The resonant process was analyzed in the state
plane, and the analytical formula can be obtained based on geometric relationships of
the trajectory [9]. For series resonant converter (SRC), parallel resonant converter (PRC),
and LLC resonant converters [10], state trajectory analysis and control have been applied
in addressing unpredictable dynamics, burst mode for light load [11], soft startup, and
short circuit protection [12]. However, more state variables make it more complicated for
LCC resonant converters to present their relationships in a 2-D plane coordinate system.
Therefore, it is very challenging to implement the state trajectory control. Furthermore, the
startup duration is the toughest process of the state trajectory control [13].
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This article proposes a state trajectory startup control and real-time implementation
for ISOS Type LCC resonant converters with a capacitive output filter in a 140 kV/42 kW
X-ray generator. The state trajectory startup control for LCC converter is optimized and
conducted using FPGA to achieve low ripple voltage waveforms with fast-rising time under
no-overshoot response. Furthermore, the state trajectory-based startup is successfully
applied to an industry-level X-ray generator with a Power/ Voltage Level of 42 kw/140 kV
for the first time. The rest of the paper is organized as follows. Section 2 introduces the
state plane analysis method and state trajectory, including six operation conditions in
detail, and describes the optimal trajectory control method for the soft startup process.
Section 3 introduces the implementation of the state trajectory control in FPGA. Finally, the
experimental results on a 140 kV/42 kW HV power supply used for the X-ray generator
are presented to verify the proposed model and control strategy.

2. Analysis of State Trajectory-Based Startup for LCC Converter

The control mechanism for the LCC converter’s state trajectory-based startup is de-
picted in Figure 3. The figure illustrates the topology of the LCC converter and the sampling
and control processes used by the control system. The state trajectory-based startup for the
LCC converter is divided into three stages [14].
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In Stage 1, the resonant current of the LCC converter rises to −imaxN in the first switch-
ing cycle. ±imaxN is the limit value of the resonant current in the state trajectory control,
as shown in Figure 4. At the end of converter startup, the frequency value compensated
by PI control is added to the frequency value predicted by state trajectory control [15]. Vin
and Vo are sampled for the calculation of state trajectory control. As described in Figure 4,
the LCC converter works in the 3rd operating mode with S1 and S4. In the 3rd operating
mode, the state trajectory is arc AB, and the state trajectory equation is given as:

i2LrN(t) +
[
VCprN(t)− 1

]2
= i2LrN(t2) +

[
VCprN(t2)− 1

]2 (1)
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where, iLrN(t) is the normalized resonant current value, VCrN(t) is the normalized voltage
value of capacitor Cr, VCpN(t) is the normalized voltage value of capacitor Cp, VCprN(t) is
the sum of VCrN(t) and VCpN(t). iLrN(t2) and VCprN(t2) are the initial values of iLrN(t) and
VCprN(t) in the 3rd operating mode.
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Then, the LCC converter operates in the 6th operating mode with S2 and S3, and the
state trajectory is arc BCD. The state trajectory of the 6th operating mode is given as:

i2LrN(t) +
[
VCprN(t) + 1

]2
= i2LrN(t5) +

[
VCprN(t5) + 1

]2 (2)

where, iLrN(t5) and VCprN(t5) are the initial values of iLrN(t) and VCprN(t) in the 6th operat-
ing mode.

The arc radius of the state trajectories in the 3rd operating mode and the 6th operating
mode are defined as ρT0 and ρT1. The central angle of arc AB is defined as θ0, and the
central angle of arc BCD is defined as θ1 + θ2. The process of solving the central angle can
be obtained as: 

θ0 = arccos
(

ρ2
T0
+22−ρ2

T1
2·2·ρT0

)
θ1 = arccos

(
ρ2

T1
+22−ρ2

T0
2·2·ρT1

)
θ2 = arcsin

(
imaxN

ρT0

) (3)

According to Figure 4. ρT0 and ρT1 can be expressed as:

ρT0 = 1
ρ2

T1
= i2maxN + 1 (4)

Therefore, the conduction time T0 of S1 and S4 and T1 of S2 and S3 can be derived as:

T0 = θ0
ω0

T1 = θ1+θ2
ω0

(5)

In stage 2, the maximum values of resonant current are kept constant [16]. The energy
in the resonator increases rapidly and is transmitted to the load. The output voltage of LCC
converter rises quickly. The power in the resonator is low, and the resonant current value
reaches the maximum at the switching time [17].

As shown in Figure 5, the state trajectory of the whole cycle is defined as 6 operating
modes. In the 1st operating mode, the center coordinates of the state trajectory arc are (1, 0),
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and the radius is R [18]. In the 2nd operating mode, the state trajectory is an ellipse. In the
3rd operating mode, the state trajectory equation is the same as in stage 1. The trajectory
equation of Mode I-III is given as:

i2LrN(t) +
[
VCprN(t)− 1

]2
= i2LrN(t0) +

[
VCprN(t0)− 1

]2 (6)(
iLrN(t)
Z0/Z1

)2

+
[
VCprN(t)− 1

]2
=

(
iLrN(t1)

Z0/Z1

)2

+
(
VCprN(t1)− 1

)2 (7)

i2LrN(t) +
[
VCprN(t)− 1

]2
= i2LrN(t2) +

[
VCprN(t2)− 1

]2 (8)

where, Z0 is the double-element resonance impedance [19], Z1 is the triple-element reso-
nance impedance, iLrN(t0) and VCprN(t0) are the initial values of iLrN(t) and VCprN(t) in the
1st operating mode, iLrN(t1) and VCprN(t1) are the initial values of iLrN(t) and VCprN(t) in
the 2nd operating mode.
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Similarly, according to the geometric symmetry of the trajectory, the trajectory equation
of Mode IV–VI can be obtained as:

i2LrN(t) +
[
VCprN(t) + 1

]2
= i2LrN(t3) +

[
VCprN(t3) + 1

]2 (9)(
iLrN(t)
Z0/Z1

)2

+
[
VCprN(t) + 1

]2
=

(
iLrN(t4)

Z0/Z1

)2

+
(
VCprN(t4) + 1

)2 (10)

i2LrN(t) +
[
VCprN(t) + 1

]2
= i2LrN(t5) +

[
VCprN(t5) + 1

]2 (11)

where, iLrN(t3) and VCprN(t3) are the initial values of iLrN(t) and VCprN(t) in the 4th oper-
ating mode, iLrN(t4) and VCprN(t4) are the initial values of iLrN(t) and VCprN(t) in the 5th
operating mode.
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The coordinates of points A, B, C, D are substituted into the state trajectory equation,
and the equation can be rewritten as:

(VB + 1)2 +
(

IB
Z0/Z1

)2
= R2

(VB − 1)2 + I2
B = r2

(VC − 1)2 + I2
C = r2

(VC + 1)2 + I2
C = R2

VD + 1 = R
−VA + 1 = R
VD = −VA
IC = imaxN

(12)

where, VA is the value of VCprN(t) at point A, VB is the value of VCprN(t) at point B, VC is
the value of VCprN(t) at point C, VD is the value of VCprN(t) at point D, R is the radius of
state trajectory arc in the 3rd operating mode, r is the radius of state trajectory arc in the 4th
operating mode.

Through the analysis of the state trajectory in stage 2, and (12) can be simplified as:

VA =
−(B1C1+1)+

√
( B1C1+1)2−(B1

2−1)(C1
2+i2maxN−1)

B1
2−1

VD = B1VA + C1 + 1
VB = VA + A1 + 1
R = 1−VA

r =
√

(VD − 1 )2 + i2maxN

(13)

The parameters A1, B1, and C1 can be expressed as (14).

A1 =
2VoCp

nVin
(

1
Cp

+
1

Cr
)− 1 B1 = (1− (

Z0

Z1
)2)· 1 + A1

2
C1 = (1− (

Z0

Z1
)2)· A1

2 − 1
4

− 1 (14)

The equation for solving the central angle and centrifugal angle of the state trajectory
curve and the equation of the operating frequency can be obtained as:

θ0 = arcsin
(

ImaxN
R

)
θ1 = arccos

(
1−VB

R

)
θ2 = arccos

(
1−VD

r

)
− arccos

(
1−VB

r

)
TsA = 2×

(
θ1
ω1

+ θ0+θ2
ω0

)
→ fsA = 1/TsA

(15)

where, the base values of the circuit parament are listed in Table 1. By normalizing all
voltages with the voltage factor Vin and all currents with the current factor Vin/Z0, the
following expressions can be derived as [20]:

iLrN(t) =
iLr(t)

Vin/Z0

vCrN(t) =
VCr(t)

Vin

vCpN(t) =
VCp(t)

Vin

(16)

In stage 3, the resonant current has reached the maximum value before switching.
The energy in the resonator is high. The maximum resonant current set value is gradually
reduced, and PI control is added.
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Table 1. The base value of the circuit parament.

Base Value

Input voltage (V) Vin
Output voltage (V) Vo

Lr, Cr
Impedance (Ω) Z0 =

√
Lr/Cr

Frequency (Hz) ω0 = 1/
√

LrCr

Lr, Cr, Cp
Impedance (Ω) Z1 =

√
Lr
(
Cr + Cp

)
/Cr·Cp

Frequency (Hz) ω1 = 1/
√

LrCrCp/
(
Cr + Cp

)
Similarly, according to the state trajectory in Figure 6, the coordinates of points E, F, G,

H are substituted into the state trajectory equation, and the equation can be rewritten as:

VF −VE = 2Vo
nVin
·n2Cp·

(
1

Cp
+ 1

Cr

)
(VF − 1)2 +

(
IF

Z0/Z1

)2
= R2

(VF − 1)2 + I2
F = r2

(VG + 1)2 + I2
G = R2

(VG − 1)2 + I2
G = r2

R = −VE + 1
r = imaxN

(17)

where, VE is the value of VCprN(t) at point E, VF is the value of VCprN(t) at point F, VC is
the value of VCprN(t) at point C, VG is the value of VCprN(t) at point G.
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The solutions of Equation (17) can be simplified as:
VE = −(a1b1+1)+

√
(a1b1+1)2−c1(b1−1)
b1−1

VF = VE + a1 + 1
VG = R2−r2

4
R = 1−VE

(18)

The parameters a1, b1, and c1 can be expressed by (19)
a1 = 2Vo

nVin
·n2Cp·

(
1

Cp
+ 1

Cr

)
− 1

b1 =

(
1−

(
Z1
Z0

)2
)

c1 = a1
2b1 − 1 + i2maxN(1− b1)

(19)

The equation for solving the center angle and centrifugal angle of the state trajectory
curve and the equation of the operating frequency is:

θ3 = arccos
(

1+VG
R

)
θ4 = arccos

(
VF−1
VE−1

)
θ5 = arccos

(
1−VG

r

)
− arccos

(
1−VF

r

)
TsB = 2×

(
θ4
ω1

+ θ3+θ5
ω0

)
→ fsB = 1/TsB

(20)

3. Implementation of State Trajectory Control Based on FPGA

In stage 1, T0 and T1 are calculated by DSP, and then the data of T0 and T1 are sent
to FPGA before the LCC converter starts. As shown in Figure 7, all equations in stage 2
are divided into 12 multiplications, 7 division calculations, 2 square root calculations, and
4 inverse trigonometric function calculations. Similarly, in stage 3, the equations are divided
into 12 multiplications, 7 division calculations, 1 square root calculation, and 4 inverse
trigonometric function calculations.
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In FPGA, division and square root operation modules consume many logic resources.
The logic resources of FPGA are seriously wasted when the state trajectory control program
is parallel computing. Therefore, the state trajectory control program adopts serial calcula-
tion. FPGA has only one division, square root, and inverse trigonometric function module.
The red arrow shows the operation sequence of the program.

Figure 7 shows the calculation process of stage 2 in FPGA. As shown in Figure 7,
A1, B1, and C1 can be calculated in the 1st, 2nd, and 3rd calculation of multiplication
correspondingly. θ0 can be calculated in the calculation of arcsine. θ1 can be calculated in
the 3rd calculation of arc cosine. θ2 is the difference between the 2nd and 1st calculation of
arc cosine.

Figure 8 shows the calculation process of stage 3 in FPGA. As shown in Figure 8, a1
can be calculated in the 1st calculation of multiplication, and c1 is the sum of the 4th and 6th
calculations. θ3 + θ5 can be calculated when the 3rd calculation of arc cosine is completed.
θ4 can be calculated in the 4th calculation of arc cosine.
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The data in FPGA is stored in 25-bit fixed-point register. The 25th bit of the register is
used to store the sign of data. The 17th to 24th bits are used to store integer data. The 1st
to 16th bits of the register are used to store decimal data. FPGA can not directly process
decimal, so the CORDIC(Coordinate Rotation Digital Computer) algorithm is used in the
division and square root operation module. The look-up table is used to operate the inverse
trigonometric function.

The calculation speed of the state trajectory control in FPGA is significantly faster than
that in DSP. The calculation time of state trajectory control in DSP28335 needs more than
20 us. But it just takes 200 clock cycles to complete all calculations of state trajectory control
in FPGA, and the calculation time is less than 2us. In FPGA, each division and square root
operation requires 17 clock cycles, and Multiplication and inverse trigonometric function
operations require 4 clock cycles.
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4. Experiment Results

In order to verify the correctness of the proposed control algorithm, the 140 kV/42 kW
for the X-ray generator prototype platform was built up, as shown in Figure 9. The
experiment parameters are listed in Table 2.
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Table 2. The circuit paraments of prototype.

Parameters Value

Output Power (P) 42 kW
Input voltage (Vin) 500 ± 50 V
Output voltage (Vo) 60 kV~140 kV
Output current (Io) 10 mA~350 mA

Load (RL) 512 kΩ
Transformer Ratio 15:301 (6)

Resonant inductor (Lr) 30 µH
Series Resonant capacitor (Cr) 0.66 µF

Parallel Resonant capacitor (Cp) 0.266 µF
Switching frequency (fsw) 70~120 kHz

As shown in Figure 10a, the exposure time of the X-ray generator is set to 10 ms. And
the output voltage Vo is 100 kV, imax is set as 200 A, the resonant tank current achieves the
set value of 200 A during the first cycle, and no extra voltage or current overshoot is injected
into the resonant circuit. A fast rise time is achieved during the startup process, where
(10–90%) of Vo is 350 µs. At the same time, for conventional PFM control, the experiment
waveforms at startup are presented in Figure 10b A fast rise time is achieved during the
startup process. Based on the same circuit parameters and classical PI control, the rise time
of the output voltage of the generator is 1.182 ms.
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Figure 11a–d shows the experimental waveforms of output voltages under closed-loop
control to further verify the proposed control scheme for the transient state. The switching
process of different kV levels is presented between 140 kV, 120 kV, and 80 kV to achieve
a faster transient time and keep the resonant tank’s voltage or current from overshoot.
The control strategy combines the benefits of OTC and PI. It has an excellent dynamic
characteristic with a rise time of less than 100µs and a fall time of less than 150 µs under the
resistive load, which benefits from the resonant tank being precisely controlled. Therefore,
the validity of the proposed OTC is verified.
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5. Conclusions

In this paper, a novel topology of ISOS Type LCC-SPRC is presented. The starting
strategy of the LCC converter based on state trajectory control is analyzed in detail, and a
state trajectory control based on FPGA for LCC resonant converter is proposed. Finally,
the proposed approach has been implemented in FPGA and DSP. The experimental results
on a 140 kV/42 kW X-ray imaging system generator show the model’s good dynamics
and the control scheme’s implementation ability and significantly reduce the rising time of
output voltage.
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