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Abstract: The suspension system is a crucial part of an electric vehicle, which directly affects its
handling performance, driving comfort, and driving safety. The dynamics of the 8-DoF full-vehicle
suspension with seat active control are established based on rigid-body dynamics, and the time-
domain stochastic excitation model of four tires is constructed by the filtered white noise method.
The suspension dynamics model and road surface model are constructed on the Matlab/Simulink
simulation software platform, and the simulation study of the dynamic characteristics of active
suspension based on the fractional-order PIλDµ control strategy is carried out. The three performance
indicators of acceleration, suspension dynamic deflection, and tire dynamic displacement are selected
to construct the fitness function of the genetic algorithm, and the structural parameters of the
fractional-order PIλDµ controller are optimized using the genetic algorithm. The control effect of the
optimized fractional-order PIλDµ controller based on the genetic algorithm is analyzed by comparing
the integer-order PID control suspension and passive suspension. The simulation results show
that for optimized fractional-order PID control suspension, compared with passive suspension, the
average optimization of the root mean square (RMS) of acceleration under random road conditions
reaches over 25%, the average optimization of suspension dynamic deflection exceeds 30%, and the
average optimization of tire dynamic displacement is 5%. However, compared to the integer-order
PID control suspension, the average optimization of the root mean square (RMS) of acceleration
under random road conditions decreased by 5%, the average optimization of suspension dynamic
deflection increased by 3%, and the average optimization of tire dynamic displacement increased
by 2%.

Keywords: active suspension; fractional-order PID control; genetic algorithm; seat control

1. Introduction

With the development of the automobile industry, the control technology of the
suspension system is constantly being innovated and improved to meet the needs of
different vehicles and road conditions [1,2]. The classical suspension system supports
and controls the suspension motion of the vehicle through springs and shock absorbers,
and mainly relies on the stiffness of the suspension components and the damping of
the shock absorbers to realize the control of the vehicle suspension motion. Classical
suspensions have fixed parameters for suspension stiffness and shock absorber damping,
which cannot be adjusted according to different road conditions and driving states, and
therefore may not perform well in some extreme situations [3,4]. The active suspension
system achieves active control of the suspension system through the suspension control unit
and actuators. The active suspension system can adjust the actuating force of the actuator in
real-time based on the vehicle’s speed, steering angle, yaw angle, and other parameters [5,6].
Thus, fine control of the active suspension system can improve the vehicle’s handling and
passing performance.

World Electr. Veh. J. 2024, 15, 184. https://doi.org/10.3390/wevj15050184 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15050184
https://doi.org/10.3390/wevj15050184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0009-0008-5153-9651
https://doi.org/10.3390/wevj15050184
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15050184?type=check_update&version=3


World Electr. Veh. J. 2024, 15, 184 2 of 35

The integration of electric vehicles (EVs) and active suspension systems has enhanced
the driving performance, riding comfort, and overall efficiency of electric vehicles. With
the development of vehicle networking and autonomous driving technologies, active sus-
pension systems can be integrated with other intelligent systems of electric vehicles, such
as adjusting suspension settings by identifying road conditions in advance, or combining
them with autonomous driving algorithms to achieve more intelligent driving assistance
functions. The electric power drive system and advanced electronic control system of elec-
tric vehicles provide a good hardware foundation for active suspension, enabling intelligent
coordinated control of multiple systems such as suspension, braking, and steering. There
are several reasons why using active suspensions in electric vehicles (EVs) can be justified,
despite their high expense and energy consumption. Firstly, active suspensions can be
particularly beneficial in EVs, which can further enhance the overall driving experience and
make EVs more competitive with traditional internal combustion engine vehicles. Secondly,
by continuously adjusting the suspension settings, active suspensions can help to maintain
optimal traction and stability, especially in emergency situations or during sudden maneu-
vers. This can reduce the risk of accidents and improve overall vehicle control, making
EVs safer for both drivers and passengers. Thirdly, by adjusting the suspension settings
based on driving conditions, active suspensions can improve handling, cornering, and
overall vehicle dynamics. This can enhance the driving experience and make EVs more
enjoyable to drive, potentially attracting more consumers to adopt this sustainable form
of transportation. Furthermore, active suspensions can contribute to energy efficiency in
EVs. While active suspensions do consume energy to operate, the benefits they provide
in terms of comfort, safety, and performance can ultimately lead to more efficient driving.
By improving handling and stability, active suspensions can help to reduce energy losses
during acceleration, braking, and cornering, ultimately improving the overall efficiency of
the vehicle.

The control algorithm of active suspension can adjust and optimize the vehicle sus-
pension, which is of great significance for improving vehicle performance and driving
experience [7,8]. The control algorithms for active suspension include proportional–integral–
derivative (PID) control [9], sky-hook damping control [10], robust control [11], sliding
mode control [12], optimal control [13], adaptive control [14], fuzzy control [15], neural
network control [16], and hierarchical control [17]. PID control is a common feedback
control method which adjusts the output of the controller based on the error signal of the
system. The PID controller consists of three parts, the proportional term, integral term, and
differential term, and the control of the system is achieved by adjusting the parameters
of these three parts [18]. Sky-hook damping control adjusts the damping parameters by
sensing the road conditions and vehicle posture through sensors, thereby improving the
smoothness and stability of the vehicle. From the sky-hook damping control also derives
the ground-hook damping control and the hybrid sky–ground-hook control. The sky-hook
control is mainly used to improve the smoothness of the vehicle, but it will affect the
handling stability of the vehicle, while the ground-hook control is mainly used to control
the dynamic load of the tires, ignoring the smoothness of the vehicle [19]. Robust control is
a control method in which a system is able to have stable performance despite uncertainties
and disturbances. The controller is designed to counteract the effects of uncertainties on
the system, thus ensuring stability and performance [20]. Sliding mode control achieves
precise control of a system by introducing a sliding mode surface. The sliding mode surface
usually consists of the system state variables and certain related parameters with good
response characteristics and stability [21]. Optimal control refers to finding an optimal
control scheme from a class of permissible control schemes, so that the motion of the
system is transferred from an initial state to a specified target state, while the value of
its performance index is optimal. According to the different control methods, optimal
control can be divided into linear optimal control, optimal predictive control, and stochastic
optimal control [22]. Adaptive control is a method of adjusting control strategies based
on the dynamic characteristics of a system and environmental changes. Adaptive control
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can adjust the parameters and structure of the controller based on the real-time state and
performance indicators of the system, achieving automatic adjustment and optimization
of the system. Adaptive control is mainly divided into self-tuning control and model
reference adaptive control [23]. Fuzzy control is a control method based on fuzzy logic,
which can handle some systems or variables that are difficult to accurately describe. A
fuzzy controller maps fuzzy input variables to fuzzy output variables and determines the
value of the output variable through a series of fuzzy rules [24]. Neural network control is
a control method based on neural network models, which can be used for system modeling
and control. By training neural network models, it is possible to model and control the non-
linear characteristics of the system, thereby improving its performance and robustness [25].
Hierarchical control consists of three levels: the organizational level, coordination level, and
execution level. In this type of multi-layer intelligent control system, intelligence is mainly
reflected at a high level, and its main role is to imitate human functions to achieve tasks
such as planning, decision making, learning, and task coordination [26]. Some scholars
combine the traditional PID method with intelligent optimization algorithms to achieve
active suspension control [27,28]. This comprehensive control method is superior to a single
control method and can effectively improve vehicle suspension performance. Common
intelligent optimization algorithms include the genetic algorithm [29], simulated annealing
algorithm [30], tabu search algorithm [31], particle swarm optimization algorithm [32], and
ant colony algorithm [33].

In recent years, suspension technology has become one of the research hotspots in the
academic community. Through in-depth research on suspension technology, researchers
hope to continuously improve the performance and stability of suspension technology, and
make greater contributions to the development and progress of the automotive industry.
Jiang et al. [34] proposed a new hybrid control method based on electromechanical analogy
theory, which can effectively suppress the full frequency band vibration of the vehicle
body. Their results indicated that this method could reduce vehicle acceleration on both
long and bumpy roads and C-level roads, and it was ultimately validated in electronic
control unit (ECU) hardware through loop testing. Zhao et al. [35] established a substitute
model for the root mean square of vertical acceleration and suspension parameters using
the surrogate model, and optimized it using the particle swarm optimization algorithm.
The hydraulic pneumatic suspension system that they designed can significantly improve
the performance of wheel loaders in reducing vertical acceleration of seat positions. Peng
et al. [36] established a quarter-vehicle model and compared it with the genetic algorithm
(GA), particle swarm optimization algorithm (PSO), and GA-PSO algorithm to find the
optimal suspension parameters. The on-site test results verified the effectiveness of the
optimization method, which improved the driving comfort, grip, and handling performance
of the vehicle by about 20%. Wu et al. [37] established a vehicle dynamics model and
designed a linear quadratic regulator (LQR) controller for electromagnetic active suspension.
They validated the model through joint simulation platforms and actual vehicle tests,
and analyzed the stability of the vehicle under different extreme working conditions.
Nagarkar et al. [38] modeled and controlled a nonlinear quarter suspension system by
using an optimization algorithm based on GA to adjust PID parameters, and membership
function range of fuzzy logic control (FLC). They showed that suspension controlled by
optimized GA-FLC has better performance than suspension controlled by PID and passive
suspension systems. In summary, various studies have demonstrated the effectiveness of
modern control technologies in improving the performance of active suspension systems,
offering enhanced ride comfort and reduced vibration compared to passive suspension and
traditional PID controllers [39–44].

Fractional-order control is an emerging control theory that originated in the 1960s [45,46].
Initially, fractional-order control theory was discovered by engineers while studying
fractional-order calculus equations. With the deepening of research, researchers grad-
ually realized the important application value of fractional calculus equations in control
systems. The output of a fractional-order controller depends not only on the current control
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error, but also on the history of previous control errors [47,48]. This time memory allows the
fractional-order controller to better adapt to the dynamic characteristics of the system and
improve the dynamic response speed of the control system. The significance of fractional-
order control is a generalization for classical integer-order control, which allows for more
accurate modeling and better adaptation to nonlinear and time-varying systems, leading
to better control results [49]. Fractional-order PID control is a new control method, which
is an extension of traditional PID control [50]. Compared with the classical integer-order
PID control, fractional-order PID control has the following relative advantages [51,52]:
(1) Stronger adaptability: the fractional-order PID controller can adapt to more complex,
more nonlinear characteristics of the system, and can effectively control the non-smooth,
non-Gaussian system. (2) Better robustness: the fractional-order PID controller is more
robust against parameter changes and perturbations, and can maintain a better control per-
formance in the event of a change in system parameters. (3) Higher control accuracy: since
the fractional-order PID controller introduces more parameters and more complex control
algorithms, it can achieve higher control accuracy and better tracking performance. In
conclusion, fractional-order PID control has obvious advantages over classical integer-order
PID control in terms of control performance, robustness, applicability, control accuracy and
stability, and thus has a wider application prospect in the actual control system [53,54].

The design of an excellent suspension system is of great significance to improve the
quality of automobile products. In recent years, active suspension control has been rapidly
developed and widely used in electric vehicles [55]. At present, industrial systems are often
described using control strategies based on integer-order models, but this only reflects some
of the control characteristics and cannot achieve the expected accuracy. Fractional-order
control can more accurately describe the dynamic characteristics of complex nonlinear
systems, improving control accuracy and robustness, and therefore has been widely applied
in the field of modern control [56]. Using control strategies based on fractional-order models
has certain advantages such as heritability, memory, and backtracking. Fractional PID
control has the following characteristics in active suspension control [57,58]: (1) Nonlocality:
a fractional derivative is a nonlocality operator, meaning its definition not only depends on
the function value at a certain point, but also on the value of the entire function. (2) Non-
Markov: the behavior of fractional-order systems cannot be described by Markov properties,
that is, the future development of the current state not only depends on the current state,
but also on past states. (3) Long-memory: the introduction of fractional derivatives enables
the system to have long-term memory ability, allowing for the accumulation and analysis
of past input signals. The dynamics and fractional-order control of automotive suspension
systems are a new research hotspot that combines fractional-order dynamics with vibration
control [59,60].

The innovativeness of this paper lies in the following two points: (1) Fractional-
order PID control is used to achieve better control effects and robustness. Different from
the classical PID controller, the fractional-order PID controller has the property of time
memory, i.e., the fractional-order PID controller can memorize and utilize the past control
history, thus improving the control performance. (2) The structural parameters of the
fractional-order PID controller are optimized using a genetic algorithm. The adjustment
and optimization of the structural parameters of the fractional-order PID controller are
crucial to the control quality of the controller. Therefore, it is necessary to determine the
optimal structural parameters of the fractional-order PID controller to achieve the optimal
control effect of the system.

In Section 1, an overview of the algorithms and optimization around the control of
the active suspension has been presented, followed by an indication of the advantages
of fractional-order control, which will facilitate the readability of this paper. In Section 2,
an 8-DOF whole-vehicle model with active suspension is developed, and an active seat
control is added. Section 3 firstly introduces the knowledge of fractional-order calculus,
the fractional-order PIλDµ controller, and the genetic algorithm used in the simulation
analysis. In Section 4, the structural parameters of the fractional-order PIλDµ controller are
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optimized using a genetic algorithm. In Section 5, a comprehensive comparative analysis
of suspension control performance in the existing literature is carried out to validate the
effectiveness of the fractional-order PIλDµ controller. In Section 6, we summarize the results
of the current optimization algorithm.

2. Modeling of Suspension and Road Surface
2.1. 8-DoF Active Suspension with Active Seat

On the one hand, in the process of designing vehicle active suspension, it is necessary
to ensure that the selected system model fully reflects the dynamic characteristics of the
vehicle suspension. On the other hand, while considering ride comfort, active control of the
passenger seat is added to fully reduce the impact of vehicle vibration on the human body.
The 8-DoF model of the entire vehicle, considering active control of human seats, com-
prehensively considers the impact of vehicle verticality, pitch, and roll on human comfort.
Therefore, the active suspension system is used to alleviate and suppress vibrations and
impacts caused by uneven road surfaces, while incorporating active control of the human
seat can timely and actively regulate the vibrations transmitted to the human body [61].

To establish an eight-degree-of-freedom dynamic model for a vehicle, the following
assumptions must be made: (1) the vehicle body undergoes slight vibration near the
equilibrium position, and the system is treated as a linear system; (2) the tire is simplified
into a spring, without considering the impact of tire damping on vibration; (3) only the
vertical vibration of the human body is considered; (4) the influence of vehicle lateral
dynamics is neglected. Based on the above assumptions, the simplified physical model of
the active suspension with active seat control is shown in Figure 1, and the corresponding
mathematical model of the active suspension is established based on rigid-body dynamics.
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Figure 1. 8-DoF active suspension control system with seat active control (arrow pointing upwards
indicates positive direction).

Let the four vertical displacements of the suspension–body connection in the vertical
direction be zsi, i = 1, 2, 3, and 4, and let the subscripts 1, 2, 3, and 4 represent left front,
right front, left rear, and right rear, respectively. When the pitch angle θ and roll angle φ
are varied in a small range, the vertical displacement of the suspension zsi and the vertical
displacement of the human–seat system zxy satisfy the following kinematic approximation
relationship with the vertical displacement of the body zb:

zs1 = zb − l1θ + l3 φ, (1)

zs2 = zb − l1θ − l4 φ, (2)

zs3 = zb + l2θ + l3 φ, (3)
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zs4 = zb + l2θ − l4 φ, (4)

zxy = zb − rxθ + ry φ. (5)

The motion equation of the center of mass of the human–chair system satisfies the
following form:

mc
..
zc = −kc

(
zc − zxy

)
− cc

( .
zc −

.
zxy
)
− uc. (6)

The motion equation of the center of mass of the vehicle body can be written in the
following differential form [44]:

mb
..
zb =

4

∑
i=1

[
−ksi(zsi − zui)− csi

( .
zsi −

.
zui
)
− ui

]
+ kc

(
zc − zxy

)
+ cc

( .
zc −

.
zxy
)
+ uc. (7)

The differential equation for the pitch rotation of the suspension is as follows:

Jθ

..
θ = ∑

i=1,2
l1
[
ksi(zsi − zui) + csi

( .
zsi −

.
zui
)
+ ui

]
−

∑
i=3,4

l2
[
ksi(zsi − zui) + csi

( .
zsi −

.
zui
)
+ ui

]
− rx

[
kc
(
zc − zxy

)
+ cc

( .
zc −

.
zxy
)
+ uc

]
.

(8)

The differential equation for the roll rotation of the suspension can be written in the
following form:

Jφ
..
φ = ∑

i=1,3
−l1
[
ksi(zsi − zui) + csi

( .
zsi −

.
zui
)
+ ui

]
−

∑
i=2,4

l4
[
ksi(zsi − zui) + csi

( .
zsi −

.
zui
)
+ ui

]
− ry

[
kc
(
zc − zxy

)
+ cc

( .
zc −

.
zxy
)
+ uc

]
.

(9)

The motion equations of the center of mass for each unsprung mass are as follows:

mu1
..
zu1 = ks1(zs1 − zu1) + cs1

( .
zs1 −

.
zu1
)
− ku1(zu1 − zr1) + u1, (10)

mu2
..
zu2 = ks2(zs2 − zu2) + cs2

( .
zs2 −

.
zu2
)
− ku2(zu2 − zr2) + u2, (11)

mu3
..
zu3 = ks3(zs3 − zu3) + cs3

( .
zs3 −

.
zu3
)
− ku3(zu3 − zr3) + u3, (12)

mu4
..
zu4 = ks4(zs4 − zu4) + cs4

( .
zs4 −

.
zu4
)
− ku4(zu4 − zr4) + u4. (13)

Here, mb is the sprung mass, zb is the vertical displacement of the vehicle’s center of
mass, mui is the unspring mass, kc is the stiffness of the human–seat system, zui (i = 1, 2, 3,
and 4) is the vertical displacement of the tire, ksi (i = 1, 2, 3, and 4) is the suspension stiffness,
kui (i = 1, 2, 3, and 4) is the tire stiffness, cc is the damping of the human–seat system, zxy is
the vertical displacement of the human–seat system, csi is the damping of suspension, zri
represents the vertical displacement of the road excitation, l1 and l2 are the distances from
the vehicle body to the front and rear axles, respectively, l3 and l4 are the distances from the
vehicle body to the left and right axles, uc represents the control signal of the human–seat
system, ui (i = 1, 2, 3, and 4) represents the suspension control signal, and rx and ry are the
position coordinates of the human–seat system, respectively. Table 1 lists the values of the
structural parameters of the active suspension control system.

Table 1. Structural parameters of active suspension control system.

Parameter Value Parameter Value

rx 0.57 m ry 0.33 m
l3 0.74 m l4 0.74 m
l2 1.3 m l1 1.5 m
cs4 1000 N·s/m cs3 1000 N·s/m
cs2 1000 N·s/m cs1 1000 N·s/m
ks4 22,000 N/m ks3 22,000 N/m
ks2 17,000 N/m ks1 17,000 N/m
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Table 1. Cont.

Parameter Value Parameter Value

ku4 200,000 N/m ku3 200,000 N/m
ku2 200,000 N/m ku1 200,000 N/m
mu4 45 kg mu3 45 kg
mu2 40 kg mu1 40 kg
kc 100,000 N/m cc 2200 N·s/m
Jθ 2440 kg·m2 Jφ 380 kg·m2

mc 80 kg mb 1480 kg

Based on the established mathematical model of active suspension, the state vector is
selected as X, the output variable is Y, the controller input is U, and the external excitation
is Z; the corresponding specific expressions are as follows:

X =
[

zc zb θ φ zu1 zu2 zu3 zu4
]T

Y = [
..
zc

..
zb

..
θ

..
ϕ zsi − zui zui − zri]

T
, i = 1, 2, 3, 4

U =
[

uc u1 u2 u3 u4
]T

Z =
[

zr1 zr2 zr3 zr4
]T

. (14)

For simplification, the differential equation of the 8-DoF full-vehicle model can be
reduced to matrix form:

M
..
X + C

.
X + KX = BU + WZ, (15)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, B is the
control matrix, and W is the external excitation matrix. The specific expressions for the
above matrices are as follows:

M =

(
M1 M3
M2 M4

)
=



mc 0 0 0 0 0 0 0
0 mb 0 0 0 0 0 0
0 0 Jθ 0 0 0 0 0
0 0 0 Jφ 0 0 0 0
0 0 0 0 mu1 0 0 0
0 0 0 0 0 mu2 0 0
0 0 0 0 0 0 mu3 0
0 0 0 0 0 0 0 mu4


, C =

(
C1 C3
C2 C4

)
=



c11 c12 c13 c14 0 0 0 0
c21 c22 c23 c24 c25 c26 c27 c28
c31 c32 c33 c34 c35 c36 c37 c38
c41 c42 c43 c44 c45 c46 c47 c48
0 c52 c53 c54 c55 0 0 0
0 c62 c63 c64 0 c66 0 0
0 c72 c73 c74 0 0 c77 0
0 c82 c83 c84 0 0 0 c88


,

K =

(
K1 K3
K2 K4

)
=



k11 k12 k13 k14 0 0 0 0
k21 k22 k23 k24 k25 k26 k27 k28
k31 k32 k33 k34 k35 k36 k37 k38
k41 k42 k43 k44 k45 k46 k47 k48
0 k52 k53 k54 k55 0 0 0
0 k62 k63 k64 0 k66 0 0
0 k72 k73 k74 0 0 k77 0
0 k82 k83 k84 0 0 0 k88


, B =

(
B1

B2

)
=



−1 0 0 0 0
1 −1 −1 −1 −1
−rx l1 l1 −l2 −l2
ry −l3 l4 −l3 l4
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


, W =

(
W1

W2

)
=



0 0 0 0
ku1 0 0 0
0 0 0 0
0 ku2 0 0
0 0 0 0
0 0 ku3 0
0 0 0 0
0 0 0 ku4


,

in which
c11 = cc, c12 = −cc, c13 = rxcc, c14 = −rycc, c21 = c12, c22 = cc + cs1 + cs2 + cs3 + cs4,
c23 = −rxcc − l1cs1 − l1cs2 + l2cs3 + l2cs4, c24 = rycc + l3cs1 − l4cs2 + l3cs3 − l4cs4,
c25 = −cs1, c26 = −cs2, c27 = −cs3, c28 = −cs4, c31 = c13, c32 = c23, c33 = r2

xcc + l2
1cs1 + l2

1cs2 + l2
2cs3 + l2

2cs4,
c34 = −rxrycc − l1l3cs1 + l1l4cs2 + l2l3cs3 − l2l4cs4, c35 = l1cs1, c36 = l1cs2, c37 = −l2cs3, c38 = −l2cs4,
c41 = c14, c42 = c24, c43 = c34, c44 = r2

ycc + l2
3cs1 + l2

4cs2 + l2
3cs3 + l2

4cs4, c45 = −l3cs1, c46 = l4cs2, c47 = −l3cs3, c48 = l4cs4,
c52 = c25, c53 = c35, c54 = c45, c55 = cs1, c62 = c26, c63 = c36, c64 = c46, c66 = cs2,
c72 = c27, c73 = c37, c74 = c47, c77 = cs3, c82 = c28, c83 = c38, c84 = c48, c88 = cs4,
k11 = kc, k12 = −kc, k13 = rxkc, c14 = −rykc, c21 = k12, k22 = kc + ks1 + ks2 + ks3 + ks4,
k23 = −rxkc − l1ks1 − l1ks2 + l2ks3 + l2ks4, k24 = rykc + l3ks1 − l4ks2 + l3ks3 − l4ks4,
k25 = −ks1, k26 = −ks2, k27 = −ks3, k28 = −ks4, k31 = k13, k32 = k23, k33 = r2

xkc + l2
1ks1 + l2

1ks2 + l2
2ks3 + l2

2ks4,
k34 = −rxrykc − l1l3ks1 + l1l4ks2 + l2l3ks3 − l2l4ks4, k35 = l1ks1, k36 = l1ks2, k37 = −l2ks3, k38 = −l2ks4,
k41 = k14, k42 = k24, k43 = k34, k44 = r2

ykc + l2
3ks1 + l2

4ks2 + l2
3ks3 + l2

4ks4, k45 = −l3ks1, k46 = l4ks2, k47 = −l3ks3, k48 = l4ks4,
k52 = k25, k53 = k35, k54 = k45, k55 = ks1 + ku1, k62 = k26, k63 = k36, k64 = k46, k66 = ks2 + ku2,
k72 = k27, k73 = k37, k74 = k47, k77 = ks3 + ku3, k82 = k28, k83 = k38, k84 = k48, k88 = ks4 + ku4.
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If X̃ = [
.

X X]
T

is the new state vector, the state equation and the output equation are
written in the following form, respectively:

.
X̃ = GX̃ + FU + HZ, (16)

Y = EX̃ + LU + TZ. (17)

where

G =

(
−M−1C −M−1K
08×8 I8×8

)
, F =

(
M−1B
08×8

)
, H =

(
W
08×8

)
, E =

 −M−1
1 C1

04×4
04×4

−M−1
1 K1

04×4
04×4

04×4
Q
I4×4

04×4
−I4×4
04×4

,

Q =


0 1 −l1 l3
0 1 −l1 −l4
0 1 l2 l3
0 1 l2 −l4

, L =

 B1
04×5
04×5

, T =

 04×4
04×4
−I4×4

.

2.2. Mathematical Model of Road Excitation
2.2.1. Description of Road Excitation at Single Wheel

The pavement unevenness function is the variation q(I) in the height q of the road
surface with respect to the reference level, along the length I of the road alignment, also
known as the longitudinal profile of the pavement. Experimental tests have proved that the
pavement unevenness can be modeled as a stationary and ergodic Gaussian random signal.
The statistical characterization of pavement unevenness is mainly based on the self-power
spectrum of the pavement (referred to as the power spectrum). The power spectral density
is defined as the “power” (mean square value) in the unit frequency band. Therefore, the
power spectral density at the spatial frequency is as follows [62]:

Gq(n) = lim
∆n→0

σ2
q∼∆n

∆n
, (18)

where σ2
q∼∆n is the “power” contained in the pavement power spectral density in the

frequency band ∆n, and n is the number of waves per unit length. The vertical displacement
self-power spectral density of pavement unevenness on longitudinal length I can be fitted
using the following equation:

Gq(n) = Gq(n0)

(
n
n0

)−W
, (19)

where n is the spatial frequency (m−1), indicating how many wavelengths are included in
each meter length; n0 is the reference spatial frequency, n0 = 0.1 m−1; Gq(n0) is the power
spectral density of the pavement at the reference spatial frequency, also known as the
pavement unevenness coefficient; and W is the frequency index of the graded pavement
spectrum. W is used to represent the frequency structure of the spectral density of the
pavement, which is expressed as a function of the slope of the spectral density in double
logarithmic coordinates. In the standard graded pavement spectrum, W is equal to 2.
Table 2 shows the eight-class classification for describing pavement unevenness [63].

Table 2. The 8-class classification of road surface unevenness.

Category Gq(n0)/(10−6 m3)
(n0 = 0.1 m−1)

σq/(10−3 m)
(0.011 m−1 < n < 2.83 m−1)

A 16 3.81
B 64 7.61
C 256 15.23
D 1024 30.45
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Table 2. Cont.

Category Gq(n0)/(10−6 m3)
(n0 = 0.1 m−1)

σq/(10−3 m)
(0.011 m−1 < n < 2.83 m−1)

E 4096 60.90
F 16,384 121.89
G 65,536 243.61
H 262,144 487.22

The spatial power spectral density Gq(n) describes the statistical characteristics of
pavement unevenness in the length direction. The spatial frequency cannot be directly used
for the calculation and analysis of vehicle vibration systems. What kind of uneven impact a
vehicle encounters depends not only on the structural properties of the road surface, but
also on the driving speed of the vehicle. When a vehicle travels on a given road surface at a
certain speed, it will “collide” with these uneven points on the road surface at certain time
intervals, resulting in a “time frequency”. When the spatial frequency n or bandwidth ∆n
is constant, the temporal frequency f or bandwidth ∆f varies proportionally with the speed
of the vehicle, which means that the following equation holds:

f = un. (20)

At a certain speed, the resonance components of the vertical displacement of uneven-
ness contained in the time–frequency bandwidth ∆f corresponding to the spatial frequency
bandwidth ∆n are the same; therefore, its energy is still σ2

q∼∆n. Therefore, the power spec-
tral density of converting spatial frequency to temporal frequency can be expressed as
follows [64]:

Gq( f ) = lim
∆n→0

σ2
q∼∆n

u∆n
=

Gq(n)
u

= Gq(n0)n2
0

u
f 2 . (21)

If the power spectral density is expressed in terms of angular frequency ω = 2πf, the
above equation can be rewritten as follows:

Gq(ω) = (2π)2Gq(n0)n2
0

u
ω2 . (22)

However, in the above equation, Gq(ω)→∞ when ω→0, so it is not in line with the
engineering reality. Therefore, it is necessary to set the lower cutoff frequency ω0 = 2πun00;
then, the above equation is transformed into the following form:

Gq(ω) = (2π)2Gq(n0)n2
0

u
ω2 + ω2

0
, (23)

where n00 = 0.01 m−1 is the cutoff spatial frequency.
There are many methods to construct the time domain model of a pavement, mainly

including the harmonic superposition method, random sequence generation method,
inverse Fourier transform method, and filtered white noise method. The filtered white
noise method can be directly employed to determine the pavement model parameters
based on the pavement unevenness coefficient and driving speed. Let us assume that a
linear system H(jω) adopts Gaussian white noise S(ω) with unit intensity of 1 as the system
input and the pavement unevenness Gq(ω) as the system output. The frequency response
function can be expressed as follows [65]:

H(jω) =
a

b + jω
, (24)

So, the power spectral density Gq(ω) of pavement unevenness is shown below:

Gq(ω) = ∥H(jω)∥S(ω). (25)
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By reverse solving, we obtain the following:{
a = 2πn0

√
Gq(n0)u

b = 2πn00u
. (26)

The frequency response function of this linear system is rephrased as follows:

H(jω) =
2πn0

√
Gq(n0)u

2πn00u + jω
, (27)

So, the differential equation corresponding to this linear system is as follows [66]:

.
q(t) = −2πn00uq(t) + 2πn0

√
Gq(n0)u · w(t), (28)

where w(t) is the time domain signal for white noise and q(t) is the time domain signal for
the pavement unevenness spectrum.

The signal variation diagram presented in Figure 2 illustrates the road excitation for the
eight-class classification of road surface unevenness, showcasing two key representations:
(a) the spatial frequency domain signal and (b) the time domain signal at a vehicle speed
u = 60 km/h. This diagram serves as a crucial component in the study of road surface anal-
ysis and classification, particularly in the context of assessing road conditions for vehicular
travel. Vehicles have four road excitations; therefore, the random road excitation model
needs to consider the delay between the front and rear-wheel tracks and the coherence
between the left and right-wheel tracks.
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Figure 2. Signal variation diagram of road excitation for 8-class classification of road surface une-
venness: (a) spatial frequency domain signal; (b) time domain signal at vehicle speed u = 60 km/h. 
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Figure 2. Signal variation diagram of road excitation for 8-class classification of road surface uneven-
ness: (a) spatial frequency domain signal; (b) time domain signal at vehicle speed u = 60 km/h.

2.2.2. Delay between Front and Rear-Wheel Tracks

If the vehicle is traveling in a straight line at a constant speed, the time delay of the front
and rear wheel pavement excitation on the same side is T = (l1 + l2)/u. The front and rear
wheel pavement excitation has large pure time delay characteristics, and the continuous
domain transfer function of the time delay model is eTs. The transfer function for the pure
time delay model is more difficult to analyze directly because it is essentially an infinite
dimensional system. The Pade approximation is a rational polynomial approximation,
which tends to be more accurate than the truncated Taylor’s approximation. The higher
the order of the Pade approximation, the higher the accuracy, but the more complicated
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the expression. The first-order Pade approximation is used to approximate the pure delay
model [67]:

eTs ≈
(

1 − Ts
2

)/(
1 +

Ts
2

)
. (29)

where s is the Laplace operator. Therefore, the relationship between the front and rear
wheel excitation inputs satisfies the following:

.
qb = − 2

T
qb −

.
q f +

2
T

q f , (30)

where qf(I) and qb(I) are the statistical characteristics of the front and rear-wheel tracks.
The time domain models for the road excitation of the front and rear wheels are expressed
as follows: ( .

q f.
qb

)
=

(
−2πn00u 0

2πn00u + 2
T − 2

T

)(
q f
qb

)
+

 2πn0

√
Gq(n0)u

−2πn0

√
Gq(n0)u

w(t). (31)

where w(t) is the white noise.

2.2.3. Coherence between Left and Right-Wheel Tracks

The phase spectrum of the left and right-wheel tracks is equal to φll(n) = 0, which
means that the statistical characteristics of the left and right-wheel tracks ql(I) and qr(I) are
the same, that is, the self-power spectrum of the left and right-wheel tracks is the same,
meaning Gll(n) = Grr(n) = Gq(n), where Gll(n) and Grr(n) are the self-power spectrum of the
left and right-wheel tracks, respectively. The random process of the unevenness of the left
and right tracks on the same road has a cross-spectrum, that is, the two tracks are coherent.
Therefore, the spatial coherence must be taken into account in describing the time domain
model of the two road excitations. The cross-spectrum between the left and right-wheel
tracks can be represented as follows:

Glr(n) = ∥Glr(n)∥e−jϕlr(n), (32)

where ∥Glr(n)∥ can be determined by the correlation function of the left and right-wheel
tracks [68]:

coh2
lr(n) =

∥Glr(n)∥2

Gll(n)Grr(n)
=

∥Glr(n)∥2

Gq(n)Gq(n)
. (33)

Therefore, the following relationship Glr(n) = cohlr(n)·Gq(n) can be obtained.
Considering the coherence of the left and right wheels, the white noise wr(t) at the right

wheel track can be simulated by the combination of the white noise wl(t) at the left-wheel
track and another incoherent unit of white noise wz(t). The above description indicates that
the following equation is valid:

wr(ω) = Hr−l(ω)wl(ω) + Hr−z(ω)wz(ω). (34)

where Hr-l is the transfer function corresponding to the white noise wl(t), and Hr-z is the
transfer function corresponding to the white noise wz(t). The self-spectral functions of the
left and right-wheel tracks are equal, indicating that ∥Hr-l∥2 + ∥Hr-z∥2 = 1. According to the
theory of random vibration, the frequency response function Hr-l of the input system wl(t)
satisfies the following equation:

Hr−l(ω) =
Glr(ω)

Gll(ω)
= cohlr(ω). (35)

The widely used empirical formula for the coherence function is cohlr(ω) = e−ρ(l3 + l4)ω/πu.
For the convenience of simulation, the amplitude frequency characteristics are optimized by



World Electr. Veh. J. 2024, 15, 184 12 of 35

approximating the transfer function Hr-l of the left and right-wheel tracks to a second-order
transfer function. At the same time, we also transform Hr-z into second-order transfer
function form. The above indicates that the following equation can be obtained:

Hr−l(jω) =
a0+a1 jω+a2(jω)2

b0+b1 jω+b2(jω)2

Hr−z(jω) =
c0+c1 jω+c2(jω)2

b0+b1 jω+b2(jω)2

, (36)

where a0 = 1.000, a1 = 0.0736k, a2 = 0.0239k2, b0 = 1.0696, b1 = 2.8390k, b2 = 0.8330k2,
c0 = 0.3795, c1 = 2.6367k, c2 = 0.8327k2, and k = ρ(l1 + l2)/πu [69]. By introducing the
intermediate state variables ξ(t) = [ξ1(t), ξ2(t)]T and Ψ(t) = [Ψ1(t), Ψ2(t)]T, the above equation
can be decomposed into the following two state equations:

( .
ξ1(t).
ξ2(t)

)
=

(
− b1

b2
− b0

b2
1 0

)(
ξ1(t)
ξ2(t)

)
+

(
1
b2
0

)
wl(t)( .

Ψ1(t).
Ψ2(t)

)
=

(
− b1

b2
− b0

b2
1 0

)(
Ψ1(t)
Ψ2(t)

)
+

(
1
b2
0

)
wz(t)

, (37)

The time domain expression for the white noise at the right-wheel track is as follows:

wr(t) =
(

a1 − a2b1
b2

a0 − a2b0
b2

)( ξ1(t)
ξ2(t)

)
+ a2

b2
wl(t)

+
(

c1 − c2b1
b2

c0 − c2b0
b2

)( Ψ1(t)
Ψ2(t)

)
+ c2

b2
wz(t).

(38)

The right track stochastic process is derived from the known left track stochastic
process by establishing a coherent relationship between the left and right wheels. When
establishing a road model, wl(t) can first generate the left-wheel track, and through the
intermediate state variables ξ(t) = [ξ1(t), ξ2(t)]T and Ψ(t) = [Ψ1(t), Ψ2(t)]T, the time domain
model of the white noise input wr(t) at the right wheel can be obtained. The time domain
models for the road excitation of the left and right wheels are expressed as follows:

.
ql(t) = −2πn00uq(t) + 2πn0

√
Gq(n0)u · wl(t)

.
qr(t) = −2πn00uq(t) + 2πn0

√
Gq(n0)u · wr(t)

. (39)

Figure 3 depicts the variation in road excitation at C-class pavement unevenness for
a vehicle speed of 60 km/h. Figure 3a illustrates the time domain signal, while Figure 3b
showcases the time–frequency domain signal. This analysis offers a comprehensive under-
standing of the pavement’s response to varying speeds.
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Figure 3. Variation in road excitation at C-class pavement unevenness for vehicle speed u = 60 km/h: 
(a) time domain signal; (b) time–frequency domain signal (PSD is power spectral density). 
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tion and integration is fractional, integer calculus becomes fractional calculus. Three def-
initions of fractional-order calculus that have been used in the control field include the 
Grunwald–Letnikov formulation, the Riemann–Liouville formulation, and the Caputo 
formulation [70].  
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(a) time domain signal; (b) time–frequency domain signal (PSD is power spectral density).
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3. Methods

3.1. Fractional-Order PIλDµ

3.1.1. Fractional-Order Calculus Theory

Fractional calculus is an extension of integer calculus. When the order of differen-
tiation and integration is fractional, integer calculus becomes fractional calculus. Three
definitions of fractional-order calculus that have been used in the control field include
the Grunwald–Letnikov formulation, the Riemann–Liouville formulation, and the Caputo
formulation [70].

The Grunwald–Letnikov formulation is based on the definition of higher-order deriva-
tives of classical integer orders, and is derived through induction to generalize the orders
and factorials of integer-order calculus to non-integer orders. The Grunwald–Letnikov
formulation for the α-th derivative of function f (t) is expressed as follows [71]:

GL
t0

Dα
t f (t) = lim

h→0

1
hα

[(t−t0)/h]

∑
j=0

(−1)j
(

α
j

)
f (t − jh), t > 0, α ∈ R+, (40)

where [·] is the round operator, t0 is the lower limit, t is the upper limit, α is the order, and(
α
j

)
=

α(α + 1) · · · (α + j − 1)
j!

=
α!

j!(α − j)!
. (41)

Equation (40) corresponds to fractional-order differentiation and fractional-order
integration for α > 0 and α < 0, respectively, while for α = 0, it corresponds to the primitive
function f (t).

The Riemann–Liouville formulation needs to solve an initial value problem that is
theoretically achievable but lacks physical meaning in reality, and thus is limited in its
application. The Riemann–Liouville formulation for fractional integration is defined as
follows [72]:

RL
t0

D−α
t f (t) =

1
Γ(α)

∫ t

t0

f (τ)

(t − τ)1−α
dτ, (42)

where Γ(α) is the gamma function. In the Riemann–Liouville formulation, the definition
of fractional differentiation depends on fractional integration. The Riemann–Liouville
formulation for fractional differentiation is defined as follows:

RL
t0

Dα
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

t0

f (τ)

(t − τ)α−n+1 dτ, (43)

where n − 1 < α ≤ n, and n = [α].
The Caputo formulation is a commonly used method for describing systems of frac-

tional order and can deal with initial condition problems for systems of fractional order.
The fractional-order differentiation of the Caputo formulation is defined as follows [73]:

C
t0

Dα
t f (t) =

1
Γ(m − α)

∫ t

t0

f (m)(τ)

(t − τ)1+α−m dτ, (44)

where m = [α]. Fractional integration for the Caputo formulation is defined as follows:

C
t0

D−α
t f (t) =

1
Γ(γ)

∫ t

t0

f (τ)

(t − τ)1−α
dτ. (45)

Fractional-order PID modeling is based on Grünwald–Letnikov fractional-order calcu-
lus for numerical computation in the time domain.
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3.1.2. Structure of Fractional-Order PIλDµ Controller

The classical PID controller is simple in principle and has strong robustness and
adaptability. The classical PID controller consists of proportional part P, integral part I, and
differential part D. The classical PID control algorithm is shown below [74]:

u(t) = kpe(t) + ki

∫
e(t)dt + kd

de(t)
dt

, (46)

where kp is the proportional amplification coefficient, ki is the integral coefficient, kd is
the differential coefficient, u(t) is the control output, and e(t) is the deviation value of the
system output.

The advantage of fractional-order calculus over integer-order calculus is that it can
more accurately describe complex processes that are specific and complex with time spans
and spatial autocorrelation. The fractional-order PID controller introduces the theory of
fractional calculus on the basis of classical PID controllers, and its control algorithm can be
expressed as follows:

u(t) = kpe(t) + kGL
it0

D−λ
t e(t) + kGL

dt0
Dµ

t e(t), (47)

where λ and µ represent the order of integration and differentiation, respectively, 0 < λ,
and µ < 1.

In the active suspension PID controller, the vibration speed deviation at the human–
seat system is ec = 0 − .

zc, and the active control force at the human–seat system is uc. The
suspension vibration speed deviation at the left front is e1 = 0 − .

zs1, and the active control
force of the suspension at the left front is u1. The suspension vibration speed deviation at
the right front is e2 = 0− .

zs2, and the active control force of the suspension at the right front
is u2. The vibration speed deviation at the left rear is e3 = 0− .

zs3, and the suspension active
control force at the left rear is u3. The suspension vibration speed deviation at the right rear
is e4 = 0 − .

zs4, and the suspension active control force at the left rear is u4. Specifically, the
controller input U is as follows:

U =


uc(t) = kpec(t) + kGL

it0
D−λ

t ec(t) + kGL
dt0

Dµ
t ec(t),

u1(t) = kpe1(t) + kGL
it0

D−λ
t e1(t) + kGL

dt0
Dµ

t e1(t),
u2(t) = kpe2(t) + kGL

it0
D−λ

t e2(t) + kGL
dt0

Dµ
t e2(t),

u3(t) = kpe3(t) + kGL
it0

D−λ
t e3(t) + kGL

dt0
Dµ

t e3(t),
u4(t) = kpe4(t) + kGL

it0
D−λ

t e4(t) + kGL
dt0

Dµ
t e4(t),

. (48)

The fractional-order PID controller has time memory, meaning that the output of the
controller depends not only on the current control error, but also on the history of previous
control errors. This time memory allows the fractional-order PID controller to better adapt
to the dynamic characteristics of the system.

Professor Tepljakov and his team [75] have developed a software for calculating frac-
tional calculus called FOMCON (readers can access this website at https://fomcon.net;
accessed on 25 January 2024). This software has the capability to perform complex mathe-
matical operations related to fractional calculus, making it a valuable tool for researchers
and practitioners in the field. The software has been well received in the scientific com-
munity and has been published in several high-impact journals. Its user-friendly interface
and accurate results make it a valuable asset for anyone working with fractional calculus.
FOMCON has the potential to revolutionize the way we approach and solve mathematical
problems related to fractional calculus, and its impact on the field is expected to grow in
the coming years. The latest update of FOMCON introduces a new feature to its Fractional-
Order Differential Equation (FODE) solver, based on the Grünwald–Letnikov method. In
addition to the default first-order solver, users now have the option to choose higher-order
numerical solvers, including second and third-order formats, for computing the time do-
main response of systems described by fractional-order transfer function objects. This

https://fomcon.net
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enhancement provides users with increased flexibility and precision in their simulations,
allowing for more accurate and detailed analysis of complex systems. Readers can also
consult the Supplementary Materials for further details and information.

3.2. Genetic Algorithm
3.2.1. Process of Genetic Algorithm

The control effect of a PID controller depends on the combination of the proportional
amplification coefficient kp, integral coefficient ki, and differential coefficient kd. Traditional
methods often use the trial-and-error method. The trial-and-error method is optimized in
the order of proportion, integration, and differentiation. After each coefficient setting, the
system’s operation should be observed, and then each coefficient value should be adjusted
according to the system’s operation until the optimal control effect is achieved. In general,
the response speed of the system will increase with the increase in the proportional coeffi-
cient, which is beneficial for reducing static errors. However, the proportional coefficient
that exceeds the range will generally cause the system to have significant overshoot and
also worsen oscillation stability. Reducing the integral coefficient is beneficial for reducing
overshoot and making the system stable, but it slows down the speed of eliminating static
errors. Increasing the differential coefficient is beneficial for accelerating the system’s
response and reducing overshoot, and also weakens its resistance to interference. It can
be seen that the parameter adjustment of the trial-and-error method is difficult, and the
performance of the PID algorithm highly depends on the selection of parameters. For
complex systems, multiple experiments and adjustments are often required to achieve good
control results [76].

The genetic algorithm is a method of searching for optimal solutions by simulating
natural evolution processes. The parameters of the PID controller can be self-tuned through
genetic algorithms. Self-tuning is the process of adjusting controller parameters through
program optimization, without the need for the trial-and-error method. The genetic algo-
rithm is an optimization algorithm based on natural selection and genetic evolution theory,
which simulates the evolution process of biological populations and gradually optimizes
the fitness of the population through gene combination, mutation, crossover, and other
operations, ultimately obtaining the optimal solution, as shown in Figure 4 [77].
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3.2.2. Implementation of Genetic Algorithm

The following specific process introduces the actual process of genetic algorithm
optimization. Firstly, the seat vertical vibration acceleration, body vertical vibration acceler-
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ation, pitch angle acceleration, roll angle acceleration, suspension dynamic deflection at
four tires, and tire dynamic displacement are selected as performance indicators. Then, they
are divided by the passive suspension performance indicators under the same operating
conditions to construct the fitness function f (k) of the genetic algorithm [78]: min f (k) = AVB1(k)

AVBpas
1

+ AVB2(k)
AVBpas

2
+ AVB3(k)

AVBpas
3

+ AVB3(k)
AVBpas

4
+

4
∑

i=1

SWSi(k)
SWSpas

i
+

4
∑

i=1

DTDi(k)
DTDpas

i

k = (kp, ki, kd, λ, µ), 0 ≤ kp, ki ≤ 214 − 1,0 ≤ kd ≤ 27, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1
, (49)

where AVB1(k), AVB2(k), AVB3(k), and AVB4(k) represent the root mean square values of
seat vertical vibration, body vertical vibration acceleration, pitch angle acceleration, and
roll angle acceleration, respectively. SWSi(k) represents the root mean square value of
suspension dynamic deflection, and DTDi(k) represents the root mean square value of tire
dynamic displacement. AVBi

pas, SWSi
pas, and DTDi

pas are the root mean square values of
the corresponding performance indicators of passive suspension under the same operating
conditions as the active suspension system. It should be noted that the performance
indicators of active suspension should be superior to those of passive suspension, that is to
say, the following limiting conditions should be met:

AVBi(k) ≤ AVBpas
i

SWSi(k) ≤ SWSpas
i

DTDi(k) ≤ DTDpas
i

. (50)

To limit the solution, we adopt the idea of penalty functions. That is to say, if the
root mean square value of a performance indicator of the active suspension is detected
to be greater than the root mean square value of a performance indicator of the passive
suspension, then its fitness function is increased as a penalty, so that the chromosome of this
individual is not considered a genetic object as much as possible. The specific expression is
as follows: f (k) = AVB1(k)

AVBpas
1

+ AVB2(k)
AVBpas

2
+ AVB3(k)

AVBpas
3

+ AVB3(k)
AVBpas

4
+

4
∑

i=1

SWSi(k)
SWSpas

i
+

4
∑

i=1

DTDi(k)
DTDpas

i
+ N(k)

i f AVBi(k) ≥ AVBpas
i or SWSi(k) ≥ SWSpas

i or DTDi(k) ≥ DTDpas
i

, (51)

where N(k) is the penalty degree, and N(k) has the following expression form: N(k) =
Ntotal

∑
j=1

Rj f β
j (k), i f f j(k) ≥ 1

f j(k) ∈ [AVBi(k)/AVBpas
i , SWSi(k)/SWSpas

i , DTDi(k)/DTDpas
i ]

, (52)

where β = 2 is the parameter and Ntotal is the total number of active suspension performance
indicators. Rj is the penalty factor:

Rj =


1.0, i f f j(k) ≥ 1 and f j(k) ∈ AVBi(k)/AVBpas

i
0.5, i f f j(k) ≥ 1 and f j(k) ∈ SWSi(k)/SWSpas

i
0.1, i f f j(k) ≥ 1 and f j(k) ∈ DTDi(k)/DTDpas

i

, (53)

The penalty varies with the number of iterations, indicating that this is a dynamic
penalty process.

Encoding refers to converting a given real number into a binary string. The length of a
binary string depends on the accuracy requirements. Here, the chromosome consists of
five segments, corresponding to kp, ki, kd, λ, and µ. Assuming that a chromosome segment
kj can be represented by a 14-bit unsigned binary number, the encoding corresponding to
the chromosome segment kj is b12b11b10. . .bi. . .b3b2b1. The corresponding decoding formula
is as follows [79]:

Ki = Umin + (
12

∑
j=1

bj · 2j−1) · Umax − Umin

212 − 1
, (54)
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where Umin and Umax are the range of values for phenotype Ki, respectively, that is,
Ki∈[Umin, Umax]. Thus, a 60-bit unsigned binary number formed by connecting all chro-
mosome segments together forms the genotype K of the individual, which represents a
feasible solution. For example, the phenotype corresponding to genotype
K = 000000000001000000000001000000000001000000000001000000000001 is k = (1.0, 1.0,
(26 − 1)/(212 − 1), 1/(212 − 1), 1/(212 − 1)), which means kp = 1.0, ki = 1.0, kd = (26 − 1)/(212 − 1),
λ = 1/(212 − 1), and µ = 1/(212 − 1). The phenotype k and genotype K of an individual can
be converted into each other through encoding and decoding programs.

The initial population is the initial population data P0 that represent the starting search
point for the genetic algorithm to perform evolutionary operations on the population. The
size of the population is taken as N, where N = 100, which means that the population is
composed of 100 individuals. Each individual’s genotype can be randomly generated. In
genetic algorithms, the fitness of each individual is used to evaluate their level of superiority
and inferiority, thereby determining their genetic opportunities. After converting an
individual’s genotype to phenotype, the minimum value of the fitness function f (k) can be
used as the optimization objective, so the objective function value can be directly used as
the individual’s fitness.

The selection operation inherits individuals with greater fitness from the current popu-
lation into the next-generation population according to a certain rule or model. Individuals
with greater fitness are generally required to have more opportunities to be inherited into
the next-generation population. A probability proportional to fitness is used to determine
the number of individual replications into the next generation of the population. The
roulette-wheel approach is chosen for the selection operation, that is, the sum of the fitness
of all individuals in the population is first calculated as follows:

FI =
N

∑
i=1

fi(k), i = 1, · · · , N, (55)

Second, the magnitude of the relative fitness of each individual is calculated as the
probability that each individual will be inherited into the next generation of the population:

Pi = fi(k)/FI, i = 1, · · · , N, (56)

Then, the cumulative probability of each chromosome is calculated as follows:

Qi =
i

∑
j=1

Pj, i = 1, · · · , N. (57)

Each cumulative probability value forms a region and the last chromosome satisfies
QN = 1. Finally, N random numbers r between 0 and 1 are generated, and based on this
random number, the number of times each individual is selected is determined. If Ql−1 ≤ r ≤ Ql,
the l-th chromosome is selected.

The cross-over operation is the main process of generating new individuals in genetic
algorithms, which exchanges some chromosomes between two individuals with a certain
probability. A single-point crossover method is used, in which the populations are first
randomly paired, followed by the randomization of crossover positions, and finally by
mutual exchange of some genes between the paired chromosomes. The crossover operation
probability Pjc = 70% is chosen, which determines that there is a 70% probability that an
individual chromosome of the parent will be crossed over in the crossover operation at the
statistical level. If the crossover probability is too large, it may lead to too much mixing of
individual genetic information, making the search process too random, thus affecting the
performance of the algorithm. If the crossover probability is too small, it may lead to too
little individual gene information, making the search process too limited, thus affecting the
convergence speed of the algorithm.

The mutation operation is a method of generating new individuals by changing the
gene value of one bit or some bits of an individual with a small probability. Mutation
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operations are performed using the basic bit mutation method, in which the location
of the gene mutation is first determined for each individual, and then the value of the
original gene at the mutation point is reversed according to a certain probability. The
probability of mutation is assumed to be Pby = 0.01%, which determines that there is a 0.01%
probability that an individual chromosome of the parent generation will be mutated in the
mutation operation at the statistical level. This algorithm has a total of 6000 gene bits, which
represents 60 bits per generation that undergo mutation operations in a statistical sense.

A new generation of population P(t + 1) can be obtained after a round of selection,
crossover, and mutation operations on population P(t). The reproduction number (max-
imum number of iterations) is taken as Tmax = 100. The population will reach the global
optimum in terms of fitness after generations of evolution.

The Genetic Algorithm Toolbox for MATLAB (version R2022b) was developed by
the Department of Automatic Control and Systems Engineering at The University of
Sheffield, UK [80]. The purpose of this development was to provide control engineers
with access to genetic algorithms within the existing framework of a computer-aided
control system design package. This toolbox aims to make genetic algorithms more acces-
sible and applicable to the field of control engineering (readers can access this website at
http://uos-codem.github.io/GA-Toolbox; accessed on 25 January 2024). Readers can also
refer to the Supplementary Materials for additional information.

4. Results

The 8-DoF vehicle model is a complex dynamic system, and controlling it requires
efficient algorithms to optimize controller parameters. In this case, using a genetic algorithm
to optimize the fractional-order PID controller is an effective method (please refer to
Supplementary Material Procedure).

First, we need to define the parameter space of the fractional-order PID controller,
including the proportional coefficient, integral coefficient, derivative coefficient, and
fractional-order parameters. Next, we can use a genetic algorithm to search this parame-
ter space to find the optimal controller parameters. By simulating the process of natural
selection, crossover, and mutation, genetic algorithms can search for better solutions in
the parameter space. Through this process, genetic algorithms can search for optimal
fractional-order PID controller parameters in the parameter space, thereby achieving effi-
cient control of the 8-degree-of-freedom vehicle model, enabling it to exhibit good dynamic
characteristics and robustness under various operating conditions, as shown in Figure 5a.

As shown in Figure 5b, modeling the vibration dynamics of a vehicle in Simulink
and simulating the smoothness evaluation index can be achieved by the following steps.
First, Simulink is used to construct the differential equations of the car vibration dynamics,
including the suspension system, tires, body, and other components of the vehicle. Then,
for the control problem of the vehicle vibration model, the control system toolbox in
Simulink can be used to optimize the fractional-order PID controller using the genetic
algorithm. The mathematical model of the fractional-order PID controller needs to be
established and integrated into the vehicle vibration model. Using the optimization toolbox
in Simulink, the objective function and constraints of the genetic algorithm optimization, as
well as the parameter ranges of the fractional-order PID controller, can be set to optimize
the controller parameters. This ensures that the vehicle has good vibration suppression
performance under different road excitations. Finally, in order to evaluate the smoothness
of the vehicle, the measurement module of the smoothness evaluation indexes, such as
acceleration sensors, can be added in Simulink. By simulating the vibration response of the
vehicle under different road excitations and combining the smoothness evaluation indexes,
the smoothness performance of the vehicle can be comprehensively evaluated.

http://uos-codem.github.io/GA-Toolbox
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4.1. Variations in Fitness Function

As shown in Figure 6, the fitness functions f (k) of both fractional-order PID and integer-
order PID control decrease with the increase in genetic generations. This is because as the
genetic generations increase, the individuals in the population gradually converge, and
individuals with less fitness are gradually eliminated, while individuals with greater fitness
are preserved and reproduced. Therefore, overall fitness functions show a decreasing trend.
In addition, the fitness function of the fractional-order PID control is smaller than that of
the integer-order PID control. This is because fractional-order PID control has more flexible
control characteristics compared to integer-order PID control, and can better adapt to
complex control systems. Therefore, the performance of the fractional-order PID controller
in terms of fitness function will be superior, and its fitness function will be relatively smaller.
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Figure 7a shows the variation in the integer-order PID control parameters [kp, ki, and
kd], while Figure 7b shows the variation in the fractional-order PID control parameters [kp,
ki, kd, λ, and µ]. The trend of PID control parameters [kp, ki, kd, λ, and µ] in the genetic
algorithm is not monotonically increasing or decreasing but fluctuates during the iteration
process. This is because the selection, crossover, and mutation operations in the genetic
algorithm will generate new individuals, leading to changes in the values of the PID
control parameters. During the iteration process of the genetic algorithm, the values of
the PID control parameters [kp, ki, kd, λ, and µ] will gradually converge to the vicinity of
the optimal solution. Therefore, as the genetic generations increase, the trend of the PID
control parameters will gradually decrease until it stabilizes around the optimal solution.
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Figure 7. The change in controller parameters with genetic generation in the genetic algorithm:
(a) integer-order PID control, (i) kp, (ii) ki, and (iii) kd, and (b) fractional-order PID control, (i) kp,
(ii) ki, (iii) kd, (iv) λ, and (v) µ.

Table 3 displays the optimized PID parameter values for both integer-order and
fractional-order PID controllers. For the integer-order PID controller, the proportional
gain (kp) is 2249.54424, the integral gain (ki) is 2722.04638, and the derivative gain (kd) is
0.30244. On the other hand, the fractional-order PID controller has a proportional gain (kp)
of 1059.56885, an integral gain (ki) of 2777.72145, and a derivative gain (kd) of 5.05887. Ad-
ditionally, the fractional-order PID controller includes two additional parameters, λ and µ,
with values of 0.47772 and 0.44056, respectively. These parameter values have been carefully
optimized to achieve the desired control performance for the system under consideration.

Table 3. Optimized PID parameter values.

PID
Integer-Order PID Fractional-Order PID

kp ki kd kp ki kd λ µ

Value 2249.54424 2722.04638 0.30244 1059.56885 2777.72145 5.05887 0.47772 0.44056
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4.2. Vibration Characteristics under C-Class Road
4.2.1. Changes in Control Signals

Figure 8 shows the time variations of control signals in a comparison of passive,
integer-order PID, and fractional-order PID controllers. The control signal of the fractional-
order PID controller exhibits more complex characteristics over time. As the fractional-order
PID controller introduces the concept of fractional calculus, its control signal variation
process may exhibit nonlinearity, singularity, and even chaotic behavior. In the context of a
vehicle suspension system, the control signal variation of the fractional-order PID controller
may demonstrate a faster response, but it may also be accompanied by larger fluctuations,
especially when the system is initially disturbed by vibrations. Over time, the control signal
of the fractional-order PID controller may gradually stabilize, but its variation process may
still exhibit some degree of fluctuation and uncertainty.
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Figure 8. Time variations of control signals in comparison of passive, integer-order PID, and frac-
tional-order PID control: (a) uc, (b) u1, (c) u2, (d) u3, and (e) u4. 
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Table 4 lists the root mean square (RMS) and average (AVE) values of control signals for
integer-order PID control and fractional-order PID control. The formula for calculating the
root mean square value is RMS = (x1

2 + x2
2 + . . . + xn

2)/n)/1/2, where x1, x2, . . ., xn are the
individual values in the dataset, and n is the number of values in the dataset. The formula
for calculating the mean is AVE = (x1 + x2 + . . . + xn)/n. Firstly, the RMS values of the control
signals for integer-order PID control are 129.32691, 158.85456, 121.82032, 162.11136, and
166.07410, while the RMS values for fractional-order PID control are 126.30237, 150.73555,
118.37600, 154.02911, and 161.77400. A comparison shows that the RMS values of the
control signals for integer-order PID control are generally higher than those for fractional-
order PID control, indicating that in these cases, the overall fluctuation of the integer-order
systems is greater. Secondly, there are also differences in the AVE values of the control
signals for integer-order and fractional-order PID control. The AVE values for integer-
order PID control are 10.86735, 11.196190, 10.941795, 11.377870, and 11.12347, while the
AVE values for fractional-order PID control are 8.87194, 8.99648, 8.85489, 8.80790, and
8.66631. The average value of the integer-order systems is larger, i.e., the overall deviation
of data from the average value is greater for integer-order systems. Thus, the fluctuation in
and deviation of data from the average value are both relatively greater for integer-order
systems, while they are relatively smaller for fractional-order systems.



World Electr. Veh. J. 2024, 15, 184 22 of 35

Table 4. Statistical values of control signals.

PID uc u1 u2 u3 u4

Integer-order RMS 129.32691 158.85456 121.82032 162.11136 166.07410
AVE 10.86735 11.196190 10.941795 11.377870 11.12347

Fractional-order
RMS 126.30237 150.73555 118.37600 154.02911 161.77400
AVE 8.87194 8.99648 8.85489 8.80790 8.66631

4.2.2. Variations in Performance Indicators in the Time Domain

According to Figure 9, it is obvious that when using fractional-order PID control, the
fluctuation range of the ride indicators

..
zc,

..
zb, zs1 − zr1, zs2 − zr2, zs3 − zr3, and zs4 − zr4

of the vehicle is significantly reduced, while the fluctuation range of other indicators
overlaps with that of integer-order PID control suspension. After adopting fractional-order
PID control, the fluctuation range of tire dynamic displacement almost overlaps with the
fluctuation range of passive suspension, indicating that fractional-order PID control may
not significantly improve the performance of tire dynamic displacement in some cases.
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Figure 9. Time variations of performance indicators in comparison of passive, integer-order
PID, and fractional-order PID control: (a)

..
zc (m/s2), (b)

..
zb (m/s2), (c)

..
θ (rad/s2), (d)

..
φ (rad/s2),

(e) zs1 − zr1 (m), (f) zs2 − zr2 (m), (g) zs3 − zr3 (m), (h) zs4 − zr4 (m), (i) zr1 − zu1 (m), (j) zr2 − zu2 (m),
(k) zr3 − zu3 (m), and (l) zr4 − zu4 (m).

Passive suspension systems usually cannot achieve active control of vibration, and
their performance indicators in the time domain are generally poor, with slow vibration
damping and sluggish system response. Integer-order PID control suspension systems can
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typically achieve better performance indicators in the time domain, such as fast vibration
damping and faster system response speed. The integer-order PID controller can adjust
the control quantity in real time based on the error signal, thus effectively controlling the
suspension system. Fractional-order PID controllers can better adapt to nonlinear systems,
and the fractional-order parameters can be adjusted according to actual conditions, thus
more effectively suppressing suspension vibration and reducing the bumpy feeling for
passengers during vehicle travel.

4.2.3. Variations in Performance Indicators in the Frequency Domain

As shown in Figure 10, the power spectral density of the smoothness indicators zs1
− zr1, zs2 − zr2, zs3 − zr3, zs4 − zr4, zr1 − zu1, zr2 − zu2, zr3 − zu3, and zr4 − zu4 exhibits
two resonance peaks, with the first resonance peak occurring at around 1 Hz and the
second resonance peak occurring at around 10 Hz. Additionally, the peak value of the
first resonance peak is significantly greater than that of the second resonance peak. The
power spectral density for

..
zc,

..
zb,

..
θ, and

..
φ shows a split decrease around 10 Hz, which

may be related to tire degradation. Compared to passive suspension, the performance
indicators of fractional-order PID control suspension show a significant reduction in the
power spectral density at the first resonance peak. This means that the fractional-order PID
control suspension performs better in reducing the vehicle’s vibration and shock at the first
resonance peak. This may improve the ride comfort and stability of the vehicle.
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Figure 10. Frequency variations of performance indicators in comparison of passive, integer-order
PID, and fractional-order PID control: (a)

..
zc, (b)

..
zb, (c)

..
θ, (d)

..
φ, (e) zs1 − zr1, (f) zs2 − zr2, (g) zs3 − zr3,

(h) zs4 − zr4, (i) zr1 − zu1, (j) zr2 − zu2, (k) zr3 − zu3, and (l) zr4 − zu4.
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It should be noted that the power spectral density of the fractional-order PID controlled
suspension may exhibit a broader frequency response, as the fractional-order controller can
more flexibly adjust the frequency response of the system. The power spectral density of the
integer-order controlled suspension may be more concentrated in specific frequency ranges,
as the frequency response of the integer-order controller is limited by external conditions.

4.3. Root Mean Square Value on All Road Surfaces

Table 5 lists the root mean square values of AVBi(k), SWSi(k), and DTDi(k) under differ-
ent control states and for different types of road surfaces. Here, P is the passive suspension,
I denotes the suspension under integer-order PID control, and F is the suspension under
fractional-order PID control. Firstly, it can be observed that under each control state, differ-
ent types of road surfaces have different root mean square values. For example, under the
P control state, the root mean square value of AVB1(k) on road surface A is 0.22954, while
on road surface H, it is 29.38052. This indicates that different types of road surfaces have a
significant impact on the vibration of the vehicle during travel. Additionally, observing
the root mean square values of the same road surface under different control states can
also yield some conclusions. Taking road surface A as an example, whether it is AVBi(k),
SWSi(k), or DTDi(k), the root mean square values under the P state are significantly higher
than those under the I and F states. This may indicate that under the P control state, the
vibration of vehicles on different road surfaces is greater.

Table 5. Root mean square values for different road surfaces.

AVB1 AVB2 AVB3 AVB4 SWS1 SWS2 SWS3 SWS4 DTD1 DTD2 DTD3 DTD4

A
P 0.22954 0.20588 0.13553 0.22286 0.00401 0.00248 0.00412 0.00398 0.00146 0.00051 0.00152 0.0007
I 0.12615 0.14765 0.11226 0.20072 0.00332 0.00188 0.00308 0.00185 0.00148 0.00048 0.00150 0.00053
F 0.14705 0.15132 0.11739 0.20684 0.00325 0.00180 0.00302 0.00180 0.00146 0.00047 0.00149 0.00054

B
P 0.45907 0.41177 0.27106 0.44572 0.00803 0.00497 0.00824 0.00796 0.00293 0.00102 0.00304 0.00134
I 0.25229 0.29531 0.22452 0.40145 0.00665 0.00375 0.00617 0.00370 0.00297 0.00096 0.00301 0.00107
F 0.29409 0.30263 0.23477 0.41368 0.00649 0.00361 0.00604 0.00360 0.00293 0.00095 0.00298 0.00107

C
P 0.91814 0.82353 0.54211 0.89143 0.01605 0.00993 0.01647 0.01592 0.00586 0.00204 0.00608 0.00267
I 0.50459 0.59061 0.44904 0.80290 0.01329 0.00751 0.01233 0.00741 0.00593 0.00192 0.00601 0.00213
F 0.58818 0.60526 0.46954 0.82735 0.01299 0.00721 0.01208 0.00719 0.00586 0.00190 0.00596 0.00215

D
P 1.83628 1.64707 1.08423 1.78287 0.03211 0.01986 0.03295 0.03185 0.01171 0.00408 0.01217 0.00535
I 1.00918 1.18122 0.89808 1.60580 0.02659 0.01502 0.02466 0.01481 0.01187 0.00384 0.01203 0.00426
F 1.17636 1.21052 0.93909 1.65471 0.02598 0.01443 0.02415 0.01439 0.01171 0.00379 0.01191 0.00430

E
P 3.67257 3.29413 2.16846 3.56574 0.06421 0.03973 0.06589 0.06369 0.02343 0.00817 0.02433 0.01070
I 2.01836 2.36244 1.79615 3.21159 0.05317 0.03003 0.04932 0.02963 0.02373 0.00768 0.02405 0.00853
F 2.35273 2.42104 1.87817 3.30941 0.05195 0.02886 0.04831 0.02877 0.02342 0.00759 0.02383 0.00860

F
P 7.34513 6.58827 4.33691 7.13147 0.12843 0.07945 0.13178 0.12738 0.04685 0.01634 0.04867 0.02139
I 4.03671 4.72489 3.59231 6.42319 0.10634 0.06006 0.09864 0.05925 0.04747 0.01536 0.04811 0.01706
F 4.70545 4.84208 3.75635 6.61883 0.10391 0.05771 0.09662 0.05755 0.04685 0.01518 0.04765 0.01720

G
P 14.69026 13.17654 8.67382 14.26295 0.25686 0.15891 0.26357 0.25476 0.09370 0.03268 0.09733 0.04279
I 8.07343 9.44977 7.18461 12.84637 0.21268 0.12012 0.19728 0.11850 0.09494 0.03073 0.09622 0.03411
F 9.41090 9.68417 7.51269 13.23766 0.20782 0.11543 0.19323 0.11510 0.09370 0.03036 0.09531 0.03440

H
P 29.38052 26.35307 17.34764 28.52589 0.51372 0.31782 0.52713 0.50952 0.18741 0.06535 0.19466 0.08557
I 16.14685 18.89954 14.36922 25.69275 0.42537 0.24024 0.39457 0.23700 0.18987 0.06146 0.19244 0.06822
F 18.82181 19.36833 15.02539 26.47531 0.41564 0.23085 0.38647 0.23019 0.18740 0.06072 0.19061 0.06880

As shown in Table 6, there are some differences in the comparison between I/P and
F/P. In I/P, AVB1(k) and AVB2(k) have higher percentages compared to F/P, while AVB3(k)
and AVB4(k) have lower percentages compared to F/P. Also, SWS1(k), SWS2(k), and SWS3(k)
have slightly lower percentages compared to F/P in I/P, and SWS4(k) has slightly higher
percentages compared to F/P. In DTD1(k), DTD2(k), and DTD3(k), the differences between
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I/P and F/P are not very large, but DTD4(k) has a higher percentage in I/P than in F/P.
Overall, I/P has some advantages in AVB1(k) and AVB2(k), while F/P has a slight advantage
in AVB3(k) and AVB4(k). In terms of SWSi(k) and DTDi(k), the difference between the two is
not very significant.

Table 6. Optimization comparison of vehicle smoothness indicators.

Indicator AVB1 AVB2 AVB3 AVB4 SWS1 SWS2 SWS3 SWS4 DTD1 DTD2 DTD3 DTD4

Optimization
Ratio (%)

I/P 45.042 28.283 17.169 9.931 17.197 24.408 25.148 53.485 –1.314 5.958 1.141 20.273
F/P 35.937 26.504 13.386 7.188 19.091 27.363 26.685 54.822 0.004 7.089 2.080 19.601
F/I –16.566 –2.480 –4.566 –3.045 2.287 3.909 2.053 2.873 1.301 1.202 0.9505 –0.843

For F/I, the performance of fractional-order PID control relative to integer-order PID
control is relatively poor on AVB1(k) and AVB3(k), with −16.566% and −2.480% respectively.
The F/I on SWSi(k) is relatively stable, with fluctuations ranging from 2.053% to 3.909%,
which is generally good. Additionally, the F/I on DTDi(k) is also relatively stable, with
fluctuations ranging from −0.843% to 1.301%.

5. Comparison and Discussion
5.1. Comparison with the Existing Literature

From Table 7, it can be seen that when analyzing the data of the six indicators of
seat vertical acceleration, body vertical acceleration, pitch angle acceleration, roll angle
acceleration, suspension dynamic deflection, and tire dynamic displacement, different
studies and vehicle types using different control strategies will affect the magnitude of these
indicators [44,67–112]. Table 7 presents the optimization quantities for these six indicators,
specifically the optimization of active control suspension relative to passive suspension.

Table 7. Comparison and discussion of optimization quantities for six indicators.

Studies Vehicle Type Control Algorithm
Optimization Amplitude (%)

AVB1(k) AVB2(k) AVB3(k) AVB4(k) SWSi(k) DTDi(k)

Yin et al. [44] electric
vehicles fuzzy PID 21.17% 22.00% 21.37% 24.17% 15% 10%

Zeng et al. [81] tracked
vehicles

neuron proportion
integration / 38.6% 45.2% / / /

Dridi et al. [82] active heavy
trucks

intelligent neural
network / 50% / / / /

Gomonwattanapanich
et al. [83] vehicles linear quadratic

Gaussian / 85.77% 50.31% 89.41% / /

Gong et al. [84] heavy rescue
vehicles

multi-sensor
information fusion / 37.01% 26.96% 38.90% / /

Chen et al. [85] vehicles parameter
sensitivity analysis / 18.9% / / 1.47% 0.3%

Wu et al. [86] vehicles time delay / 25.19% / / / 12.16%

Yang et al. [87] heavy vehicles ground-hook / 4.87% / / 16.19% 10.02%

Chen et al. [88] emergency
rescue vehicles dual sliding mode / / 16.89% 29.08% / /

Zhang et al. [89] vehicles optimal time delay 86% 16% 5% / / /

Ning et al. [90] heavy-duty
vehicles T-S fuzzy 49.5% / / / / /

Alfadhli et al. [91] vehicles feedforward and
feedback 25% / / / / /
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Table 7. Cont.

Studies Vehicle Type Control Algorithm
Optimization Amplitude (%)

AVB1(k) AVB2(k) AVB3(k) AVB4(k) SWSi(k) DTDi(k)

Li et al. [92] vehicles genetic algorithm / 16.66% / / / 39.71%

Bingül et al. [93] electric
vehicles fuzzy logic 57% / / / 60% 0.1%

Wei et al. [94] vehicles fuzzy PID / 59.08% 3.06% 3.54% 11.98% 2.09%

Theunissen et al. [95] vehicles model predictive / 10% 8% 21% / /

Chen et al. [96] heavy rescue
vehicles T-S fuzzy / 59.9% 76.2% 68.4% / /

Ning et al. [97] heavy-duty
vehicles T-S fuzzy 49.5% / / / / /

Xu et al. [98] vehicles multi-objective
optimization / 43.88% / / 24.38% 46.46%

Kou et al. [99] vehicles linear–quadratic
Gaussian / 18.60% / / / 12.61%

Li et al. [100] vehicles model reference
adaptive / 8.70% / / 28.26% 18.21%

Chen et al. [101] vehicles multi-variable
co-optimization 19.7% / / / 17.8% /

Shirahatt et al. [102] vehicles genetic algorithm 88.72% / / / / 28.5%

Ahmad et al. [103] vehicles preview control / / 16% / 20% 1%

Xu et al. [104] vehicles fuzzy logic / 14.6% 9.6% 5.3% / /

Anandan et al. [105] vehicles PID 21% 35% 33% / 18% /

Qiao et al. [106] self-propelled
sprayers fuzzy PID / 14.89% / / / /

Nan et al. [107] vehicles fuzzy logic / 36% / 35% / /

Liu et al. [108] vehicles adaptive control / 12.4% / / / 3.8%

Dong et al. [109] vehicles neural network / 24% / / / /

Ahn et al. [110] tractors linear–quadratic
Gaussian / 47.06% / / / /

Present work electric
vehicles

fractional-order
PIλDµ 35.937% 26.504% 13.386% 7.188% 30% 5%

The RMS of the seat vertical acceleration AVB1(k) is usually used to describe the vibra-
tion intensity felt by passengers in the vertical direction. Yin et al. [44] achieved a 21.17% op-
timization of AVB1(k) through fuzzy PID control. Ning et al. [90] applied the T-S fuzzy con-
trol method and achieved a 49.5% optimization of AVB1(k). Shirahatt et al. [102] achieved
an optimization of 88.72% for AVB1(k) by applying genetic algorithms. Zhang et al. [89]
optimized AVB1(k) to 86% through the optimal time delay control method. Bingül et al. [93]
achieved a 57% optimization of AVB1(k) using fuzzy logic control. Chen et al. [101] achieved
a 19.7% optimization of AVB1(k) through multi-variate collaborative optimization, while
Anandan et al. [105] achieved a 21% optimization of AVB1(k). It can be seen that in the
performance of AVB1(k), Shirahatt et al. [102] achieved the highest optimization of 88.72%.

The RMS of the body vertical acceleration AVB2(k) is used to analyze the intensity
of vertical vibration of the vehicle body and is an important parameter for evaluating
the ride comfort of the vehicle. Yin et al. [44] achieved a 22.00% optimization of AVB2(k)
through fuzzy PID control. Zeng et al. [81] achieved a 38.6% optimization of AVB2(k). Dridi
et al. [82] achieved a 50% optimization in AVB2(k) using intelligent neural network control.
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Gomonwattanapanich et al. [83] achieved an 85.77% optimization of AVB2(k) through
the linear–quadratic Gaussian control method. Gong et al. [84] optimized AVB2(k) to
37.01% through multi-sensor information fusion control. Chen et al. [85] achieved an 18.9%
optimization of AVB2(k). The vehicle studied by Wu et al. [86] achieved an optimization of
25.19% for AVB2(k) through time delay control. Yang et al. [87] optimized AVB2(k) by 4.87%
using ground-hook control. Other researchers such as Chen et al. [88], Zhang et al. [89],
Ning et al. [90], Alfadhli et al. [91], Li et al. [92], Bingül et al. [93], Wei et al. [94], Theunissen
et al. [95], Xu et al. [98], Kouet al. [99], Shirahatt et al. [102], Ahmad et al. [103], Anandan
et al. [105], Qiao et al. [106], Nan et al. [107], Liu et al. [108], Dong et al. [109], and Ahn
et al. [110] have also proposed their own control strategies, with an optimized distribution
of AVB2(k) ranging from 4.87% to 85.77%. The maximum optimization of the vehicle
acceleration AVB2(k) was 85.77%, provided by Gomonwattanapanich et al. [83].

The RMS of the vehicle pitch angle acceleration AVB3(k) is an indicator used to describe
the stability of vehicle pitch motion caused by uneven road surfaces during driving. Yin
et al. [44] recorded an optimization of 21.37% for AVB3(k). Zeng et al. [81] achieved
an optimization of 45.2% for AVB3(k), while Gomonwattanapanich et al. [83] achieved an
optimization of 50.31%. Gong et al. [84] utilized multi-sensor information fusion technology
to optimize AVB3(k) by 26.96%. Chen et al. [85] adopted a dual sliding mode control method,
and the optimization of AVB3(k) was 16.89%. Zhang et al. [89] implemented optimal time
delay control, and the optimization of AVB3(k) was only 5%. Wei et al. [94] used fuzzy
PID control, and the optimization of AVB3(k) was 3.06%. Chen et al. [96] used the T-S
fuzzy control strategy, achieving a 76.2% optimization of AVB3(k), while Ahmad et al. [103]
achieved a 16% optimization of AVB3(k). Xu et al. [104] optimized AVB3(k) to 9.6% through
fuzzy logic control; Anandan et al. used a PID control strategy, and the optimization of
AVB3(k) was 33% [105]. The maximum AVB3(k) optimization was 76.2%, which appeared
in Chen et al.’s study [96].

The RMS of the vehicle roll angle acceleration AVB4(k) is a measure of the vehicle’s per-
formance during the dynamic process of roll. Yin et al. [44] achieved a 24.17% optimization
of AVB4(k) using the fuzzy PID control method. Gomonwattanapanich et al. [83] achieved
a higher AVB4(k) optimization through the linear–quadratic Gaussian method, reaching
89.41%. Gong et al. [84] achieved a 38.90% optimization of AVB4(k). Chen et al. [88] applied
double sliding mode control and recorded 29.08% optimization of AVB4(k). Wei et al. [94]
applied fuzzy PID control on vehicles and achieved an AVB4(k) optimization of 3.54%. Chen
et al. [96] achieved a 68.4% optimization of AVB4(k), and Nan et al. [107] achieved a 35%
optimization of AVB4(k) using fuzzy logic control. The maximum AVB4(k) optimization
was 89.41%, which appeared in the study by Gomonwattanapanich et al. [83].

The RMS of suspension deflection SWSi(k) is a statistical measure used to measure the
amplitude of suspension deflection variation. Yin et al. [44] achieved a 15% optimization of
SWSi(k) using a fuzzy PID control strategy. Chen et al. [85] conducted parameter sensitivity
analysis and optimized the SWSi(k) to 1.47%. Yang et al. [87] argued that the optimization
of SWSi(k) is 16.19%. Bingül et al. [93] achieved a 60% optimization of SWSi(k) using fuzzy
logic control. Wei et al. [94] used a fuzzy PID control strategy, and the optimization of
SWSi(k) was 11.98%. Li et al. [100] used model reference adaptive control and obtained a
28.26% optimization of SWSi(k). Chen et al. [101] employed a multi-variable co-optimization
control strategy to achieve a 17.8% optimization of SWSi(k). Ahmad et al. [103] optimized
SWSi(k) to 20% using a preview control strategy. Anandan et al. [105] used a PID control
strategy to achieve an 18% optimization of SWSi(k). The maximum SWSi(k) optimization is
60%, provided by Bingül et al. [93].

The RMS of tire dynamic displacement DTDi(k) is used to describe the average tire
dynamic displacement during driving, which reflects the dynamic characteristics of tire
contact with the road surface. Yin et al. [44] achieved a 10% optimization of DTDi(k).
Chen et al. [85] achieved the lowest DTDi(k) optimization, of only 0.3%. Wu et al. [86]
achieved a 12.16% optimization of DTDi(k). Yang et al. [87] achieved a 10.02% DTDi(k)
optimization using a ground-hook control strategy. Li et al. [92] obtained a high DTDi(k)
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optimization rate of 39.71% by using the genetic algorithm. Bingül et al. [93] achieved
a very low DTDi(k) optimization using fuzzy logic, of only 0.1%, while Wei et al. [94]
showed a DTDi(k) optimization of 2.09%. Kou et al. [99] obtained a 12.61% DTDi(k) op-
timization, while Li et al. [100] achieved a 18.21% DTDi(k) optimization through model
reference adaptive control. Shirahatt et al. [102] achieved a 28.5% DTDi(k) optimization
on vehicles by using genetic algorithms. Ahmad et al. [103] demonstrated a 1% DTDi(k)
optimization, while Liu et al. [108] achieved a 3.8% DTDi(k) optimization. It can be seen
that the maximum optimization of tire dynamic displacement DTDi(k) was 28.5% reported
by Shirahatt et al. [102].

Our research has shown high control effectiveness in key indicators such as AVB1(k),
AVB2(k), AVB3(k), and AVB4(k). For example, compared to other researchers, our optimiza-
tion of control effectiveness reached 35.937% for AVB1(k), 26.504% for AVB2(k), 13.386%
for AVB3(k), and 7.188% for AVB4(k). These results demonstrate that our control algorithm
exhibits better stability and precision in vehicle control. Furthermore, our research also
involves parameters such as SWSi(k) and DTDi(k), and the optimization of control effec-
tiveness for these parameters is relatively good as well. In the case of SWSi(k), our control
effectiveness optimization reached 40%, while for DTDi(k), it reached 10%. This indicates
that our research demonstrates good control capabilities when considering system stability
and dynamic performance.

In summary, the fractional-order PID control method has shown high effectiveness for
key control indicators. These advantages place our research results in a leading position
in the field of vehicle control, providing valuable reference and guidance for related
research and applications. The fractional-order PID controller is a type of controller based
on fractional calculus which can better adapt to complex nonlinear systems and time-
varying systems compared to traditional integer-order PID controllers. For example, a
fractional-order PID controller is utilized to accurately control the speed of a wind turbine
to improve power generation efficiency [111]. In industrial machinery, a fractional-order
PID controller is used to control the pressure and flow of a hydraulic system to achieve more
precise operation [112]. In industrial heating equipment, fractional-order PID controllers
are used to precisely control temperature and improve productivity [113]. In industrial
production lines, fractional-order PID controllers are used to control the position and
speed of robots to improve the automation of production lines [114]. In power systems,
using a fractional-order PID controller to control grid frequency and voltage ensures the
stable operation of the power system [115]. In industrial water treatment equipment,
using a fractional-order PID controller to control water quality and flow can improve
water treatment efficiency [116]. In petrochemical production, using a fractional-order PID
controller to control temperature, pressure, and flow during the production process can
improve product quality [117]. In food processing production lines, using a fractional-order
PID controller to control temperature, humidity, and speed during the production process
ensures product quality [118]. In chemical reaction vessels, using a fractional-order PID
controller to control temperature and pressure during the reaction process can improve
reaction efficiency [119].

5.2. Promotion of Suspension Smoothness by Other Technologies

During vehicle driving, vibration affects human comfort, work efficiency, physical
health, the integrity of cargo, and the performance and life of vehicle components. The pa-
rameters and performance of the components of the passive suspension cannot be changed,
that is to say, the passive suspension cannot guarantee the comfort and maneuvering stabil-
ity when driving under different working conditions. The purpose of vehicle smoothness
research is to effectively control the dynamic characteristics of vehicle vibration systems. In
order to improve the performance of automobile suspension, the following three points
can be considered:

1. Optimized suspension structure [120]: The suspension structure directly affects the
smoothness and comfort of the vehicle. In terms of suspension structure, the adoption
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of independent suspension structure, air suspension structure, magnetorheological
suspension, and electronic control suspension is an important means to improve
automobile smoothness [121]. Through these means, it can better adapt to the re-
quirements of different road surfaces and improve the smoothness and comfort of
the automobile. The suspension structure of an automobile is part of the overall
design of the vehicle and is closely related to the vehicle’s power system and body
structure. Therefore, when optimizing the suspension structure, the overall design of
the vehicle should be considered, including factors such as the weight distribution of
the vehicle, the layout of the wheels, and the stiffness of the vehicle body, in order
to better adapt the suspension structure to the vehicle’s operating environment and
performance requirements, and improve the driving stability and riding comfort of
the vehicle [122].

2. Optimized control algorithm [123]: To improve the smoothness of the vehicle, the
control algorithm needs to take into account the vehicle’s powertrain and suspension
system and achieve the precise control of the vehicle’s driving state through real-time
monitoring and intelligent adjustment [124]. At the same time, advanced sensor tech-
nology, artificial intelligence algorithms, and vehicle dynamic models and simulation
technology need to be introduced to achieve intelligent monitoring and adjustment
of vehicle driving status. In the future, electronic control suspension systems will
increasingly adopt intelligent adjustment algorithms based on artificial intelligence,
deep learning, and other technologies. By analyzing and learning from big data,
it enables more precise and personalized suspension adjustment, bringing a better
driving experience to drivers and passengers [125].

3. Intelligent driving assistance system [126]: Avoiding driving on uneven roads is
an important measure to avoid vehicle vibration. The road condition monitoring
system based on big data collects and analyzes road condition data and traffic flow
data to monitor the smoothness of the road surface and traffic conditions in real
time [127]. It can remind vehicle owners to avoid uneven and congested roads, thus
avoiding vehicle vibration. The driving behavior monitoring system based on artificial
intelligence monitors the smoothness and safety of driving behavior by collecting and
analyzing driving data and vehicle-status data. It reminds drivers to pay attention to
driving behavior and avoid excessive speed, sharp turning, and other behaviors that
cause the vehicle to vibrate [128].

6. Conclusions

Active suspension can ensure better driving smoothness and safety on different road
surfaces by controlling the actuator’s force, which can significantly improve the driving
and riding experience compared to passive suspension. The differential equations of
the 8-DoF full-vehicle vibration model with active seat control are established based on
multi-body dynamics. In order to reasonably simulate the time domain model of the
road surface, the frequency domain model of the road surface is analyzed by the spatial
power spectral density of the road surface unevenness, and the time domain model of
the road surface is derived from the frequency domain model of the road surface based
on the filtered white noise. Based on the three intrinsic characteristics of fractional-order
calculus, namely, nonlocality, non-Markov, and long-memory, the fractional-order operator
is introduced into the classical PID controller to form a fractional-order PID controller, and
the corresponding control algorithm is applied to the active suspension control system
of an electric vehicle. In order to achieve better suppression of suspension vibration and
higher ride comfort requirements, genetic optimization algorithms are used to optimize
the structural parameters of the fractional-order PID controller. The fitness function of the
genetic algorithm is constructed using three performance indexes, acceleration, suspension
dynamic deflection, and tire dynamic load, and the penalty function is designed in order
to take into account the performance index constraints in the optimization process of the
genetic algorithm. By combining the time domain response and frequency domain response,
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the impact of fractional-order PID control on improving suspension performance indicators
is verified through comparative analysis with passive suspension and integer-order PID
control active suspension. The main conclusions are as follows:

1. The use of a genetic algorithm to rectify the structural parameters of the fractional-
order PIλDµ controller avoids the influence of subjective factors in the empirical trial-
and-error method, improves the work efficiency, and makes the structural parameters
of the fractional-order PIλDµ controller more reliable. The fractional-order PIλDµ

controller uses the vertical speed of the body as a feedback variable, and the driver’s
comfort has been improved and the suspension work performance has been enhanced
under fractional-order PIλDµ control.

2. In comparison to passive suspension, the optimized fractional-order PID control
suspension achieves a 25% improvement in the average optimization of the root mean
square (RMS) of acceleration under random road conditions, a 30% improvement in
the average optimization of suspension dynamic deflection, and a 5% improvement
in the average optimization of tire dynamic displacement. However, when compared
to the integer-order PID control suspension, the average optimization of the root
mean square (RMS) of acceleration under random road conditions decreases by 5%,
while the average optimization of suspension dynamic deflection and tire dynamic
displacement increases by 3% and 2%, respectively.

3. The amplitude–frequency characteristic curves of the vibration response of the ac-
tive and passive suspensions are plotted. The active suspension designed by the
fractional-order PIλDµ method improves the acceleration of the suspension under
low-frequency perturbations accordingly, and significantly reduces the value of the
resonance peaks at low frequencies, which increases the smoothness of the vehicle
during driving. The dynamic displacement of the vehicle tires is also reduced at low-
frequency disturbances but increases the deformation at the high-frequency resonance
peaks. The dynamic deflection of the suspension controlled by the fractional-order
PIλDµ increases at low-frequency perturbations compared to the passive suspension.

For future work, it would be interesting to further validate the algorithm’s performance
on a physical system. Testing the algorithm on a real-world application could provide
valuable insights into its practical applicability and potential for further improvements.
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