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Abstract: For unmanned electric drive chassis parameter optimization problems, an unmanned
electric drive chassis model containing power systems and energy systems was built using CRUISE,
and as the traditional genetic algorithm is prone to falling into the local optima, an improved isolation
niche genetic algorithm based on KOHONEN network clustering (KIGA) is proposed. The simulation
results show that the proposed KIGA can reasonably divide the initial niche populations. Compared
with the traditional genetic algorithm (GA) and the isolation niche genetic algorithm (IGA), KIGA can
achieve faster convergence and a better global search ability. The comprehensive performance of the
unmanned electric drive chassis in terms of power and economy was increased by 8.26% with a set of
better solutions. The results show that simultaneous power system and energy system parameter
optimization can enhance unmanned electric drive chassis performance and that KIGA is an efficient
method for optimizing the parameters of unmanned electric drive chassis.

Keywords: automotive engineering; unmanned electric drive chassis; parameter optimization; intel-
ligent algorithm; KOHONEN network; genetic algorithm

1. Introduction

With the worsening energy crisis and environmental crisis, the development of electric
vehicles has attracted the attention of governments, enterprises, and research institutions
around the world. However, due to the bottleneck of energy storage technology, which is
difficult to break through in a short period of time, the large-scale application of electric
vehicles in the field of passenger vehicles is limited. Therefore, current electric vehicles
have been developed rapidly and promoted on a large scale in the field of urban pub-
lic transportation, with fixed operating lines and the convenience of fast charging and
swapping. Urban unmanned electric drive chassis have also attracted the attention of
many automobile companies and research institutions. The performance of the unmanned
electric drive chassis power system has a great influence on the performance of the car, so
parameter matching and the optimization of the electric vehicle power system have become
important directions of electric vehicle research [1].

Liang Li et al. [2] combined the enhanced genetic algorithm with the simulated an-
nealing algorithm to optimize the power system parameters and control parameters of the
plug-in hybrid bus, such that the power and economy of the vehicle under urban conditions
were greatly improved. Hegazy, O [3], and others used the particle swarm optimization
algorithm to optimize the design parameters and energy flow control strategy of a fuel
cell/supercapacitor hybrid electric vehicle and fuel cell/battery hybrid electric vehicle
under NEDC and FTP75 conditions, which reduced the size of the vehicle components and
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reduced the cost and fuel consumption of the whole vehicle. Morteza Montazeri-Gh [4]
used a genetic algorithm to optimize the control strategy of a parallel hybrid electric vehicle.
Under the three working conditions of ECE-EUDC, FTP, and TEH-CAR, it can reduce FC
and emissions while ensuring power performance. Based on the equivalent circuit model
of the RC-H battery, the energy control strategy based on fuzzy logic is established, and the
energy consumption of the whole vehicle is optimized by dynamic programming. Finally,
the efficiency of the battery is improved, and the power and economy of the pure electric
vehicle are improved [5]. By designing the CFA6470HEV energy assembly control system,
Deng Yuanwang optimized the energy assembly control system with the design parameters
of the engine throttle and the vehicle gear, verified the optimization strategy through the
battery SOC estimation model, and finally improved the energy utilization rate of HEV un-
der the mild hybrid control strategy [6]. Fei Lei mainly used hierarchical analysis, analyzing
performance step by step from the vehicle level and subsystem level, transforming the three
performances of the whole vehicle into the optimization of the efficiency and quality of the
hub motor. Finally, using the genetic algorithm, the Pareto optimal solution is reasonably
selected to optimize the electric vehicle transmission system within a suitable range [7].
Morozov A. analyzed and optimized the drivetrain of a two-speed class-4 electric delivery
truck. They compared different powertrain layouts and proposed four new traction motor
designs for medium-duty electric trucks. The study found that a single-speed gearbox
and a permanent magnet synchronous motor was the most efficient powertrain combina-
tion for the e-truck [8]. David conducted a systematic review of the technologies, control
methods, and optimization techniques for extended-range electric vehicles, covering their
architecture, key components, and interactions, as well as methods for finding optimal
system-level designs, and discussed the most commonly used configurations and the cost
of implementing energy recovery and autonomy-increasing technologies [9].

Most of the above research separates the power system optimization from the energy
system optimization. However, due to the close coupling relationship between the un-
manned electric drive chassis power system and the energy system, it is difficult to achieve
the optimal performance of the whole vehicle only from a single perspective. Therefore, it
is necessary to combine power system optimization with energy system optimization to
collaboratively optimize the performance of the unmanned electric drive chassis.

However, the parameter optimization of unmanned electric drive chassis is a typical
multi-objective, non-differentiable, discontinuous, conditional constraint, and represents
a highly nonlinear complex system optimization problem [2]. There are two kinds of
optimization algorithms: gradient algorithms and non-gradient algorithms. Among them,
non-gradient algorithms, represented by the genetic algorithm, are more suitable for
unmanned electric drive chassis parameter optimization because they do not require the
gradient information of the objective function and have a strong global search ability.
However, due to the existence of local extreme points in the genetic algorithm, if the
parameter setting is unreasonable, it is easy to fall into the local optimum in the optimization
process. Therefore, researchers have proposed a variety of measures to improve the
performance of the genetic algorithm.

At present, most of the research on unmanned electric drive chassis aims to reduce
energy consumption by optimizing motor efficiency, and using high-power, high-torque
motors for direct drive. In this case, power will be wasted, which is not conducive to
energy conservation and emission reduction. Most of the current research is focused on
direct drive, and there is little research on the optimization of the transmission ratio of
electric vehicle transmission [10]. Most of the research on the optimization of transmission
ratios is aimed at dynamic performance, and less consideration is given to the impact of
economy [11]. For unmanned electric drive chassis, their driving conditions and driving
speeds are more complex than simple city buses and require transmissions.

The above research has achieved good results in the optimization of power and energy
systems, but there is still a lack of in-depth research on the influence of the coupling relation-
ship between the power system and energy system on vehicle performance improvement,
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and there is also a lack of sufficient research on the adverse effects of genetic algorithm
limitations on optimization results. Therefore, this paper uses CRUISE to establish a model
for the power system and energy system of unmanned electric drive chassis. Aiming
at the shortcomings of the isolated niche genetic algorithm (IGA) [12], which struggles
to reasonably divide the original niche population, an improved isolated niche genetic
algorithm (KIGA) based on the KOHONEN network is proposed, which is used to optimize
the parameters of unmanned electric drive chassis. To sum up, the highlights of this paper
include the following two points:

(1) By analyzing the mutual coupling relationship between the power system and
energy system of unmanned electric drive chassis, a comprehensive performance optimiza-
tion model for electric vehicles that includes both the power system and energy system is
proposed;

(2) To overcome the disadvantage of traditional genetic algorithms being prone to
falling into local optima, an improved isolated niche genetic algorithm based on the
KOHONEN network is proposed, which effectively improves the optimization speed and
results.

2. Establishment of the Simulation Model and Optimization Model
2.1. Establishment of Unmanned Electric Drive Chassis Simulation Model Based on AVL CRUISE

As a complex system, automobile performance is restricted by many factors, and it is
difficult to predict using a simple mathematical model. Therefore, professional automobile
performance simulation software has become an important tool for automobile performance
research [13]. Among the various pieces of software, the vehicle performance simulation
analysis software CRUISE developed by the AVL company can realize the forward and
reverse dynamic optimization operation, which is close to the actual operation, and the
result is more accurate [14]. Based on the technical parameters of the first-generation
unmanned electric drive chassis, the basic parameters of the first-generation unmanned
electric drive chassis are shown in Table 1, and these parameters are used as initial values
for subsequent optimizations. Additionally, the dynamic analysis model of the unmanned
electric drive chassis is established by CRUISE software, guided by the modeling schematic
diagram in Figure 1. The model uses a composite energy source composed of a battery and
a supercapacitor to provide energy for the unmanned electric drive chassis, and the control
strategy of the composite energy system is shown in Figure 2.

Figure 1. Dynamic analysis model of unmanned electric drive chassis based on CRUISE.
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Figure 2. Hybrid energy system control strategy.

Table 1. Basic parameters of the chassis of the first-generation unmanned electric drive chassis.

Parameters Numerical Value Unit

Total mass 5244 m/kg

Air drag coefficient 0.6 CD

Windward area 6.0168 A/m2

Rolling resistance coefficient 0.019 f

Wheel radius 0.357 r/m

Driveline efficiency 85 ηT/%

Transmission ratio [5.568, 2.360, 1.634, 1] ign

Final drive ratio 6.43 i0

Rated power of motor 40 Pe/kW

Maximum power of motor 70 Pm/kW

Rated torque of motor 124 Te/N·m
Maximum torque of motor 300 Tm/N·m

Rated speed of motor 3000 ne/(r·min−1)

Maximum speed of motor 5000 nm/(r·min−1)

Battery capacity 120 C/Ah

2.2. Modeling of Power System and Energy System

Different from traditional fuel vehicles, the voltage, and capacity of the battery of
the unmanned electric drive chassis also determine the power performance of the vehicle
(more specifically, the engine system of the traditional fuel vehicle is basically equivalent to
the sum of the energy storage system and the motor drive system of the unmanned electric
drive chassis). Therefore, there is a coupling relationship between the power system and
the energy system of the electric vehicle. The coupling connection variables are voltage
and current.
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The electric vehicle power system includes a drive motor and a transmission system.
Of the two, the transmission ratio in the transmission system has a greater impact on
the vehicle’s power performance. By reasonably optimizing the transmission ratio of
the transmission system, the vehicle can attain a larger climbing degree and acceleration
energy. Additionally, a reasonable transmission ratio can enable the motor to work in a
high-efficiency range for a long time, thereby improving the economy of the vehicle and
improving the efficiency of the energy system.

2.2.1. Motor Model

The motor is the core component of a pure unmanned electric drive chassis. During
the driving process, the motor works in the electric operation state, converting the electric
energy of the battery into mechanical energy to drive the vehicle [15]; during the braking
process, the motor works in the power generation state, converting the mechanical energy
of the vehicle into electrical energy and storing it in the battery [16]. In this paper, the
permanent magnet DC motor is used as the model, and the DC motor model is established
by combining the theoretical analysis of the voltage balance equation with the motor
efficiency test.

Armature voltage balance equation of a permanent magnet DC motor [17]:

Ud = E + Raid + La
did
dt

(1)

E = Keω (2)

Motor torque equation:

Te − TL = J
dω

dt
+ Bω (3)

Te = KTid (4)

In the formula, Ud is the motor armature voltage; E is the armature-induced electro-
motive force; Ra is the armature circuit resistance; La is the armature circuit inductance; id is
the armature circuit current; Ke is the motor electromotive force constant; ω is the motor
speed (r/min); Te is the electromagnetic torque; TL is the load torque; J is the moment of
inertia (kg/m2); B is the viscous friction coefficient; and KT is the motor torque constant.

2.2.2. Battery Model

The battery charge and discharge characteristics result in a complex process, and the
battery model should be able to reflect these characteristics. In this paper, the equivalent
circuit simulation method is used to establish the lithium iron phosphate battery model.
The equivalent circuit structure diagram is shown in Figure 3. This model equates the
battery to a physical model and then determines the relevant parameters in the model
through formula derivation and the battery charge and discharge test.

Figure 3. Structure diagram of the resistance-capacitance model of a lead acid battery.

In the model, E0 is the battery static open circuit voltage; R0 is the ohm polarization
resistance, which is mainly affected by the concentration of sulfuric acid in the electrolyte;
Rr is the concentration polarization and electrochemical polarization resistance of the
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storage battery; the RC circuit is formed by Rr; and the capacitor Cr affects the transition
process when the working condition of the battery changes.

The model parameters of the lithium iron phosphate battery are affected by factors
such as the battery state of charge, ambient temperature, battery charge and discharge
current, and number of cycles [18]. In this paper, when establishing a lithium iron phosphate
battery model, the influence of environmental temperature, battery charge–discharge
current, and the number of cycles on the model is ignored. The battery state of charge is
used as the only factor affecting the battery model parameters, and the battery model is
established.

According to the battery resistance capacitance model, the mathematical model of the
charging and discharging of a lithium iron phosphate battery can be described as follows:

E0 − IbR0 − IrRr −Ub = 0 (5)

dUcr/dt = (Ib − Ir)/Cr (6)

In the above formula, Ub is the battery terminal voltage; U0 is the static open circuit
voltage of the storage battery; R0 is the polarization internal resistance; Rr is the battery con-
centration polarization and electrochemical polarization resistance; and Cr is the equivalent
capacitance.

During charging and discharging, the battery SOC has a great influence on the battery
terminal voltage Ub and polarization internal resistance R0 [19]. Therefore, the battery
terminal voltage Ub and polarization internal resistance R0 are expressed as functions of
SOC, and their mathematical expressions are as follows:

Ub(SOC) = f (SOC) (7)

R0(SOC) = g(SOC) (8)

The concentration polarization and electrochemical polarization resistance of storage
battery Rr are quite different during charging and discharging, so the mathematical mod-
els [17,20,21] should be established during charging and discharging, respectively, as the
following formula:

Rr(SOC) =
{

Rr_charge(SOC)
Rr_discharge(SOC)

(9)

The polarization voltage recovery time τ = Cr·Rr is related to the service life of the
battery, which is considered a constant in practical applications.

SOC is one of the most important parameters used to describe the battery state. SOC
is calculated using the ratio of residual capacity to total capacity Qi of the battery at a
certain discharge rate. Generally, the calculation of SOC adopts the ampere time integration
method, which is the following formula:

SOC = SOC0 −
∫ t

0 i(t)dt
Qi

(10)

In the formula, SOC0 is the initial state of charge of the battery; i(t) is the instantaneous
discharge current; and Qi is the total capacity of the storage battery.

2.2.3. Supercapacitor Model

As a new type of energy storage element, supercapacitors have the advantages of high
specific power, high ampere–hour efficiency, large storage capacity, wide operating voltage
range, long cycle life, short charging time, large discharge power, small internal resistance,
and high reliability [22]. These advantages make up for the shortcomings of the battery
as a single energy source for electric vehicles. Therefore, the combined use of batteries
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and supercapacitors as a dual-energy source for electric vehicles has become a trend in the
development of electric vehicle energy sources [23].

In this paper, the supercapacitor model is equivalent to an ideal capacitor C in parallel
with a large resistance Rep and then in series with a small resistance Res. The equiva-
lent circuit structure diagram is shown in Figure 4. The equivalent series resistance Res
represents the charge–discharge loss resistance, representing the energy loss during the
charge–discharge process of the supercapacitor, and is related to the charge–discharge volt-
age loss. The equivalent parallel resistance Rep represents the leakage loss resistance; iC is
the current flowing through the supercapacitor; C is the ideal equivalent capacitor; i0 is the
current flowing through the ideal capacitor C; UC is the terminal voltage of supercapacitor;
and U is the voltage at both ends of ideal capacitor C.

Figure 4. Structural diagram of the supercapacitor equivalent model.

According to the equivalent circuit of the model, the current flowing through the ideal
capacitor is

i0 = iC +
U

Rep
= iC +

1
RepC

t∫
0

i0dt (11)

The terminal voltage of the supercapacitor is

UC = −ResiC + U = −ResiC +
1
C

t∫
0

i0dt (12)

Because the equivalent parallel resistance Rep is large and the resistance leakage loss is
small, the equivalent resistance can be ignored in modeling. The supercapacitor simulation
model mainly includes the supercapacitor bank internal resistance module, supercapacitor
bank SOC module, and supercapacitor bank voltage module.

2.3. Parameter Optimization of Unmanned Electric Drive Chassis with Power-Energy Coupling

The parameter optimization of unmanned electric drive chassis is a multi-objective
optimization problem. However, compared with traditional cars, the performance of energy
system components such as the battery power and supercapacitor power of unmanned
electric drive chassis affects the performance of power system components such as motors
to a large extent. Therefore, the power performance of unmanned electric drive chassis
is greatly affected by the performance of the energy system. The coupling relationship
between the power system and energy system determines the overall performance of
unmanned electric drive chassis. Therefore, combined with the requirements of relevant
national standards for electric vehicles, this paper selects an acceleration time of 0~50 km/h
as the dynamic objective function f 1(x) and selects 100 km power consumption under
Chinese urban bus conditions and EUDC conditions as the economic objective function f 2(x).
According to the coupling relationship between the composite energy source composed
of the CHD-EV1 battery-supercapacitor and the power system, the key parameters of the
power system and the energy system are selected as the optimization variables, and the
maximum speed, climbing ability, and driving range are used as constraints to optimize the
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parameters of the unmanned electric drive chassis. The optimization problem is described
as follows: 

min
x∈Ω
s.t.

F(x) = f ( f1(xi), f2(xi))
tj(x) ≥ 0 j = 1, 2, · · · , m

xL
i ≤ xi ≤ xH

i i = 1, 2, · · · , n
(13)

In the above formula, F(x) is the objective function, tj ≥ 0 is the constraint condition,
and m is the number of constraints. In this paper, m = 5, x is the optimization parameter, xL

i
and xH

i are the lower bound value and upper bound value of the i-th parameter, respectively,
and n is the number of optimization parameters.

2.4. Optimization Objective

The power system and energy system of the unmanned electric drive chassis are cou-
pled with each other, and the coordinated optimization of the two is needed to optimize the
economy and power performance. In this paper, an acceleration time f 1(xi) of 0~30 km/h
is selected as the dynamic evaluation target. Because the electric medium bus studied
in this paper frequently needs to travel in the suburbs, it is faster. Therefore, the power
consumption per hundred kilometers f 2(xi) under Chinese urban bus conditions and EUDC
conditions is selected as the economic evaluation target, and the weight coefficient change
method is used to transform the multi-objective problem. Finally, the objective function is
obtained as follows:

F(x) = w1
f1(xi)

f1tar
+ w2

f2(xi)

f2tar
(14)

In the above formula, w1 and w2 are the weight coefficients of the dynamic target
and the economic target, respectively. f 1tar and f 2tar are the standard optimization target
values of the vehicle acceleration time of 0~30 km/h and the power consumption of 100 km,
respectively. By dividing the obtained f 1(xi) and f 2(xi) by the defined target values f 1tar and
f 2tar, the target function units and quantity levels are standardized. The objective values
of the optimization criteria set in this paper are f 1tar = 12 s and f 2tar = 35 kWh/100 km,
respectively.

2.5. Optimization Variables

Due to a large number of parameters of the power system and energy system com-
ponents of the unmanned electric drive chassis, it is difficult to optimize all parameters.
Therefore, it is necessary to reasonably select the key parameters according to the design
requirements of optimization [24]. In this paper, by analyzing the influence of various
parameters on the performance of unmanned electric drive chassis, the motor power in
the power system, the transmission ratio of each gear of the transmission, the transmission
ratio of the main reducer, the battery capacity in the energy system and the storage energy
of the supercapacitor are selected as the optimization variables, and the upper and lower
limits of each variable are set. The specific values are shown in Table 2.

Table 2. Optimization variables and upper/lower limits.

Variable Name Optimization Parameters Lower Limit Upper Limit

x1 Motor power/kW 30 60
x2 First-gear transmission ratio 2.8 5.7
x3 Second-gear transmission ratio 1.5 2.6
x4 Third-gear transmission ratio 0.9 1.1
x5 Final drive ratio 3.5 7.5
x6 Battery capacity 100 Ah 200 Ah
x7 Supercapacitor energy storage 100 Wh 300 Wh
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2.6. Constraint Condition

The constraints of the unmanned electric drive chassis parameter optimization prob-
lem [25] mainly include the requirements for speed following errors under operating
conditions, maximum speed, maximum gradient, and driving range. The constraints are as
follows:

• The difference between the simulated speed at any moment and the speed required by
the working condition shall be ≤2 km/h;

• Maximum speed requirement: vmax ≥ 90 km/h;
• Driving range: ≥100 km;
• Variation range of supercapacitor’s SOC: 20~90%;
• Variation range of battery’s SOC: 30~80%.

3. Process Design of Model-in-the-Loop Optimization

In order to improve the optimization efficiency, the model-in-the-loop optimization
method is used to design the parameter optimization process of unmanned electric drive
chassis, as shown in Figure 5. Among them, the KIGA optimization algorithm is imple-
mented in MATLAB, the vehicle model is established in CRUISE, and the vehicle model is
embedded into the whole optimization algorithm cycle. At the initial time of optimization,
the vehicle model is simulated under the initial value, from which a set of objective function
values can be obtained. Then, the obtained objective function is fed back to the optimization
algorithm, and a set of new values are generated by the optimization algorithm. These data
are used as optimization variables to assign and simulate the vehicle model again. The
obtained objective function value is compared with the objective function value obtained
under the initial conditions to select the winner, and then the process is iterated until the
termination condition is reached. During the whole simulation process, all of the design
variables change within their boundary ranges and constraints.

Figure 5. Model-in-the-loop optimization process.

4. An Improved Isolated Niche Genetic Algorithm Based on the KOHONEN
Network (KIGA)
4.1. General Overview of KIGA

The genetic algorithm is usually prone to falling into the local optimal solution when
solving multi-peak complex function optimization problems in engineering. Niche tech-
nology can enhance the global search ability of the genetic algorithm by maintaining the
diversity of solution groups [26]. Isolation in nature acts to prevent hybridization between
isolated small populations, cutting off gene exchange so that small populations with the
ability to differentiate can evolve in different directions, with the differences between each
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population gradually increasing. The same species gradually differentiate into different
species, resulting in the ever-changing species found in nature [27,28]. The IGA proposed in
reference [7] draws on the role of natural isolation and generates isolated niches by evenly
distributing the initial population number. However, the algorithm may not be able to
accurately divide the individuals with the same traits in the initial population into the same
niche, and the evolution process may slow down the convergence speed. Therefore, based
on IGA as a reference, combined with the requirements of multi-objective optimization
problems, this paper proposes an improved isolated niche genetic algorithm (KIGA) based
on the KOHONEN network. The main improvements are as follows:

(a) The KOHONEN network clustering algorithm is used to divide the initial subpopula-
tion to achieve a more reasonable division of the initial niche;

(b) Two external archives are established to store the individual with the highest fitness
and the Pareto solution set found at the initial stage, respectively, to guide the direction
of evolution of the algorithm;

(c) The weight of the subobjective function is determined by using the combination
method based on the least squares method, and the Pareto solution set is optimized.

The KIGA proposed in this paper divides the initial population of the genetic algorithm
into several subpopulations through the KOHONEN network. Each subpopulation evolves
independently, and the average adaptation level of each subpopulation is used to determine
the evolution speed and scale of the subpopulation. In the process of population evolution,
when the inferior population is eliminated, the individual with the highest fitness is
used as the center of the search space to establish a new solution. Compared with the
ordinary genetic algorithm, KIGA adds the following rules [12]: (a) Subpopulation size
limit: The subpopulation size is positively correlated with the average fitness value of the
subpopulation, and the larger the average fitness value of the subpopulation, the larger the
scale, and vice versa. Therefore, we can limit the maximum allowable size Smax of some
subpopulations to ensure the diversity of species in the population and limit the minimum
survival size Smin of some subpopulations to avoid these subpopulations being prematurely
eliminated. (b) Inactivation of inferior species: In order to speed up the algorithm, the
subpopulation with the worst performance in the specified algebra during the evolution
process becomes extinct, and the subpopulation is replaced by a new solution in the search
space. (c) Homogeneous mutual exclusion: By deleting one of the two similar or identical
subpopulations that appear during evolution and replacing it with a new solution in the
search space. (d) Weak protection: New subpopulations generally cannot compete with
evolved subpopulations in the early stage of evolution, so new populations need to be
protected. (e) New and old replacement: When the subpopulation is close to the local
optimal solution, the subpopulation is deleted with a certain probability and replaced
with a new solution in the search space. In this paper, the probability of new and old
replacements is Pn = 0.7. (f) Preferred species retention: In order to ensure that the best
performance of the subpopulation can fully evolve, the new and old replacements do not
act on the best performance of the subpopulation. The operating parameters of KIGA are
shown in Table 3.

Table 3. Operating parameters of KIGA.

Parameter Numeric Value

Number of variables 7
Population size 500

Iterations to terminate evolution 600
Crossover probability/Pc 0.4
Mutation probability/Pm 0.01

Maximum allowable size of subpopulation/Smax 80
Minimum allowable size of subpopulation/Smin 30
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KIGA uses the Hamming distance measure [29] to calculate the shared function sh(xi, xj):

sh(xi, xj) =


1− d1(xi ,xj)

σ1
; d1(xi, xj) < σ1 & d2(xi, xj) ≥ σ2

1− d2(xi ,xj)
σ2

; d1(xi, xj) ≥ σ1 & d2(xi, xj) < σ2

1− d1(xi ,xj)d2(xi ,xj)
σ1σ2

; d1(xi, xj) < σ1 & d2(xi, xj) < σ2

0, Others

(15)

where d1(xi, xj) is the Hamming distance of any two individuals xi and xj, A is the fitness
distance, and niche radii B and C represent the maximum distance of genotype individuals
and phenotype individuals, respectively.

After determining the shared function, the individual fitness function can be expressed as

f ′ (xi) = f (xi)/
M

∑
j=1

sh(xi, xj) (16)

The average fitness of the subpopulation is

f a
k (t) =

nk(t)

∑
i=1

fki(t)/nk(t) (17)

In the above formula, f a
k (t) is the average fitness of the k-th subpopulation of the t

generation; fki(t) is the fitness value of the i-th individual in the k-th subpopulation of the t
generation; and nk(t) is the size of the kth subpopulation of t generation.

The scale nk(t + 1) of the k-th subpopulation of t + 1 generation is

nk(t + 1) = N · f a
k (t)/

K

∑
i=1

f a
i (t) (18)

In the above formula, N is the number of individuals in the initial population.

4.2. Establishment of the Initial KIGA Niche Subpopulation Based on KOHONEN
Network Clustering

How best to reasonably divide the initial niche according to individual similarity
in the process of KIGA initial subpopulation generation has an important influence on
the convergence speed and final result of the algorithm. There are many local extreme
points in the process of unmanned electric drive chassis parameter optimization. Only by
accurately dividing the initial niche population can we increase the global search ability
and avoid falling into the local optimum. In this paper, the KOHONEN network clustering
algorithm is used to cluster the initial population so that the individuals with a high degree
of similarity are divided into the same initial niche subpopulation, thus speeding up the
calculation speed and improving the optimization accuracy.

The KOHONEN network is a kind of unsupervised, self-organizing, and self-learning
network. The whole network is composed of a fully connected neuron array. When one
of the neurons receives external stimuli, that is, input, neurons in different regions will
produce different response regions and different response characteristics according to their
different divisions of labor and then cluster the input according to these characteristics [30].
As shown in Figure 6, the KOHONEN network topology consists of two layers of neurons:
input and output. Each neuron in the input layer is connected to each neuron in the output
layer through variable weights, and the output neurons form a two-dimensional planar
array.
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Figure 6. Two-dimensional array model of the KOHONEN network.

As shown in Figure 7, the KOHONEN network can simultaneously learn the distri-
bution characteristics of the input vector of the training data and the topological structure
of the input vector data. The competition mechanism is as follows: the neurons in the
winning neuron C and its surrounding neighborhood Nc are excited to varying degrees,
and the degree of excitement decreases with the increase in distance, while the neurons
outside Nc are inhibited. The structure of the KOHONEN network will change after each
execution due to the different neurons excited each time, but no matter which neurons are
activated, the final clustering result will not change.

Figure 7. The structure of KOHONEN.

Combined with the parameter optimization model of unmanned electric drive chassis,
the KOHONEN network design in this paper mainly focuses on the following aspects:

4.2.1. Selection of Sample Feature Vectors

The key to the clustering process is the selection of sample feature vectors, which deter-
mine the quality of the clustering results. The selected sample feature vectors should be able
to comprehensively reflect the essential characteristics of the samples. In similar samples,
the feature vectors should be selected from points closer to each other in the corresponding
multi-dimensional space, and in samples with large differences, the feature vectors should
be selected from points farther away in the multi-dimensional space. Before clustering the
initial population of the genetic algorithm using the KOHONEN network, sample feature
vectors should be extracted. Therefore, in this paper, the sample feature vector is the vector
composed of seven optimization variables reflecting the performance of the unmanned
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electric drive chassis that each individual in the initial population has. We select the initial
population of the algorithm as the input sample set X = (X1,X2,. . .,Xi,. . . Xm)T, 1 ≤ i ≤ m.
For each individual in the sample, we select the feature vector Xi =

(
x1

i , x2
i , · · · , xk

i

)
, where

k is the dimension of the feature vector and 1 ≤ k ≤ 7. Subsequently, in order to improve
the training efficiency, it is necessary to normalize the data and convert the output function
value into a value between 0 and 1.

4.2.2. Design of the Output Layer

The number of nodes in the output layer is related to the characteristics of the training
set samples. The number of nodes should be close to the number of pattern categories. In
the case where there is no exact information on the number of categories, some more nodes
should be set appropriately to facilitate more accurate mapping of the topology of the
sample. According to the initial population size of the genetic algorithm and the dimension
characteristics of the sample feature vector, the number of neurons in the input layer is
selected as 500, and the neurons in the output layer are set as a 3 × 3 order node matrix.

4.2.3. Design of the Learning Rate

In the initial stage of network training, in order to speed up the training speed,
the learning rate should select a larger value; after that, in order to quickly capture the
approximate structure of the input vector, the learning rate should be reduced at a faster
rate; then, the learning rate slowly drops to 0 at a smaller value. By setting the variable
learning rate above, the network weights can be finely adjusted to make them more in line
with the sample distribution structure of the input space. In this paper, the learning rate is

h(t) = C(1− t
tm

) (19)

In the above formula, h(t) is the learning rate, C is the initial learning rate, t is the
training times, and tm is the pre-selected maximum training times.

4.3. Establishment of External Archives

The niche technology used in this paper assumes that the environment in which the
species is located is generally conducive to the survival of organisms. All populations
with strong viability can reproduce, and the total amount of resources in the entire envi-
ronment is fixed. Once a population is extinct, a population with strong adaptability will
soon occupy the resources originally belonging to the extinct population. Therefore, this
paper establishes an external file I to preserve the individual with the highest fitness and
establishes a new solution with the individual as the search space center to replace the
extinct population so as to better guide the direction of evolution.

The key to solving multi-objective problems is to search for as many Pareto optimal
solutions as possible to provide a complete search space for the final decision. For this
reason, an external file II is established to save the Pareto optimal solutions searched in each
niche [31]. In this process, it is necessary to compare the individuals in the t − 1 generation
external file II with the individuals in the various groups in the t generation after the Pareto
comparison and replace the winning Pareto optimal set with the external file II of the t − 1
generation, so as to obtain the Pareto solution set that meets the conditions.

4.4. Pareto Selection Based on Least Squares Combination Weighting

After obtaining the Pareto solution set, it is necessary to search for the optimal solution
of the unmanned electric drive chassis parameter combination that meets the actual perfor-
mance requirements. Because there are many solutions in the solution set, it is difficult to
take into account the vehicle economy and power performance goals via simple weighting
alone. Therefore, this paper first uses the analytic hierarchy process to give the subjective
weight coefficient, and then, according to the difference in the evaluation index in different
evaluated objects, the coefficient of variation method is used to obtain the weight coefficient
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reflecting the objective characteristics of the index. Finally, based on the least squares
method, the subjective and objective weight coefficients are obtained [32], and the obtained
Pareto solution set is selected. The specific steps are as follows:

1. Using the AHP (analytic hierarchy process) to determine the subjective weight of each
index;

2. The determination of objective weight by the coefficient of variation method;
3. Combining the weight of each index;
4. Standardizing the scheme set with n schemes and m evaluation indicators to obtain

the decision matrix. Then, the evaluation value of the i-th evaluation object is

fi =
m

∑
i=1

wj · zij, (i = 1, 2, · · · , n) (20)

The optimal combination model obtained by the least squares method is as follows:
min

n
∑

i=1

m
∑

j=1

{
[(wj − uj) · zij]

2 + [(wj − vj) · zij]
2
}

,

s.t.
m
∑

j=1
wj = 1, wj ≥ 0, (j = 1, 2, · · · , m)

(21)

5. The objective function in this model is taken as a Lagrangian function, and then the
partial derivatives of wj and λ (λ is a Lagrangian operator) are calculated, respectively,
to calculate the comprehensive evaluation value of each scheme. The best scheme
is the one with the highest comprehensive evaluation value. The comprehensive
evaluation value is

W = A−1 · [B +
1− eT A−1B

eT A−1e
· e] (22)

In the above formula, A = diag
[

n
∑

i=1
Z2

i1,
n
∑

i=1
Z2

i2, L,
n
∑

i=1
Z2

im

]
λ, e = [1, 1, l, 1]T , B =

[
n
∑

i=1

1
2 (u1 + v1)z2

i1,
n
∑

i=1

1
2 (u2 + v2)z2

i2, · · · ,
n
∑

i=1

1
2 (um + vm)z2

im]
T

The Pareto solution set is taken

as the solution set with 500 schemes and 2 evaluation indexes. After standardization, the
combined weight is W = (0.412, 0.588)T.

4.5. Algorithm Flow

The KIGA algorithm process is as follows:
Step 1: Code. The optimized parameters are coded with the real number coding

method.
Step 2: The genetic algorithm generates the initial population.
G = (X1, X2, · · · , Xi, · · · , Xm)

T , 1 ≤ i ≤ m, where m is the number of individuals in
the initial population.

Step 3: KOHONEN network initialization.
The random number is used to assign a small initial weight between the input layer

and the output layer, and the set of j adjacent neurons of the output layer is selected as Sj:

Sj =
{

Sj(0), Sj(1), Sj(2), · · · , Sj(t), · · ·
}

where Sj represents the set of adjacent neurons at time t;

Sj(t) = Sj(t− 1)− δ(t)

where δ(t) is the reduction given by the initial weight assignment at time t.
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Step 4: KOHONEN network input vector. The initial population generated by heredity
in Step 2 is taken as the input vector of the KOHONEN network.

Step 5: The distance between the weight vector of the mapping layer and the input
vector is calculated. The Euclidean distance is used to calculate the distance between the
j-th neuron in the mapping layer, and the neuron in the input layer, and the minimum
neuron j* is obtained; that is, a certain unit k is determined:

dk = min
j
(dj), ∀j (23)

Step 6: Weight learning. After obtaining the neuron j* with the minimum distance,
the following formula is used to modify the weight of the output neuron and its adjacent
neurons:

∆wij = wij(t + 1)− wij(t) = η(t) · (xi(t)− wi(t)), η(t) =
1
t
∈ [0, 1] (24)

Step 7: Calculation output.

ok = f (min
j
||X−Wj||) , f (∗) =

{
1,
0,

j = j∗

j 6= j∗
(25)

Step 8: Establish the subpopulation of the final initial niche. According to the re-
quirements of algorithm accuracy and maximum iteration times, we set the termination
condition of KOHONEN network learning in advance. If the calculation result reaches the
termination condition, the algorithm will be terminated; otherwise, we return to Step 4
for re-iteration. Finally, individuals with similar characters are divided into several initial
subpopulations, namely initial niches:{

G1, G2, · · · , Gp, · · · , Gq
}
∈ G (26)

Step 9: Calculating fitness values: we use CRUISE v2014 software to calculate the
objective function value of all individuals in each subpopulation, convert it into fitness
value, and save the individual with the highest fitness value in the external file I.

Step 10: We determine the protection of the KIGA algorithm, the survival of inferior
subpopulations, the mutual exclusion of similar subpopulations, and the replacement rules
of new and old subpopulations, and ensure that the subpopulations meet the size limit
requirements during the evolution process.

Step 11: Recalculating the fitness value: we calculate the fitness value of the newly
generated subpopulation and apply the juvenile protection measures.

Step 12: Subpopulation evolution: The size of the subpopulation changes with its
average performance level in the population. According to the size of the subpopulation
determined by Formula (6), we select the individual with the best fitness in the niche, take
the individual as the center, and take the distance between the center of the subpopulation
and the individual as the radius to randomly generate several new individuals as the parent
individuals, and use the new solution generated by crossing and variation to generate the
next generation of solutions.

Step 13: Convergence judgment. If the convergence condition is met or the specified
number of iterations has been evolved, the algorithm will be terminated; otherwise, we
return to Step 9.

Step 14: We save the Pareto solution set that meets the conditions to external file II.
Step 15: We extract the saved Pareto solution set from external file II, and according to

the combination weight obtained by using the combination weighting method, assign the
combination weight value to select the best Pareto.
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5. Optimization Results and Analysis

After experimental comparison, the number of iterations of the KOHONEN network in
the KIGA algorithm is finally selected as 1000, and the number of categories is 9. Figure 8a
is the distance distribution map between the competition layer neurons and their adjacent
neurons of the KIGA initial population after KOHONEN network clustering. The color
depth of the filling area between adjacent neurons indicates the distance between neurons.
From yellow to black, the deeper the color, the farther the distance. By analyzing the
distance between neurons in Figure 8, it can be seen that the distance between neurons
4 and 5 is the farthest, followed by the distance between neurons 2 and 4. Similarly, the
similarity between the remaining neurons, that is, the similarity of the input sample data,
can be judged. Figure 8b is the statistical map of winning neurons. The order of neuron
numbering is from left to right, from bottom to top, and the number of neurons gradually
increases. From this, we can know the number of classifications of the original population
data samples and the neurons that are excited to become the cluster centers. The blue
hexagon in the figure represents the neuron that wins the competition, and the number
indicates the number of times the input neuron is excited by the corresponding competition
layer neuron. It can be seen from Figure 8 that after KOHONEN network clustering, the
initial population of KIGA is divided into nine subpopulations, that is, nine initial niche
populations, according to the similarity between individuals.

Figure 8. Clustering graph of neurons in the KOHONEN network. (a) Distance between neighboring
neurons. (b) Statistics chart of winning neuron.

In order to verify the results of the combination weighting, the subjective weight, the
objective weight, and the combination weight based on the least squares method are given
to the objective function for Pareto optimization. The normalized comparison of the target
values of the optimal solution under the three weights is shown in Figure 9. It can be seen
from Figure 9 that after standardization, the dynamic target value of the optimal solution
obtained by the combination weighting method is the smallest, and the economic target
value is between the subjective weighting and the objective weighting, but the dynamic and
economic comprehensive target values obtained by the combination weighting method are
the smallest, which proves that the combination weighting method has better compatibility
with each target.

Under the premise of the same control parameters and test methods, the parameters
of unmanned electric drive chassis are optimized by GA, IGA, and KIGA, respectively, and
the changes in the objective function values with the number of iterations in the evolution
process of the three algorithms are compared. The results are shown in Figure 10. It can
be seen from the figure that the convergence speed of GA is faster in the early stage of
evolution but slower in the later stage. The main reason is that the population diversity is
low, while IGA and KIGA show a stable evolution speed. Even when the search is close to
the global optimal solution, it can maintain a high population diversity, which provides a
potential driving force for further evolution. GA needs to run 570 generations to search
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for the minimum value of 0.9016, IGA needs 317 generations to search for the minimum
value of 0.8908, and KIGA only needs 241 generations to search for the minimum value of
0.8901. It can be seen that IGA and KIGA are significantly better than GA in terms of global
convergence reliability and convergence speed, and KIGA has the fastest convergence
speed. By comparing the objective function values obtained after optimization, it can
be seen that the objective function value searched by the GA algorithm is greater than
that of IGA and KIGA, indicating that the GA algorithm may fall into the local optimal
solution during optimization. Secondly, by comparing IGA and KIGA, it can be seen that
the convergence speed of KIGA is 67 generations faster than that of IGA; in the initial stage
of evolution, the objective function value of KIGA decreases faster than that of IGA, that is,
the convergence speed is faster. The main reason is that the initial subpopulation generated
by KIGA using the KOHONEN network clustering algorithm can divide the initial niche
population according to the similarity of traits in the initial population at the initial stage of
evolution, which increases the similarity of individuals in the niche. This is conducive to
isolation in the subsequent evolution process, thus increasing the population diversity and
accelerating the evolution speed. The optimization result of KIGA is 0.0007 smaller than
that of IGA, which is approximately 0.08% higher than that of IGA. The main reason is
that KIGA in this paper adds an external archive so that excellent individuals can be saved
and guided in the process of searching for an optimal solution. The direction of evolution
makes evolution more effective and the search of the optimization objective function more
accurate.

Figure 9. Optimal target-normalized value in different weights. A: Dynamics target. B: Economic
objectives. C: Power performance + economic objectives.

Figure 10. Dynamic evolution curve of objective function value for 3 algorithms.
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Figure 11 is the speed-following curve of the electric chassis under the CBC driving
condition. From the diagram, it can be seen that the actual speed can follow the expected
speed well, whether it is in the uniform driving stage or the acceleration stage. It is
proved that the dynamic performance of the unmanned electric drive chassis optimized
by KIGA can meet the requirements of fast response conditions. Figure 12 shows the
comparison of the energy consumption of unmanned electric drive chassis before and
after the optimization of GA, IGA, and KIGA algorithms under CBC conditions. From the
figure, it can be seen that the energy consumption of the whole vehicle is reduced after the
optimization of the three algorithms, among which the energy consumption reduction after
KIGA optimization is the largest, which proves that the unmanned electric drive chassis
optimized by KIGA has better economy.

Figure 11. Vehicle following curve conditions in China’s urban bus cycle.

Figure 12. Unmanned electric drive chassis energy consumption compared using three algorithms
in CBC.

Table 4 shows the changes in the optimization variables and the dynamic and economic
indexes of the electric chassis before and after optimization with GA, IGA, and KIGA. It
can be seen from Table 4 that compared with GA and IGA optimization, KIGA can search
for a better set of optimization variable parameters and achieve the best optimization
effect, whether it is the dynamic or economic single-objective optimization or the multi-
objective optimization of both. After KIGA optimization, the motor power, transmission
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ratio (except for the second gear), main reducer transmission ratio, and battery capacity
of the unmanned electric drive chassis decreased to a certain extent, while the dynamic
and economic indexes of the vehicle improved, except for the maximum climbing degree,
which proves that the optimized vehicle parameters were more reasonably configured and
the comprehensive performance of the vehicle was improved. However, the capacity of the
supercapacitor was increased to a certain extent, mainly because the storage energy of the
supercapacitor improved after the use of the composite energy source, thus improving the
motion characteristics and energy output characteristics of the unmanned electric drive
chassis under the conditions of climbing and acceleration, and the performance of the
whole vehicle was further improved.

Table 4. Unmanned electric drive chassis performance comparison before and after parameter
optimization.

Optimization Project

Before and after Optimization

Before
Optimization

GA IGA KIGA

Optimization
Value

Rate of
Change

Optimization
Value

Rate of
Change

Optimization
Value

Rate of
Change

Optimization
variables

First-gear transmission ratio 5.568 5.384 −3.30% 5.352 −3.88% 5.352 −3.88%
Second-gear transmission ratio 2.605 2.714 4.18% 2.652 1.80% 2.643 1.46%
Third-gear transmission ratio 1 1 0.00% 0.984 −1.60% 0.984 −1.60%

Final drive ratio 6.43 6.32 −1.71% 6.24 −2.95% 6.24 −2.95%
Battery capacity/Ah 132 126 −4.55% 120 −9.09% 120 −9.09%

Supercapacitor energy
storage/Wh 162 178 9.88% 186 14.81% 189 16.67%

Power

Maximum speed
(km/h) 91 92.2 1.32% 92.5 1.65% 92.5 1.65%

Maximum gradient/% 36.22 35.37 −2.35% 35.14 −2.98% 35.14 −2.98%
0~50 km/h

Acceleration time/s 11.5 11.12 −3.30% 11.04 −4.0% 11.04 −4.0%

Economy
100 km power consumption

(kWh/100 km) 34.25 30.94 −9.66% 30.46 −11.07% 30.42 −11.18%

Driving range/km 106.3 109.7 3.20% 113.9 7.15% 114.7 7.90%

Comprehensive
performance

Acceleration time + 100 km
power consumption 0.970 0.902 −7.07% 0.891 −8.18% 0.890 −8.26%

6. Conclusions

In this study, by analyzing the coupling relationship between the power system and
the energy system of the electric vehicle, CRUISE was used to establish the electric vehicle
model, including the power system and the energy system. In view of the shortcomings of
the traditional genetic algorithm, which is prone to falling into the local optimal solution, an
improved isolated niche genetic algorithm based on the KOHONEN network is proposed.
The algorithm can use the KOHONEN network to classify the initial population of the
genetic algorithm, divide the individuals with similar traits into the corresponding niches,
and then combine the various operations of the isolated niche genetic algorithm to optimize
the parameters of the unmanned electric drive chassis.

The optimization results show that the KIGA algorithm proposed in this paper can
effectively improve the power and economy of the vehicle under the constraint conditions.
Compared with GA and IGA, KIGA has a faster convergence speed and better optimization
objectives. Therefore, the KIGA algorithm proposed in this paper can achieve better results
for the parameter optimization of unmanned electric drive chassis and provide an effective
method for the performance optimization of an unmanned electric drive chassis. The
operating parameters of KIGA in this paper were selected based on the general value
range of the algorithm. However, for the specific electric vehicle optimization problem,
the algorithm should also have more suitable operating parameters. In future research,
the selection of the optimal operating parameters of the algorithm will be studied through
further simulation and experiments, combined with the characteristics of electric vehicle
optimization, so as to further improve the optimization effect of electric vehicle parameters.
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