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Abstract: Brushless DC machines have demonstrated significant advantages in electrical engineering
by eliminating commutators and brushes. Every year, these machines increase their presence in
transportation applications. In this sense, early fault identification in these systems, specifically in the
electronic speed controllers, is relevant for correct device operation. In this context, the techniques
reported in the literature for fault identification based on the Hilbert–Huang transform have shown
efficiency in electrical systems. This manuscript proposes a novel technique for early fault identi-
fication in electronic speed controllers based on the Hilbert–Huang transform algorithm. Initially,
currents from the device are captured with non-invasive sensors in a time window during motor
operation. Subsequently, the signals are processed to obtain pertinent information about amplitudes
and frequencies using the Hilbert–Huang transform, focusing on fundamental components. Then,
estimated parameters are evaluated by computing the error between signals. The existing electrical
norms of a balanced system are used to identify a healthy or damaged driver. Through amplitude and
frequency error analysis between three-phase signals, early faults caused by system imbalances such
as current increasing, torque reduction, and speed reduction are detected. The proposed technique
is implemented through data acquisition devices at different voltage conditions and then physical
signals are evaluated offline through several simulations in the Matlab environment. The method’s
robustness against signal variations is highlighted, as each intrinsic mode function serves as a compo-
nent representation of the signal and instantaneous frequency computation provides resilience against
these variations. Two study cases are conducted in different conditions to validate this technique.
The experimental results demonstrate the effectiveness of the proposed method in identifying early
faults in brushless DC motor drivers. This study provides data from each power line within the
electronic speed controller to detect early faults and extend different approaches, contributing to
addressing early failures in speed controllers while expanding beyond the conventional focus on
motor failure analysis.

Keywords: brushless DC motor; Hilbert–Huang transform; fault detection; signal processing; electronic
speed controller; intrinsic mode function; empirical mode decomposition

1. Introduction

Within modern power systems, fault identification and classification is an actual
challenge where different tools such as the Hilbert–Huang transform can be used to develop
techniques to find failures in complex AC systems [1]. These systems often integrate
distributed networks, causing problems such as high impedance faults, variations in current,
and others where the Hilbert–Huang transform’s main features for analyzing nonlinear and
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nonstationary data integrated with learning techniques entail developing better strategies
to detect these issues [2]. This method has become popular for fault diagnosis, extending
its use for mechanical systems concerning nonlinear dynamics [3]. Within this context, one
strategy to identify faults in brushless DC motors includes measuring three-phase current
signals and normalizing them using statistical tools such as the mean, variance, and energy-
based index, which can be calculated to compute variations and make fault diagnoses. It
can be implemented online due to its simplicity [4]. In the context of the Hilbert–Huang
transform applications, vibration analysis for excited nonlinear vibrating systems can be
addressed with this useful method for parameter identification [5]. Online methods for fault
diagnosis and detection contribute to the efficient operation of electric motors by monitoring
the operating condition of the electrical system. In [6], a method utilizing this transform
is proposed for diagnosing faults in the stator structure under different load and speed
conditions. Furthermore, ref. [7] suggests a variation using the Hilbert–Huang transform
in combination with a convolutional neural network for autonomous fault detection in
synchronous motors. Huang et al. [8] introduced the empirical mode decomposition (EMD)
technique and its application in nonlinear and nonstationary data. The EMD is a method
used to decompose a time series into components called intrinsic mode functions (IMF)
that capture the nonlinear and nonstationary structures present in data. This technique
is integrated with the Hilbert Spectrum to provide a more detailed representation of
information in time series data, which can be valuable in various applications, including
signal processing and environmental data analysis.

Due to the increased demand in production worldwide, electrical motors are subjected
to complex operating conditions like overload, overheating, and other conditions, resulting
in stator faults. A better way to understand different failures on brushless DC motor
systems is to categorize them into critical areas, such as drivers, batteries, data-driven
methods, and motor faults. This division allows information about their effects on systems
like electric vehicles [9,10]. An innovative fault diagnosis system is presented in [11] to
recognize different faults in brushless DC motors. The system employs a feature ranking
and differential evolution approach for feature selection. Initial feature extraction involves
the Hilbert–Huang transform applied to four Hall sensor signals. Ref. [12] presents a
novel approach for early fault diagnosis in brushless DC motors. The method uses a fitness
function in differential evolution to optimize feature selection based on the Hilbert–Huang
transform from Hall sensors. Most brushless motor drives can present commutation
errors due to the pulse width modulation (PWM) switching delay, which causes low-
frequency current oscillations and power losses. New commutation strategies, like carrier-
synchronized PWM, are being developed. This strategy can eliminate errors by switching
the delay at high-speed motor rotation [13]. The increasing use of brushless DC motors has
led to studies to improve their operational efficiency, focusing on enhancements in control
signals. Most control devices introduce unwanted harmonics into the currents, decreasing
generated machine torque. Additionally, rotor position detection remains a topic of study,
with the incorporation of methods for detecting faults in motor position sensors, which is
crucial to ensure optimal system operation [14–17].

DC motor replacement in automotive cooling systems positions brushless motors as
an option to enhance the efficiency of the electrical system. The high efficiency of these
machines allows for better utilization of the energy provided by the battery. Ref. [18]
proposes a theoretical guide for designing and manufacturing automotive cooling fans
based on brushless DC motors. Challenges related to fault detection and diagnosis in
synchronous motor drivers have taken greater significance due to the increasing demand
for these devices and regulatory requirements for user safety. Ref. [19] provides a detailed
review of recent methods for fault analysis in drivers for this type of motor. Different
techniques have been developed for parameter estimation in signals containing multiple
harmonics. Algebraic estimation approaches offer the advantage of not relying on initial
conditions. This method can be applied to different signals and be implemented in real-
time. Furthermore, these techniques can be employed to analyze undesirable harmonics
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in electrical systems, aiding in diagnosing potential failures [20]. Moreover, artificial
intelligence can improve these methods for high precision and adaptability under a neural
networks approach [21]. The experimental platform used in this manuscript is described
in [22]. Some approaches for fault detection are based on the fast Fourier transform
(FFT) and wavelet transform to detect electrical and mechanical failures by analyzing the
frequency spectrum through vibrations generated by induction motors [23,24]. In addition,
these methods based on different tools for signal analysis are being integrated with artificial
intelligence (AI) [25,26]. In the same way, electric machine drive systems have similar
structures where fault diagnosis is highly required. Failures such as open-circuit faults
are presented in any motor driver device where its detection plays an important role in
keeping the correct motor operation [27].

When electrical motors are powered by electronic controllers and are used in transport
applications, fault diagnosis in these devices is relevant for increasing safe operation. The
proposed method presented in this research manuscript is based on current signals analysis.
The first step involves obtaining electrical currents from the electronic speed controller
(ESC) without knowing the previous device state. Then, the Hilbert–Huang transform
is employed to estimate amplitudes and frequency parameters. The main advantage of
using this algorithm is the adaptability over signal variations since the empirical mode
decomposition allows for identifying each intrinsic mode function; instantaneous frequency
enables the detection of any frequency change along the time in the signal. These changes
are commonly presented in motor drivers since speed manipulation in the device results in
amplitude and frequency changes. The next step is to calculate the percentage error between
each signal parameter. According to international electrical standards, the imbalance
for mid-tension and low-tension systems should be below 10 percent [28]. The error
between signals is computed with amplitudes and frequencies from signals’ fundamental
components. If the error exceeds the allowed percentage, early faults can be identified.
Instantaneous frequency is employed to obtain data about the speed changes over time,
meaning that signals can be obtained in any time window. This paper is organized as
follows: Section 2 provides a detailed method description and a brief insight into the
Hilbert–Huang transform algorithm employed to develop this technique. A simulated case
is conducted to demonstrate the effectiveness of the proposed method. Section 3 provides
a comprehensive overview of the experimental platform and the devices used in this study.
Moreover, a detailed description of how to implement this methodology in any brushless
DC motor speed control device is given. In Section 4 the obtained results are presented .
This analysis aims to identify any deviations or abnormalities in the power lines that may
impact the motor’s operational conditions through amplitude and frequency estimation
using the Hilbert–Huang transform. Through extensive experimental tests in different
operation conditions, parameters can be compared to establish the system where faults
are present. Lastly, the conclusions are addressed in Section 5. This approach proves its
simplicity and potential for extension to various electrical fault diagnoses. This innovative
approach can detect early faults in electronic speed controllers used in brushless DC motors.

2. Early Fault Detection in Motors’ Electrical Systems Based on the Hilbert–Huang Transform

In the context of motor drivers, switch devices commonly present faults due to high-
frequency operation, power stress, and other operation conditions. Open-circuit faults
commonly occur for gate signal failure or wire disconnecting. The consequence of this fault
is that the drive system loses balance and the motor’s rotor is subjected to an imbalanced
force, resulting in bad behavior. Short-circuit faults often result from high voltage, overheat-
ing, or errors in gate signals; the power consumption increases while the complete system
is damaged. In these situations, protection circuits in the device suffer central damage,
often needing to be replaced [10]. In this sense, early fault identification techniques are
crucial in reducing these issues.

The challenges for solving these problems in motor drivers entail developing different
approaches with various signal processing tools. Some approaches reported in the litera-
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ture for detecting faults in electric motor systems use the Hilbert–Huang transform, the
FFT, wavelet analysis, IA, and others. Commonly, vibration data are employed to detect
mechanical faults [23], while electrical signals are analyzed to estimate specific parameters
and detect faults in the motor and the driver [24–27]. In Figure 1, a comparison between
different approaches for electrical fault identification is depicted.

Electrical Fault
Detection based on

HHT

Approach

•It is based on adaptive
decomposition and
instantaneous spectral
analysis.

Fault Detection

•It is sensitive to signal
variations present in
power converters.

Instantaneous
Frequency

•Detailed analysis, crucial
for nonlinear and non-
stationary signals.

Noise Sensivity

•High, with a robust
ability to handle noise
and isolate essential
signal characteristics.

Automation

•Moderate, due IMFs
interpretation.

Limitations

•Moderate, although
detailed analysis may
require more time and
specialized resources.

Electrical Fault
Detection based on

Fourier Transform & 
AI

•It combines spectral
analysis with AI to
identify patterns
associated with failures.

•It provides extensive
fault detection due to the
learning and adaptation
capacity of Neural
Networks.

•AI improves frequency
interpretation, but may
be limited against rapid
signal variations.

•Machine learning
techniques can filter out
noise and improve the
underlying signals
detection.

•High, with advanced data
processing and the ability
to learn from new data.

•High, due to the need for
advanced computational
resources and algorithm
development.

Electrical Fault
Detection based on
FFT and Wavelet 

Analysis

•It is based on traditional
spectral analysis to
identify frequency
anomalies associated
with faults.

•Commonly employed for
detecting stationary and
common faults in
electrical motors.

•It is limited to signals
with stationary frequency
not applicable in power
converters.

•Moderate, may require
additional filtering stages
to handle noise
effectively.

•Minor, since decisions
about data interpretation
often require human
intervention.

•Moderate, with a more
simplified and
established approach that
can be more accessible.

Figure 1. Comparative of fault detection methods based on the Hilbert–Huang transform, fast Fourier
transform, and wavelet analysis.

2.1. The Hilbert–Huang Transform

The Hilbert–Huang transform is a method that combines two steps to analyze non-
linear and non-stationary signals. The first step involves the EMD, which decomposes
a signal, f (t), into a set of intrinsic mode functions IMFi(t). For a component to be
considered as an IMF, it must satisfy two conditions: first, the difference between the
number of extrema (maxima and minima) and the number of zero crossings must be zero
or one. Second, the mean of the high and low envelopes, defined respectively by the local
maxima and minima, must be a value less than the stopping criteria value and approaching
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zero at any point of the signal.The decomposition process begins with f (t) local extreme
identification followed by envelope generation through local maximum and minimum
interpolation. After extracting the envelope’s mean, the resulting signal is examined to
determine if it meets the features to be an IMF. This process is repeated on the residual
signal obtained until it does not satisfy the criteria to be considered an IMF or represents
only a non-significant trend modulation. These IMFs represent different oscillation modes
present in the original signal as follows:

f (t) =
n

∑
i=1

IMFi(t) + r(t) (1)

where r(t) is the residual trend. Once these oscillating modes are obtained, the Hilbert
Transform is applied to each one to obtain each oscillation mode’s instantaneous envelope
and phase. This procedure can be expressed as

Ai(t) =
√

IMFi(t)2 +H[IMFi(t)]2 (2)

Ψi(t) = arctan
(
H[IMFi(t)]

IMFi(t)

)
(3)

where Ai(t) is the instantaneous amplitude and Ψi(t) is the instantaneous phase. The
instantaneous frequency Ωi(t) can be extracted from the instantaneous phase. The formula
to determine this frequency is

Ωi(t) =
dΨi(t)

dt
(4)

although “instantaneous phase” and “instantaneous frequency” are often used indistinctly,
it is important to mention the difference between them in this context. The instantaneous
phase includes information about how this phase varies in time, while the instantaneous
angle could be generally referred to as the instantaneous signal orientation in the complex
plane. This distinction is fundamental when the instantaneous frequency is analyzed, which
means that the point of interest is how the signal orientation (phase) changes over time.
The instantaneous envelope provides information on how the amplitude and phase of each
mode vary over time. The result is a time-frequency representation of the original signal,
where each oscillation mode is represented by its instantaneous envelope and frequency [8].

2.2. Proposed Method

This article segment presents a simulated situation where the proposed method for
early fault identification is applied to a complex signal obtained in the context of a balanced
three-phase electrical system. Consider the balanced system described by Equations (5)–(7).
This simulated system can be taken as a reference for ESC outputs. For simulation purposes,
three harmonics are considered in each signal.

ia =
4

∑
k=1

Ak sin(2π fkt) (5)

ib =
4

∑
k=1

Ak sin(2π fkt + φ1) (6)

ic =
4

∑
k=1

Ak sin(2π fkt + φ2) (7)

where Ak is the signal amplitude, fk is the frequency, t is the time, and φ is the phase.
The amplitude values used for this simulation are A1 = 0.5, A2 = 0.01, A3 = 0.05, and
A4 = 0.005 and the frequencies values are chosen as f1 = 10 Hz, f2 = 100 Hz, f3 = 200 Hz,
and f4 = 500 Hz. And for this specific case, phases values are established as φ1 = 2π

3 and
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φ2 = − 2π
3 . From the initial signals ia, ib, and ic, representing a three-phase system shown

in Figure 2, its oscillating modes will be extracted with the Hilbert–Huang transform. The
algorithm developed for the EMD was improved by including stoppage criteria to obtain
each signal component [5].

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. Simulation of a three–phase current system with four unknown harmonic components for
the illustrative case study.

Once the estimated parameters have been obtained, percentage amplitudes and fre-
quency errors are calculated to establish a healthy system. For different applications, a
balance system is described as Aia = Aib = Aic [29,30]. However, real electrical systems
do not present this property. Disturbances could occur in three-phase systems for the
following reasons: asymmetry in load distribution per phase, connection of single-phase
or two-phase loads, operation of single-phase protection devices or capacitor banks, and
asymmetry in the arrangement of the phases in the load center facilities. Voltage and
current imbalances affect the quality and reliability of the electrical supply. They produce
overheating and undesirable vibration in the rotating electrical machinery, overheat the
transformers and conductors, reduce the useful life of the electronic components, increase
the losses due to the Joule effect in the system’s transmission and distribution, and affect the
operation of protection systems. The current imbalance in three-phase systems is expressed
as a percentage and is defined as

%Iunb =
Max(|iav − ia|, |iav − ib|, |iav − ic|)

iav
∗ 100 (8)

with
Iav =

ia + ib + ic
3

(9)

where ia, ib, and ic are the RMS magnitude of each phase. These indicators are based on
international standards such as IEEE-519-2014 where for high tension imbalance should
be below 2% for mid-tension and below 10% [28] for low-tension. The threshold can be
selected below 10 % for low tension in this context. Any current anomaly allows for the
fault location in the specific power line as each signal error is compared. Once the fault is
located, maintenance actions must be carried out. This procedure is shown in the following
diagram in Figure 3.
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Figure 3. Schematic representation of the proposed method for early fault identification in electronic
speed controllers based on the Hilbert–Huang transform.
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As previously mentioned, power transistors present most electrical faults in motor
drivers; a short-circuit fault means the switch is always closed and replacement of this
component is often the fault solution. Open-circuit faults are a common problem in
general electrical motor drivers; errors in switching signals or gate drivers entail failures in
transistors. Thus, the electrical system affects the motor’s operation [27]. Moreover, the
signal variations occur in the ESC outputs when a different speed is required due to the
gate manipulation inputs; the signal parameters changes at these instants can be addressed
by the Hilbert–Huang transform. Then, once the errors have been calculated, an early fault
is identified, taking Table 1 as reference, different issues can be described. By taking the
threshold for fault identification, each line error allows for finding the specific line where
the issue is happening. The faults can be classified within the short-circuit and open-circuit
contexts. By evaluating these differences, the failures can be classified; an error in the
amplitude can cause undesirable behavior in the motor, such as a reduction in torque and
an increase in current demand, indicating a possible short-circuit fault. Moreover, although
the driver changes frequency due to speed motor manipulation, the balance between them
should be the same for the three signals. However, after amplitude anomalies have been
detected, a frequency diminution will manifest in motor speed reduction.

Table 1. Summary of Early Fault Identification in ESC by Employing the proposed method.

Fault Type Fault Location Error Difference Threshold for Fault Identification
- - (Amplitude) -

Imbalance Line A eia ̸= eib
̸= eic e ≤ 10%

Line B eib
̸= eia ̸= eic e ≤ 10%

Line C eic ̸= eia ̸= eib
e ≤ 10%

- - (Amplitude) -
Torque Line A eia ̸= eib

̸= eic e ≤ 10%
Line B eib

̸= eia ̸= eic e ≤ 10%
Line C eic ̸= eia ̸= eib

e ≤ 10%
- - (Amplitude) -

Current Line A eia ̸= eib
̸= eic e ≤ 10%

Line B eib
̸= eia ̸= eic e ≤ 10%

Line C eic ̸= eia ̸= eib
e ≤ 10%

2.3. Simulated Case Study Analysis

The main objective of this analysis is to obtain relevant and detailed information
about the signal and its fundamental characteristics. The previously described process is
applied, which involves decomposing the signal into three distinct oscillatory functions.
This decomposition uses the Hilbert–Huang transform, known for its high precision in
representing complex and nonlinear signals. Figures 4–6 illustrate how the Hilbert–Huang
transform decomposes the original high-frequency signal into its oscillatory components.
Each component represents an oscillation or mode present in the original signal. This
capability to separate the signal into its fundamental components is essential for the
detailed analysis of complex signals in various fields. An important point to emphasize is
the Hilbert–Huang transform’s high precision in estimating these oscillatory components.
This affirmation is evident in this approach to signal decomposition and analysis provides
valuable insights into the nature of the signal.
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(a)

1 1.02 1.04 1.06 1.08 1.1
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0
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(b)

1 1.02 1.04 1.06 1.08 1.1

-0.01

-0.005

0

0.005

0.01

(c)
Figure 4. Oscillating components of the estimated current signals extracted by performing adaptive
empirical mode decomposition. (a) Component îaim f 1 at 500 Hz frequency. (b) Component îaim f 2 at
200 Hz frequency. (c) Component îaim f 3 at 100 Hz frequency.
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(b)
Figure 5. Cont.
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1 1.02 1.04 1.06 1.08 1.1

-0.01

-0.005

0

0.005

0.01

(c)
Figure 5. Oscillating components of the estimated current signals extracted by performing adaptive
empirical mode decomposition. (a) Component îbim f 1 at 500 Hz frequency. (b) Component îbim f 2 at
200 Hz frequency. (c) Component îbim f 3 at 100 Hz frequency.

1 1.02 1.04 1.06 1.08 1.1
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0
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(a)
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-0.05

0
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0
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(c)
Figure 6. Oscillating components of the estimated current signals extracted by performing adaptive
empirical mode decomposition. (a) Component îcim f 1 at 500 Hz frequency. (b) Component îcim f 2 at
200 Hz frequency. (c) Component îcim f 3 at 100 Hz frequency.
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The initial modes extracted exhibit signals with very high frequencies and small
amplitudes. Thus, they can be ignored in the analysis of this system. Nevertheless, it is
noteworthy that the method, despite encompassing multiple frequencies, precisely extracts
the components, leaving only the primary current signal for parameter analysis Figure 7.

1 1.2 1.4 1.6 1.8 2

-0.5

0

0.5

(a)

1 1.2 1.4 1.6 1.8 2

-0.5

0

0.5

(b)

1 1.2 1.4 1.6 1.8 2

-0.5

0

0.5

(c)
Figure 7. Primary signals representing the balanced three–phase system. (a) Current of Winding a.
(b) Current of Winding b. (c) Current of Winding c.

From estimated signal oscillatory components ik, their frequencies can be extracted
through the instantaneous phase angle derivative calculation and signal’s average value
computation, as illustrated in the previous study conducted by [5]. This frequency extrac-
tion process is fundamental for gaining insights into the signal’s nature and underlying
components. Figure 8 presents an original signal frequency visual representation, where
f̂ ⋆i abc represents the fundamental signal components. The estimated frequencies from pro-
cess analysis using the Hilbert Transform are represented by f̂iabc. Averaged frequencies are
computed by taking the estimated frequencies mean over time. These averaged frequencies
offer a more stable and representative insight into the signal’s frequency characteristics,
which can be highly valuable in signal analysis applications, requiring a more general and
simplified description. All of these frequencies are depicted in Figure 8a–c.
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(c)
Figure 8. Frequency parameters calculated by applying the Hilbert transform to the extracted
oscillatory components from the signal îabc are compared with the original reference signals. (a) First
component frequencies ia. (b) Second component frequencies ib. (c) Last component frequencies ic.

The amplitude extraction process is based on the absolute value calculation of each
oscillatory signal. This stage is fundamental for accurately quantifying oscillatory com-
ponents’ intensity. Original amplitudes’ obtention, denoted as A⋆

i abc, allows the signal’s
intrinsic characteristics to be known before processing. These original amplitudes represent
the magnitude of each fundamental component presented in the original signal. On the
other hand, the estimated amplitudes, represented as Âiabc, are the analysis process results
using the Hilbert–Huang transform. The comparison of original amplitudes and estimated
amplitudes is essential for evaluating the analysis process’s effectiveness and quantifying
signal changes or disturbances. Figure 9a–c shows each amplitudes’ computation process.

All these features are presented in detail in Table 2, which includes information about
the estimated frequencies and amplitudes of the identified oscillatory components in
the processed signal. Furthermore, the percentage error value has been computed for
each parameter and it is worth noting that all these error values are below one percent,
considering these signals to be a healthy system. This low error rate demonstrates the
effectiveness and precision of the method that can be used to identify early faults in
electronic speed controllers.
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Figure 9. Amplitude parameters calculated by applying the Hilbert Transform to the extracted
oscillatory components from the signal îabc are compared with the original reference signals. (a) First
component amplitude ia. (b) Second component amplitude ib. (c) Last component amplitude ic.

Table 2. Parameter values of multiple-frequency oscillating signals î calculated by applying HHT in
the original signal.

Parameter Original Estimation Error
Amplitude (A) (A) [%]

Aia 0.5 0.49 −0.02
Aib 0.5 0.49 −0.02
Aic 0.5 0.49 −0.02

Frequency (Hz) (Hz) [%]
f ia 10 9.99 −0.01
f ib 10 9.99 −0.01
f ic 10 9.99 −0.01

3. Case Study: Proposed Method Application for Early Fault Detection in Electronic
Speed Controllers

This case study explores the proposed method application for early fault detection in
electronic speed controllers used in brushless DC motors. Several tests were conducted
using different devices, obtaining similar results. The rest of the document describes
the main results of two ESCs. This analysis allows for comparing the operational ESC
parameters, demonstrating the method’s efficiency in fault detection. Below, the values of
the operating motor used in the experimental stage are provided.

• Nominal voltage: 160 V;
• Nominal Speed: 3000 rpm.;
• Power: 157 W;
• Winding type: Delta, four poles;



World Electr. Veh. J. 2024, 15, 159 14 of 24

• Position detection: Hall effect sensors.

The scheme illustrated in Figure 10 outlines the methodology applied to the ESC
system. Initially, a brief description of the ESC system is provided, wherein the motor’s
position is determined through Hall effect sensors. The acquired position data are the
foundation for generating pulse-width modulation signals compatible with a wide range of
data acquisition boards. The precise duty cycle control is achieved using a microcontroller
with analog input capabilities. A lookup table is constructed based on sensor data to further
enhance the accuracy of the brushless DC motor’s speed and position control. This table
is a reference guide, ensuring the motor receives the exact voltages necessary for precise
control, as outlined in [22]. The diagram in green represents this comprehensive description
of the ESC operation.

Current extraction can be conducted with any industrial sensor. ACS712 sensors
sourced from Digikey, Mexico City, Mexico, are employed in this study. Subsequently,
signal processing is carried out using NI-ELVIS II hardware within Matlab version 2020a.
environment, facilitating the capture of current signals. The Hilbert–Huang transform
can now be used as was described in Section 2 to analyze ESC signals, obtaining crucial
amplitude and frequency parameters represented in the diagram in red color. Amplitude
changes allow for identifying specific motor lines where the fault is present. Thus, a non-
balanced three-phase system has a consequence of overheating present in power devices.
Moreover, frequency changes reduce the speed and low torque the machine delivers. This
approach represents a straightforward implementation and is a highly effective means of
early fault detection in ESCs.

Figure 10. Block diagram for current signal extraction in a complete permanent magnet brushless DC
motor drive system.

The current signals extracted from the physical system are denoted by ia, ib, ic. ua, ub,
and uc, which are the supply voltages from ESC. θ represents motor’s position, ω repre-
sents the motor’s speed, Â is the estimated currents’ amplitude, and f̂ are the estimated
frequencies. If the error exceeds the established threshold, a power line failure exists.
The Hilbert–Huang transform is an effective method since it does not need any signal
parameter. These parameters will be estimated and then a damaged system can be detected
by comparing both signal groups.

In most modern systems where electrical motors are employed, control panels concen-
trate and distribute connection devices, requiring qualified personnel to realize maintenance
tasks. In this context, the information of these systems is often given through interfaces
where data access is restricted. Nevertheless, physical connections are always available to
collect electrical data with any device [10]. So, for this study, Figure 11 shows the physical
ESC. A pair of switches control each phase of the system, which means that any transistor
could present failure at any time. In the experimental test conducted on a healthy system,
no irregularities in motor operation were detected. However, when dealing with a damaged
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system, the brushless motor exhibits noticeable vibrations and a significant speed reduction.
A thorough examination shows that a specific transistor tends to experience overheating
issues that directly affect line A.

Figure 11. Experimental 6-pulse electronic speed controller for brushless DC motor evaluation.

In the context of brushless DC machines, parameter changes are common in motor
control devices due to speed manipulation. As the speed increases or decreases, amplitudes
and frequencies will be affected in each transition. The Hilbert–Huang transform can adapt
to these changes; the EMD decomposes the signal in IMFs, allowing the fundamental
components at any voltage range to always be the focus. In the same way, instantaneous
frequency can capture disparities at any motor’s speed. The main ESC features used in
experimental stages are described as follows.

• Voltage range: 12 V–300 V;
• Nominal current: 5 A;
• Switches: MOSFET (IRF840);
• Bootstrap-Source: 12 V;
• PWM generation: At-Mega328;
• Control: Manual mode.

Several tests were performed with different voltages. Equation (10) is a reference
to determine frequencies corresponding to the voltages and currents. This formula can
be employed for each experimental test case to calculate the waited speed through the
system’s estimated frequency and number of pair poles.

ω = 60
f
p

(10)

The motor’s speed is represented by ω in rpm, f is the signal frequency in Hertz,
and p is the number of motor pole pairs. Physical tests aim to extract current signals
from a device that is in good condition and a damaged circuit. When signals are obtained,
multiple harmonic components are observed. Figure 12 shows physical devices for the
experimental stage.
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Figure 12. Test bench for current data acquisition in brushless motors used for ESC fault diagnosis.

4. Experimental Results and Discussion

The current signals extracted from the brushless DC motor were processed firstly
using the EMD to detect the main component current signal, suppressing the oscillating
signals in the system. The EMD allows focus on the main signal and a clear view of the
optimal system conditions. In Figure 13, the motor current signals corresponding to phases
A, B, and C are presented. Upon closer signal analysis in Figure 13a–c, key patterns and
characteristics of a well-functioning brushless DC motor can be identified. These features
include a smooth and stable current in the phases, a balanced distribution of load among
the phases, and the absence of significant peaks or anomalies in the signals. These are
essential indicators of optimal motor operation, providing a fundamental reference for
detecting potential issues or faults, in accordance with (4).
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(c)
Figure 13. Fundamental currents extracted from the first ESC obtained using the empirical mode
decomposition (EMD). (a) Phase–A current signal processed with EMD. (ia) (b) Phase–B current
signal processed with EMD. (ib) (c) Phase–C current signal processed with EMD. (ic).
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4.1. Fault Detection for the First ESC

As previously described, once the current signals have been obtained, the next step
involves estimating the amplitude values for each current signal. After applying the EMD,
maximums are computed for each signal. Due to slight variations, the average is computed,
obtaining the estimated amplitude values to be compared In Figure 14 where Âia, Âib, and

Âic are the estimated amplitudes and Âia, Âib, and Âic denote averaged amplitudes as
depicted in Figure 14a–c.
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(b)
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0
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0.1
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0.2

(c)
Figure 14. Amplitude parameters calculated by applying the Hilbert Transform to the extracted
oscillatory components from the healthy ESC signals. (a) Estimated amplitude of the oscillating
component ia. (b) Estimated amplitude of the oscillating component ib. (c) Estimated amplitude of
the oscillating component ic.

In this case, the signals exhibit minor variations, which are characteristic of regular
motor operation. These fluctuations reflect the inherent dynamics of a brushless DC
motor under normal operating conditions. These variations are typically part of the
expected behavior of the system. They are influenced by load, rotational speed, and other
operational parameters. Analyzing the instantaneous and averaged frequencies is essential
to assess these signals. These frequencies provide crucial insights into the electrical system’s

rotational speed and inherent oscillations. Figure 15 denotes f̂ ia, f̂ ib, and f̂ ic and f̂ ia, f̂ ib,

and f̂ ic, These signals shown in Figure 15a–c serve as exemplary references for the regular
operation of the BLDC motor.
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Figure 15. Frequency parameters calculated by applying the Hilbert Transform to the extracted
oscillatory components from the healthy ESC signals. (a) Estimated frequency of the oscillating
component ia. (b) Estimated frequency of the oscillating component ib. (c) Estimated frequency of
the oscillating component ic.

4.2. Fault Detection for the Second ESC

In the second experimental stage, the focus shifted to examining the brushless DC
motor behavior under different voltages, mainly when a malfunctioning ESC introduced
anomalies. As previously discussed, the primary objective was to assess how the motor
and ESC would interact under these altered circumstances. This stage allowed for a more
comprehensive systemic response exploration of abnormalities. Once again, three current
signals, represented in Figure 16, were extracted and analyzed. These signals provided
insights into the motor’s performance when subjected to ESC-related issues. Unlike the first
experimental stage, where the motor operated optimally, this stage introduced controlled
deviations to simulate real-world scenarios where ESCs might malfunction or experience
problems. By studying the signals in Figure 16a–c, patterns and characteristics associated
with motor behavior under ESC anomalies became apparent. These included irregularities
in the current waveforms, unexpected fluctuations, and potential phase imbalances.
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Figure 16. Estimated principal currents using the empirical mode decomposition method extracted
from the damaged ESC line power supply. (a) Signal of Phase–A Current extracted from damaged
ESC and processed using the empirical mode decomposition method ia. (b) Signal of Phase–B Current
extracted from damaged ESC and processed using the empirical mode decomposition method ib.
(c) Signal of Phase–C Current extracted from damaged ESC and processed using the empirical mode
decomposition method ic.

As observed in the amplitude graphs depicted in Figure 17, where Âiad, Âibd, and

Âicd represent the estimated amplitudes and Âiad, Âibd, and Âicd denote the averaged
amplitudes, as shown in Figure 17a; phase-A exhibits a distinct behavior. This behavior
indicates anomalies within the electronic speed controller. Despite these irregularities,
the motor continues to operate at a significantly reduced efficiency level, as evident in
Figure 17b,c. The power consumption increases, leading to an imbalance in the system
and a decrease in the motor’s efficiency. These observations indicate an ESC malfunction,
demonstrating the capability of this approach to detect and diagnose issues in the brushless
DC motor drive system.
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Figure 17. Amplitude parameters calculated by applying the Hilbert Transform to the extracted
oscillatory components from the damaged ESC signals. (a) Estimated amplitude of the oscillating
component ia. (b) Estimated amplitude of the oscillating component ib. (c) Estimated amplitude of
the oscillating component ic.

By analyzing the Hilbert Transform and obtaining its frequency components, de-
picted in Figure 18, a significant alteration is observed across all frequencies shown in
Figure 18a–c, with a reduction from reference value (26.5 Hz) to 23.1 Hz presenting a 12.8%
error. Additionally, through Equation (7), a reference value of 795 rpm was reduced to
690 rpm in the motor’s speed. Through this evaluation, it becomes evident that there is a
fault in the power stage’s feed line. These results show the usefulness of the Hilbert–Huang
transform in detecting early faults and identifying potential issues in the brushless DC
motor system.
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Figure 18. Cont.
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Figure 18. Frequency parameters calculated by applying the Hilbert Transform to the extracted
oscillatory components from the healthy ESC Signals. (a) Estimated frequency of the oscillating
component ia. (b) Estimated frequency of the oscillating component ib. (c) Estimated frequency of
the oscillating component ic.

Finally, each test datum is compared as is shown in Table 3, which displays the
estimated current amplitude values for each voltage operation range and the three–phase
system error, and Table 4 shows the frequencies computed in both systems. The detection of
a fault in phase A is demonstrated, characterized by an anomaly in amplitude, resulting in
a reduction in motor speed and, consequently, in the frequency of all phases. Additionally,
this fault increases current consumption as the system compensates for the reduced motor
performance, as indicated by the estimated amplitude. This comprehensive analysis
effectively highlights the capability of the proposed method for detecting and diagnosing
anomalies in the brushless DC motor drive system.

Table 3. Amplitude values obtained from currents analysis in healthy and damaged systems.

Parameter Healthy System Error Damaged System Error
Currents at 31 V (A) [%] (A) [%]

A1 0.1244 2.86 0.0602 43.13
A2 0.1188 0.1265
A3 0.1237 0.1309

Currents at 50 V (A) [%] (A) [%]
A1 0.1604 0.27 0.0802 42.38
A2 0.1598 0.1665
A3 0.1597 0.1709

Currents at 60 V (A) [%] (A) [%]
A1 0.1688 1.68 0.1002 34.02
A2 0.1658 0.1765
A3 0.1713 0.1789

Currents at 70 V (A) [%] (A) [%]
A1 0.1864 3.71 0.1102 32.05
A2 0.1738 0.1865
A3 0.1813 0.1899
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Table 4. Frequency values obtained from currents analysis in healthy and damaged systems.

Parameter Healthy System Damaged System
Frequency at 31 V (Hz) (Hz)

f1 26.5 23.1
f2 26.4 22.2
f3 26.9 23.37

Frequency at 50 V (Hz) (Hz)
f1 42.3 38.72
f2 42.4 38.71
f3 42.6 38.87

Frequency at 60 V (Hz) (Hz)
f1 50.5 45.35
f2 50.4 45.28
f3 50.9 45.37

Frequency at 70 V (Hz) (Hz)
f1 60.3 52.46
f2 60.4 52.45
f3 60.8 52.51

The results demonstrate the proposed method’s effectiveness in detecting early faults
in ESCs based on the Hilbert–Huang transform. The main advantage of this approach is
the adaptability to signal variations over time since the current extraction can be made at
any motor’s speed. The control devices present these changes at any speed manipulation
and additional signals present can be detected with the Hilbert–Huang transform. The
signal measurements were conducted at 10 KHz frequency, considering a 1s time window
to apply the EMD. The selected time was chosen to capture a wide range of frequencies,
which is important in the fault detection context. A longer window time allows more
data acquisition and thus, higher resolution is obtained for comparison purposes. The
approaches mentioned in [23,24] based on the fast Fourier transform and wavelet analysis
to detect faults through vibration analysis present the disadvantage of high sensitivity to
noise, requiring filters to eliminate non-desired frequencies. In addition to this issue,
the bandwidth is a limitation for present signal variations, where the solution is the
integration of both techniques, increasing computational cost. Moreover, although AI
provides adaptability for fault detection in motor systems, processing speed also represents
an issue, as mentioned in [25]. The proposed approach in this study can solve these
problems since the Hilbert–Huang transform does not need an additional process. The
EMD decomposes each signal component in an adaptive process that can detect additional
components present in the signal. Moreover, bandwidth is not a concern when using
instantaneous frequency, as it can detect rapid and recent changes occurring in the signal.
However, it is important to notice that these tools could present advantages due to their
integration. Nowadays, improved algorithms have been developed to mix FFT with IA
for complex signals for their processing. Artificial intelligence is a valuable tool that can
be integrated with classical tools such as Hilbert–Huang transform, FFT, and wavelet
analysis [31–34].

5. Conclusions

In this study, a novel approach based on the Hilbert–Huang transform was developed
for early fault detection in brushless DC motor drivers. First, current signals were extracted
from the system without previous knowledge of its state. Then, amplitude and frequency
parameters were estimated using the Hilbert–Huang transform. The international electrical
standards were used to establish a threshold by calculating the error between the three-
phase currents and the motor’s performance. After computing the error, the imbalance
threshold should be below 10 percent. Once the parameter error is calculated, a healthy or
damaged system is identified, and early faults can be identified in the specific motor line.
Rigorous simulations and experimental tests in different voltage conditions validate the
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proposed method. The early faults detected in the system involve the imbalance in power
supply due to discrepancies in estimated amplitudes; this problem also results in torque
reduction and increasing current demand. Also, the frequency diminution identifies the
reduction in motor speed. These issues in the driver occurred due to power transistor dam-
ages. The Hilbert–Huang transform presents advantages over signal variations. However,
although the EMD can decompose each signal component, a filter process is recommended.
The approach proposed in this study has the advantage that data can be collected from
motor drivers without stopping their operation at any time window, allowing for early fault
detection in motor drivers. The platform presented in this study can be used with other
important techniques for detecting faults, such as Fourier transform, artificial intelligence,
FFT, and wavelet analysis for future work, which will be implemented to improve the
systems for fault detection.
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