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Abstract: The lateral stability control of vehicles is one of the most crucial aspects of vehicle safety.
This article introduces a coordinated-control strategy designed to enhance the handling stability of
distributed-drive electric vehicles. The upper controller uses active front steering and direct yaw
moment-control controllers designed based on sliding-mode control theory. The lower controller
optimally allocates control inputs to the upper controller, considering factors such as load transfer
and tire load rate. It divides the stability region by relying on the phase plane and develops a
coordinated-control strategy based on the degree of deviation of the vehicle state from the stability
region. The results of the simulation experiments demonstrate that the proposed control strategy
effectively improves handling stability under extreme working conditions.
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1. Introduction

The term “vehicle handling stability” refers to the ability of a vehicle to maintain
good maneuverability and stability under driver operation. This encompasses the vehicle’s
stability performance when turning, making sudden turns, or encountering adverse road
conditions. The comfort and stability of a vehicle depend on the interaction between the
driver and the environment. However, due to the non-linear characteristics of the vehicle
and uncertainties in the driver’s interaction with the environment, stability can be lost in
certain conditions. Therefore, electronic stability programs have been developed to address
this issue in many vehicles. Electric vehicles with distributed drive have become the ideal
platform for implementing electronic stability control systems due to their independent
control of all four wheels, fast response times, and excellent controllability.

Active front steering (AFS) and direct yaw moment control (DYC) are often used to
improve a vehicle’s lateral stability, and both control methods can be used independently for
stability control. Active front-wheel steering (AFS) improves the vehicle’s ability to stabilize
the ride by providing an additional front-wheel steering angle. Wu Tong [1] proposed an
AFS control strategy based on vehicle-state estimation and mass identification to address
the difficulty in measuring vehicle state and actual mass. Simulation results verified the
effectiveness of the control strategy in dealing with changes in vehicle mass. A novel
active forward-steering (AFS) control strategy was proposed by Zhang J [2] with the goal
of improving the stability and maneuverability of a vehicles. This control strategy consists
of two components: an upper controller and a lower controller. The upper controller uses
Adaptive Recursive Integral Terminal Sliding Modal (ARITSM) control, which is highly
robust and converges quickly.

DYC (directional yaw control) maintains vehicle stability by generating additional
yaw moments through the difference in longitudinal forces between the two sides of the
vehicle [3]. There have also been several studies on the effect of DYC on the stability
performance of the vehicle chassis. The authors of [4] estimated the actual side inclination
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angle using a non-linear disturbance observer and further designed a second-order sliding-
mode (SOSM) controller, which positively experimentally verified that the proposed SOSM
controller is more effective.

In paper [5], the author designed a center-of-gravity lateral-inclination angle based on
Kalman filtering, estimated the wheel slip characteristics using Forgotten Factor Recursive
Least Squares (FFRLS), and proposed a yaw torque control method with fuzzy rules to
maintain the stability and comfort of the vehicle.

However, both control methods have their own drawbacks and limitations. For
example, under conditions of high sideways acceleration, the effectiveness of AFS is
compromised as the tires operate in the non-linear region, hindering its ability to improve
stability. Similarly, during DYC intervention in the driving process, changes in longitudinal
forces can impact vehicle speed, which can cause driver discomfort [6]. To achieve effective
coordinated control, it is important to address the limitations of a single control system and
reduce coupling while leveraging the strengths of each subsystem.

Numerous academic studies have investigated the control of AFS and DYC for four-
wheel independent-drive trams. The focus has primarily been on integrated control [7–9]
and coordinated control [10–12]. Zhang, L [13] developed a fast terminal sliding-mode
AFS controller using the inverse stepping control method. This was then integrated with
DYC to form an upper controller, with the lower controller outputting appropriate torque
to each wheel. In one paper [14], the authors propose a control strategy for optimal
allocation. The simulation results compare and evaluate the average allocation, dynamic
allocation, and the optimization methods presented in the paper. The results indicate
that the optimized method is more adaptable to changes in road conditions and vehicle
dynamics and improves path-tracking accuracy.

In addition, fuzzy control is often used in the development of stability controllers [14].
For instance, Li [15] proposed a T-S fuzzy model to estimate unmeasurable state variables
and designed a stability controller to enhance the system’s robustness to parameter per-
turbations. The simulation results demonstrate that the designed controller is robust to
parameter agitation. Moreover, [16] discusses lateral stability control while maintaining a
slip rate within a reasonable range and considering various constraints. The study intro-
duces a limit on the road attachment coefficient and limits the output torque of the motor.
Some studies have also explored incorporating energy optimization into stability controller
design [17]. This allows vehicles to maintain stability while also considering performance
metrics such as motor energy consumption.

This paper focuses on distributed electric vehicles and presents a coordinated-control
strategy based on sliding-mode control. Straight swing torque and an active front-wheel
steering controller are designed, taking into account the constraints of ground attachment
conditions and the maximum torque of the motor. Two controllers are developed for the
operating range and coordination rules, using the critical angle as a boundary condition.
Simulation experiments show that the coordinated-control strategy outperforms the ordi-
nary integrated-control performance, fully utilizing the advantages of the control system
and improving the stability of the vehicle’s handling performance.

The main contributions of this paper include:

(1) AFS and DYC stability controllers were designed using sliding-mode control to en-
hance the approach rate.

(2) The deviation from the stability region is measured using a distance function based
on the phase plane, and coordinated-control rules are formulated accordingly.

(3) The output of the controllers is optimally allocated, considering vertical load transfer
and tire loading during working conditions.

2. Vehicle-Dynamics Model
2.1. Seven-Degree-of-Freedom Vehicle-Dynamics Model

The handling stability of a vehicle is mainly affected by the transverse pendulum
motion and the lateral motion. Therefore, a whole-vehicle-dynamics model, including
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longitudinal, transverse, lateral, and four-wheel rotations, was established, as shown in
Figure 1.
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Longitudinal dynamic equation:

m
( .
vx − vyω

)
= (Fx1 + Fx2) cos δ f −

(
Fy1 + Fy2

)
sin δ f + Fx3 + Fx4 (1)

Lateral dynamic equation:

mvx

( .
β + ω

)
= (Fx1 + Fx2) sin δ +

(
Fy1 + Fy2

)
cos δ + Fy3 + Fy4 (2)

Yaw dynamic equation:

Iz
.

ω = l f (Fx1 + Fx2) sin δ f + l f
(

Fy1 + Fy2
)

cos δ f + tr(Fx2 − Fx1) cos δ f
+ 1

2 tr
(

Fy1 − Fy2
)

sin δ f − lr
(

Fy3 + Fy4
)

cos δ f +
1
2 tr(Fx4 − Fx3)

(3)

The rotational motion is shown in Figure 2. Its rotation equation is

Jω
·

ωi = Tdi − FxiRi (4)
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m is the mass of the whole vehicle. Ri is the effective radius of the wheel, Jω is
the moment of inertia of the wheel, ωi is the angular velocity of rotation, and Tdi is the
individual-wheel drive torque.

Vertical load on each wheel:

Fz1, Fz2 = m
(

gb
L

−
axhg

L

)
·
(

1
2
∓

ayhg

l f g

)
Fz3, Fz4 = m

(
ga
L

+
axhg

L

)
·
(

1
2
∓

ayhg

lrg

) (5)
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2.2. Tire Model

The stability of a vehicle is greatly influenced by the non-linear characteristics of its
tires. Therefore, accurately describing the side bias characteristics of the tires is crucial in
determining the control effect of the stability controller. In this paper, we have adopted the
Magic Tire formula [18,19] to describe the tire force due to its higher fitting accuracy and
fewer parameters. The general expression form of the formula is as follows:{

Fy = D sin(Carctan(BX − E(BX − arctan(BX)))) + Sv
X = α + Sh

(6)

in the above equation, Fy is the lateral force, D is the peak factor, C is the shape factor, B
is the stiffness factor, E is the curvature factor, α is the sideslip angle, Sh is the horizontal
drift, and Sv is the vertical drift factor. The specific expressions of these polynomials can be
referred to in [20].

2.3. Drive Motor Model

The motor mounted on the wheels provides power for distributed vehicles and deter-
mines the vehicle’s control effect [21,22]. This paper focuses on vehicle-dynamics modeling
and simulation; therefore, the motor model’s accuracy only needs to meet the driving
brake-force output requirements during the simulation process. The motor’s response
characteristics are used to simplify it into a second-order response system. The Simulink
model is shown in Figure 3, and the transfer function of the motor can be expressed as:

G(s) =
Td
Td

∗ =
1

2ξ2s2 + 2ξs + 1
(7)
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Td represents the actual torque, Td
∗ represents the target torque, and ξ is the damping

ratio for second-order systems and depends mainly on the motor’s own parameters.

2.4. Reference Models

The linear two-degree-of-freedom model is simple to express but can describe the
vehicle motion characteristics accurately under regular working conditions. It is commonly
used as a reference model for the stability control of vehicle dynamics. Figure 4 illustrates
the motion analysis of the model.
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The continuous-time dynamic state-space system model can be derived by using the
front-wheel angle as a system input:

( .
β
.

ω

)
=


2k f + 2kr

mvx

2ak f − 2bkr

mv2
x

− 1

2ak f − 2bkr

Iz

2a2k f + 2b2kr

Izvx

( β
ω

)
+


−2k f

mvx
−2ak f

Iz

δ f (8)

Using the uniform circular motion of the vehicle as the characteristic feature of steady-
state steering, the yaw rate ω remains constant, and

.
vy = 0,

.
ω = 0. The ideal yaw rate can

be deduced by the two-degree-of-freedom vehicle-dynamics model, taking into account the
road-adhesion conditions and the actual condition of the tire under the ultimate working
condition, using the substituted value from Formula (8):

ωd = min
{∣∣∣∣ vxδ

l(1 + Kv2
x)

∣∣∣∣, ∣∣∣∣0.85
µg
vx

∣∣∣∣} · sgn(ω) (9)

K =
m
l2

(
a
kr
− b

k f

)
is the stability factor, sgn is the sign function, and µ is the road

surface-adhesion coefficient.
The vehicle’s ability to follow its intended path is significantly influenced by the

presence of a sideslip angle. Additionally, an excessively large sideslip angle can lead
to lateral instability. Therefore, researchers in numerous studies have designed the ideal
sideslip angle to be 0 to optimize vehicle handling stability [23,24].

βd = 0 (10)

3. Controller Design
3.1. Longitudinal Speed Tracking

The aim of this paper is to focus on stability control, rather than conducting an in-depth
study on speed following control. To achieve this, we adopted a PID controller design due
to its simple structure and the ease of parameter adjustment. The speed tracking controller
takes the driver’s desired speed and current speed as inputs, and it outputs the generalized
driving torque, with its control law as:

ev = vtarget − vr (11)

Fx = kpev + ki

∫
evdt + kdd

ev

t
(12)

In this paper, the values of kp, ki, kd are taken as 500, 500, 10.

3.2. AFS Controller Design

AFS mainly functions in the stage where the non-linear characteristics of the tires are
less pronounced, typically the side-slip angle of the vehicle’s center of mass is small during
this phase. Selection of traverse angular velocity deviation as a control target:

eω = ω − ωd (13)

Selection of the integral sliding-mode surface:

sω = ew + λ1

∫ t

0
ewdt (14)

When choosing the convergence rate, we opt for a new form of enhanced convergence
rate to reduce the jitter vibration phenomenon caused by the sliding-mode control near the
sliding-mode surface.
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.
s = −γ1|s|nsgn(s)− γ2|s|nsgn(s)− γ3s (15)

The final form of the additional front-wheel angle is obtained by combining Equation (8)
and by calculation:

δ f =
ak f − bkr

Iz
β +

a2k f + b2kr

Izvx
ω −

ak f

Iz
δ f −

.
ωd + λ1(ω − ωd)

+γ1|s|nsgn(s) + γ2|s|nsgn(s) + γ3s
(16)

To further optimize the controller and jitter, the saturation function can be defined as:

sat(s) =


1, s > ∆
ks, |s| < ∆, k = 1

∆
−1, s < −∆

(17)

During maneuvers such as turning, the vehicle experiences a change in the vertical
load on the left and right tires. However, conventional active front-steering (AFS) systems
often adopt an idealized approach when allocating additional front-wheel steering angles,
treating the left and right supplementary front-wheel angles as equal. This approach may
cause lateral force saturation on the inside wheel, while the potential of the outside wheel’s
lateral force remains underutilized. Consequently, this diminishes the vehicle’s capability
for extreme turning. To address this, a redistribution of the added steering angles for active
front-wheel steering is proposed. This involves adjusting the steering angles by either
reducing the angle on the inside wheel or increasing it on the outside wheel, enabling the
outside wheel to contribute significantly to the required lateral force during turning: δ1 =

δ f

2
+

(
Fz1 − Fz2

Fz1 + Fz2

)
δ f

2
δ2 = δ f − δ1

(18)

3.3. DYC Controller Design

As the tire side-deflection angle increases, it gradually exhibits non-linear characteris-
tics. At this point, the lateral force provided by active steering approaches saturation, and
the stability control effect cannot be achieved solely through AFS. Therefore, the direct yaw
moment controller must intervene, considering both the error in the transverse pendulum
angular velocity and the error in the lateral deflection of the center of mass. This combined
error is defined as:

e = eω + τeβ = (ω − ωd) + τ(β − βd) (19)

τ is not weight coefficients but is used to unify dimensions. In some studies, the above
expression is used as the synthetic error to design the controller. However, this definition
does not guarantee in all cases that eω and eβ are able to converge simultaneously. When
eω = −τeβ, the combined error e is in a state of convergence, but yaw velocity deviation
and centroid side deviation exist simultaneously. To achieve the effect of convergence at
the same time, we refer to the comprehensive error definition form and controller design
method proposed by Chunyun F [25]:

e = s1 =
ε

|∆ω|max
|eω |+

1 − ε

|∆β|max

∣∣eβ

∣∣ (20)

In the above formula, ε is the weight coefficient. The maximum yaw velocity error
∆ωmax and side yaw angle error ∆βmax allow for the stable running of the vehicle; they are
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selected to unify the dimension. Meanwhile, their regularization is carried out to avoid a
situation on which the comprehensive error is zero while the respective error is not zero.

∆Mz = Iz

(
.

ωd −
|∆ω|max
|∆β|max

1 − ε

ε

.
βsat

(
(ω − ωd)β

∆1

))
− a
(

Fy1 + Fy2
)

+b
(

Fy3 + Fy4
)
−

l f

2
(Fx2 − Fx1)−

lr
2
(Fx4 − Fx3)− k2sat

(
ω − ωd

∆2

) (21)

3.4. Direct Yaw Moment Distribution

Compared to traditional vehicles, distributed electric vehicles can flexibly distribute
the required driving force among all four wheels. The primary objective of longitudinal
force distribution in the vehicle is to achieve optimization goals by optimally distributing
torque from each motor. This is carried out while ensuring that the longitudinal speed
matches the ideal speed and meets the additional yaw moment required for stability control.
Constraints such as the peak power of the drive motor and ground-adhesion conditions
must be considered when performing longitudinal force distribution.

In this case, the allocation of the lower-level transverse moment is aimed at achieving
the minimum loading rate among the four tires as the optimization objective for moment
allocation. This is to ensure that the vehicle can maintain a significant lateral stability
margin throughout the control process. The loading rate of the tires, in this context, is
defined as:

ξi =
F2

xi + F2
yi

(µFzi)
2 (22)

Fxi, Fyi and Fzi are the longitudinal, lateral, and vertical forces on the corresponding
tires, and µ is the pavement-adhesion coefficient.

Longitudinal speed tracking requirements:

1
m

Fx1 +
1
m

Fx2 +
1
m

Fx3 +
1
m

Fx4 =
.
νx − νyω (23)

Yaw moment requirement:

−
l f

2
Fx1 +

l f

2
Fx2 −

lr
2

Fx3 +
lr
2

Fx4 = Mz (24)

Considering that the longitudinal and lateral forces of the wheel are constrained by
the friction circle inequality during the driving process:

√
F2

xi + F2
yi ≤ µ · Fzi

Ti
Re

≤ µFzi
(25)

The limit the peak torque of the wheel motor:

−Tmax

Re−Tmax

Re−Tmax

Re−Tmax

Re


≤


Fx1
Fx2
Fx3
Fx4

 ≤



Tmax

Re
Tmax

Re
Tmax

Re
Tmax

Re


(26)

The maximum motor output torque is limited by the maximum electromagnetic torque
of the motor, Tmax is the maximum output torque of the motor, and Re is the effective radius
of the wheel at work.
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4. Coordinated-Control Strategy

This article presents a control framework, as shown in Figure 5. After designing the
AFS and DYC controllers separately, guidelines should be developed to coordinate controls
appropriately.
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Figure 5. Coordination-control system structure.

The driver model outputs the front-wheel angle and performs longitudinal speed
tracking based on pre-determined road information. The reference model outputs ideal
state parameters based on the current vehicle speed and other information to provide input
to the stability controller, while the coordination controller dynamically adjusts the stability
controller weights in real time based on the current vehicle state and applies the optimized
corner and wheel torque to the actuators.

Phase-plane stability analysis is often used for stability control of vehicle dynamics. In
this paper, we use the 2-DOF vehicle equations to continuously traverse the phase-plane

trajectory of β −
·
β under different attachment coefficients, vehicle speeds, and front-wheel

angles. The phase trajectory is represented by a color curve in the diagram, reflecting
the change in vehicle state over time. After, we obtain phase-plane images, like those in
Figure 6.
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Figure 6 shows two cases: (a) where a stability boundary exists in the phase plane,
and (b) where it does not. In case (b), the vehicle will eventually become unstable with
any change in phase trajectory, regardless of its current state. Traditional studies often
use the bilinear method to define the stability region. The method defines a stabilization
region that is narrow and enveloped by two parallel straight lines [26], like in Figure 6a.
The equation for the stability boundary can be expressed as:∣∣∣∣B1β + B2

·
β

∣∣∣∣ < 1 (27)

Some scholars have improved the traditional bilinear method, such as [27], but there

is a drawback to this method. As long as the
·
β is small enough, the vehicle is stable, even

if the sideslip angle is large, as in Figure 7. The positions of the triangle in the figure are
singularities.
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·
β phase plane defined via double-line method.

However, it is known that excessive β can lead to vehicle instability. To make the
delineation of the stability zones more rational, and at the same time extend the vehicle’s
stability control range as far as possible, we limit the angular velocity of the transverse
pendulum. At the same time, the range of the sideslip angle is limited between the two
saddle points to ensure better stability performance of the vehicle, and the divided phase
plane is shown below to induce better stability performance of the vehicle. In view of
the above two constraints, the phase-plane region is split again. The split phase plane is
shown below.

As shown in Figure 8, the stability region is situated between the two saddle points of
the phase plane, while also satisfying the stability criteria for vehicle yaw rate. Hence, the
stabilization region can be expressed in the following constrained form:{

β1 ≤ β ≤ β2

−
∣∣∣0.85 µg

vx

∣∣∣ ≤ ω ≤
∣∣∣0.85 µg

vx

∣∣∣ (28)

The main challenge in the given equation is to identify the position of the saddle point.
The saddle-point position depends mainly on the road surface-adhesion coefficient, vehicle
speed, and front-wheel angle, and the phase-plane saddle-point position is obtained by
iterating the above parameters in the feasible domain. The obtained saddle-point position
image is shown in Figure 9.
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To determine the extent of deviation of the current vehicle state from the ideal stability
region defined in the previous section, we define the integrated deviation as Idis. This
includes the distance of the current sideslip angle position from the saddle point and the
distance of the current yaw rate from the boundary conditions. We adopt the dimensionless
method to weigh the two kinds of deviation and ultimately obtain the expression of the
integrated deviation as:

Idis =
1 − ε

|∆β|max

[
1 − 2 · sign[(β2 − β)(β − β1)] ∗

min(|β2 − β|, |β − β1|)
β2 − β1

]
+

ε

|∆ω|max

[
1 − 2 · sign[(ωmax − ω)(ω − ωmin)] ∗

min(|ωmax − ω|, |ω − ωmin|)
ωmax − ωmin

] (29)

When the degree of vehicle destabilization is low, only AFS alone is required for
stability control, while as the vehicle gradually moves away from the stabilized state, DYC
intervention is required with gradually increasing weights. It should be noted that the
vehicle faces the switching of the control system in the critical state, which will have an
impact on the maneuverability of the vehicle. In order to guarantee the smoothness of
the whole control process, the switching function is designed with the help of the form of
the boundary probability density function of the normal distribution, which dynamically
adjusts the weight of the AFS and the DYC control in the coordinated-control process.
Considering it is too late to engage the stability control strategy after destabilization, it is
necessary to add a critical stability region, which is used to smoothly transition from the
AFS control strategy to the DYC control strategy to ensure that the vehicle can be effectively
controlled before destabilization. Based on this, the region within 0.625~1 of the steady
state is taken as the critical stability region for the stability control algorithms:
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p =


0, Idis < 0.625

1

e
(Idis−µ)

2δ2

2 , 0.625 < Idis < 1

1, Idis > 1

(30)

The parameter µ is defined in the above equation as 0.825, and δ is 0. 125. From
this, the intervention weights of AFS and DYC in coordinated control can be determined
according to the current speed and attachment coefficients, etc. At the same time, it should
be ensured that the two sub-systems are relatively smooth in their interventions and exits,
to avoid a large impact in the process of system switching. The graph of the switching
function is shown in Figure 10.
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5. Simulation Results

In order to verify the effectiveness of the coordinated-control strategy designed in this
paper, based on the Carsim/Simulink joint simulation platform, a simulation was carried
out for the double-lane change and snake-lane change conditions under different road-
adhesion coefficients and vehicle speeds. In order to better evaluate the control effect of the
coordinated controller designed in this paper, the designs of uncontrolled and ordinary
integrated control are used as comparisons, in which the uncontrol group provides only
the longitudinal speed tracking of the required wheel torque without interfering with
the vehicle torque using stability control methods, while the integrated control uses fixed
weights to distribute the lateral moment to the controllers. This involves a list of vehicle
parameters, as shown in Table 1.

Table 1. Main parameters of the simulated vehicle.

Name Symbolic Value

Total vehicle mass m 1415 kg
Front axis to center of mass a 1.015 m
Rear axis to center of mass b 1.895 m

Moment of inertia Iz 1536.7 kg/m2

Equivalent lateral deflection stiffness k f −107,610 N/rad−1

Rear axle lateral deflection stiffness kr −74.520/rad−1

Height of center of mass above ground hg 0.54 m
Rolling radius Re 0.325 m

Gravity acceleration g 9.8 m/s2

Peak torque of motor Tmax 350 [N*M]
Motor equivalent damping ratio ξ 0.05



World Electr. Veh. J. 2024, 15, 202 12 of 15

Double-lane change:

A closed-loop simulation experiment of double-lane change was carried out at a
constant speed of 90 km/h and a road surface with a coefficient of adhesion of 0.85. The
simulation results are shown in Figure 11. It can be observed that both integrated control
and coordinated control can achieve a good tracking of the desired yaw rate at a speed of
90km/h and a high road-adhesion coefficient, and the results show that the vehicle stability
under the coordinated-control strategy outperforms that under the integrated control. In
terms of the sideslip angle, the actual value under coordinated control is closer to the
desired zero value—the maximum value is 26.47% lower than that of integrated control,
and the minimum value is 17.32% lower. In terms of lateral acceleration, coordinated
control performs relatively better than integrated control in suppressing lateral acceleration,
whereas the maximum value of the coordinated control is reduced by 18.76% and the
minimum value is reduced by 12.78% compared with that of integrated control. Less
lateral acceleration means better roll resistance. The double-lane change test shows that
the coordinated control of AFS and DYC utilizes the ground-adhesion force better and
can improve maneuvering stability while the vehicle performs lane-changing or lane-
shifting operations.
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Snake-lane change:

To comprehensively assess the merits and drawbacks of the control strategy, a ser-
pentine condition experiment was conducted on the road surface at a speed of 100 km/h,
with an adhesion coefficient of 0.8. The simulation duration was set at 15 s. Snake-lane
changing at high speeds is a more effective test of the controller’s performance under
extreme conditions than a double-lane change.

Regarding the yaw rate in Figure 12a, it was observed that the uncontrolled vehicle
experiences a sudden change after 2.5 s and is unable to accurately track the ideal value.
On the other hand, the vehicle with integrated and coordinated control can successfully
complete the tracking of the transverse angular velocity. The curve of the coordinated
control is also much closer to the ideal curve. Figure 12b better corroborates the points
made in this paper. The lateral deflections of the uncontrolled vehicle’s sideslip angle
showed instability after successive lane changes, whereas the coordinated-control sideslip
angle remained within a small range and was better than a normal integrated controller in
terms of stability.
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phase plane.

It can be derived from Figure 12c that both control trajectories’ phase planes recon-
verged to the origin. However, the phase trajectories of the maneuvering stability control
phase-plane plot were notably closer to the center of stability and exhibited an even dis-
tribution. This suggests that the maneuvering stability control enhances stability during
snake-lane change conditions.

The research findings indicate that the control strategy proposed in this paper results
in a minimal lateral deflection angle of the center of mass, yaw rate, and lateral acceleration.
Moreover, it achieves a higher level of tracking accuracy.
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6. Conclusions

In this paper, a novel vehicle-stability coordinated-control algorithm is proposed. In
terms of controller design, a hierarchical control approach is adopted to optimally distribute
the outputs of the upper-level controller to actuators, ensuring the vehicle has a satisfactory
stability margin. Regarding coordinated control, the authors optimize the traditional
bilinear method by redefining the stability region of the phase plane based on saddle-point
positions and lateral angular velocity thresholds. Furthermore, the intervention weights of
the two sub-controllers are dynamically adjusted based on the extent of deviation of the
current vehicle state from the stable state.

The results of the simulation demonstrate that the coordinated-control algorithms
proposed in this paper are more effective in fulfilling the performance requirements of
vehicle stability and enhancing the stability margin of the vehicle to handle extreme working
conditions when operating at varying speeds and road-adhesion coefficients.

However, there are many issues that are not discussed in depth in this paper. For exam-
ple, the working condition set in this paper involves a constant longitudinal velocity, and
the tire–road friction coefficient is kept constant in the same simulated working condition.
This will be considered in future research to make the ideas in this article more relevant.
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