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Abstract: Neuromonitoring is a critical tool for emergency rooms and intensive care units to promptly
identify and treat brain injuries. The case report of a patient with status epilepticus necessitating oro-
tracheal intubation and intravenous lorazepam administration is presented. A pattern of epileptiform
activity was detected in the left temporal region, and intravenous Acyclovir was administered based
on the diagnostic hypothesis of herpetic meningoencephalitis. The neurointensivist opted for multi-
modal non-invasive bedside neuromonitoring due to the complexity of the patient’s condition. A
Brain4care (B4C) non-invasive intracranial compliance monitor was utilized alongside the assessment
of an optic nerve sheath diameter (ONSD) and transcranial Doppler (TCD). Based on the collected
data, a diagnosis of intracranial hypertension (ICH) was made and a treatment plan was developed.
After the neurosurgery team’s evaluation, a stereotaxic biopsy of the temporal lesion revealed a
grade 2 diffuse astrocytoma, and an urgent total resection was performed. Research suggests that
monitoring patients in a dedicated neurologic intensive care unit (Neuro ICU) can lead to improved
outcomes and shorter hospital stays. In addition to being useful for patients with a primary brain
injury, neuromonitoring may also be advantageous for those at risk of cerebral hemodynamic impair-
ment. Lastly, it is essential to note that neuromonitoring technologies are non-invasive, less expensive,
safe, and bedside-accessible approaches with significant diagnostic and monitoring potential for
patients at risk of brain abnormalities. Multimodal neuromonitoring is a vital tool in critical care
units for the identification and management of acute brain trauma as well as for patients at risk of
cerebral hemodynamic impairment.
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1. Introduction

Inflammation in the central nervous system can be a symptom of the disorder referred
to as viral encephalitis [1], which is typically caused by illnesses resulting from a variety
of pathogens. There is much variation in the clinical presentation of viral encephalitis [2],
which can range from relatively minor symptoms such as headache and fever to more
severe neurological abnormalities [3]. The propensity of viral encephalitis for mimicking
other neurological disorders, most notably glioma, is one of the disease’s most intrigu-
ing aspects. Gliomas [4] are a specific kind of brain tumor that develops from glial cells
and frequently exhibits symptoms like those of encephalitis, such as seizures, cognitive
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impairment, and focal neurological abnormalities. The similarities in the clinical presenta-
tion and radiological findings between viral encephalitis and glioma present substantial
diagnostic challenges for healthcare professionals. An incorrect diagnosis can result in
inappropriate therapy, which can significantly deteriorate the patient’s condition. Even
though sophisticated imaging methods like magnetic resonance spectroscopy (MRS) and
positron emission tomography (PET) have been utilized to distinguish between the two
illnesses, the diagnostic conundrum still exists [5]. In the treatment of viral encephalitis
as well as glioma, intracranial hypertension (ICH) is another important consideration
because of its deleterious effects, including brain herniation [6] and even death. In the past,
procedures such as intraventricular [7] or intraparenchymal monitoring, both of which are
invasive, were the standard way to detect and monitor intracranial pressure (ICP). On the
other hand, these procedures are not without danger, such as the possibility of infection
or bleeding. In recent years, there has been an increasing interest in creating non-invasive
procedures for monitoring [8]. Emerging non-invasive approaches, such as transcranial
Doppler ultrasonography and measuring the diameter of the optic nerve sheath [9] using
ultrasound, are some examples of potential bedside technologies. When compared with
their more invasive equivalents, these technologies are easier to replicate and pose a lower
risk to the patient. In order to provide the best possible care for patients, an integrated
strategy is necessary, due to the possible difficulty of distinguishing viral encephalitis
from glioma and the difficult and challenging task of monitoring ICP. Innovative imaging
modalities may provide hints for a differential diagnosis, while non-invasive methods
may enable continuous monitoring of intracranial pressure to guide therapeutic actions.
This case report describes the initial presentation of meningoencephalitis mimicking an
astrocytoma in the central nervous system and the importance of a multimodal approach
using non-invasive techniques to monitor ICH [10,11] and improve patient outcomes. Mul-
timodal non-invasive techniques for monitoring ICH encompass a diverse array of methods
(ultrasound, skull strain sensors) designed to assess elevated intracranial pressure (ICP)
without the need for placement of an intraventricular catheter (gold standard) [12].

2. Case Presentation

A 61-year-old Latin female developed acute mental disorientation and dysarthria
at home lasting 3 h, despite no previous history of disease or treatment. On approach
to the hospital, the patient experienced an 8 min generalized tonic–clonic seizure (TCS),
prompting orotracheal intubation and sedation with intravenous lorazepam in accordance
with institutional procedures. On admission, a head CT scan revealed a hypodense pattern
in the left temporal lobe and cerebrospinal fluid with the presence of 12 cells, lymphocyte
predominance, 22 red blood cells, proteins 68, glucose 64, lactate 16, and pan-herpes PCR
negative, prompting transfer to the ICU (Table 1).

Table 1. Comprehensive summary of the patient’s clinical presentation and treatment. CSF: cerebral
spine fluid; ONSD: optic nerve sheath diameter; TCD: transcranial Doppler; B4C: Brain4care.

Date CSF ONSD TCD B4C

D 0 Pan-herpes negative
Day 2 5.6 mm MCA 59 cm/s; PI 1.2; RI 0.7 P2 > P1
Day 2 MCA 65 cm/s; PI 1.0; RI 0.5 P1 > P2
Day 5 Pan-herpes negative

Upon electroencephalogram admission (Figure 1), elytriform activity was detected
in the left temporal region, and intravenous aciclovir was administered based on the
diagnostic hypothesis of herpetic meningoencephalitis.
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Figure 1. (A) Electroencephalogram 12 channels. (B) Epileptiform activity in the temporal regions. 
(C) Hypodensity area in the left temporal central nervous system. 
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complexity and the impossibility of immediate transfer to the radiology sector. A 
Brain4care (B4C) non-invasive intracranial compliance monitor along with measurement 
of the optic nerve sheath (ONSD) and transcranial Doppler (TCD) were employed 
(Figures 2 and 3) to identify complications such as ICH. 
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Figure 2. (A) Optic nerve sheath diameter 5.6 mm. (B) Mean flow velocity of the middle cerebral 
artery 59 cm/s. Pulsatility index of 1.2. Resistance Index 0.7. 

Figure 1. (A) Electroencephalogram 12 channels. (B) Epileptiform activity in the temporal regions.
(C) Hypodensity area in the left temporal central nervous system.

Sedation was weaned after 48 h of mechanical ventilation and rigorous neuroprotective
treatments (strict control of temperature and blood glucose, avoiding systemic arterial
hypotension, protective mechanical ventilation, and adequate analgesia). Following the
sedation weaning, the patient experienced a new episode of TCS, and multimodal non-
invasive bedside neuro-monitoring was chosen due to their condition’s complexity and the
impossibility of immediate transfer to the radiology sector. A Brain4care (B4C) non-invasive
intracranial compliance monitor along with measurement of the optic nerve sheath (ONSD)
and transcranial Doppler (TCD) were employed (Figures 2 and 3) to identify complications
such as ICH.

Neurol. Int. 2023, 15, FOR PEER REVIEW  3 
 

 

 
(A) (B) (C) 

Figure 1. (A) Electroencephalogram 12 channels. (B) Epileptiform activity in the temporal regions. 
(C) Hypodensity area in the left temporal central nervous system. 

Sedation was weaned after 48 h of mechanical ventilation and rigorous 
neuroprotective treatments (strict control of temperature and blood glucose, avoiding 
systemic arterial hypotension, protective mechanical ventilation, and adequate analgesia). 
Following the sedation weaning, the patient experienced a new episode of TCS, and 
multimodal non-invasive bedside neuro-monitoring was chosen due to their condition’s 
complexity and the impossibility of immediate transfer to the radiology sector. A 
Brain4care (B4C) non-invasive intracranial compliance monitor along with measurement 
of the optic nerve sheath (ONSD) and transcranial Doppler (TCD) were employed 
(Figures 2 and 3) to identify complications such as ICH. 

 
(A) (B) 

Figure 2. (A) Optic nerve sheath diameter 5.6 mm. (B) Mean flow velocity of the middle cerebral 
artery 59 cm/s. Pulsatility index of 1.2. Resistance Index 0.7. 
Figure 2. (A) Optic nerve sheath diameter 5.6 mm. (B) Mean flow velocity of the middle cerebral
artery 59 cm/s. Pulsatility index of 1.2. Resistance Index 0.7.

Based on the gathered data, ICH was diagnosed and bedside emergency interventions
such as sedation, mannitol, and hyperventilation were initiated to improve intracranial
compliance and reduce morbidity. Magnetic resonance imaging (MRI) was performed,
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revealing signs of a deviation of the medial line (4.0 mm) and temporal pole image, with
an expansive effect characterized by deletion of the grooves and regional fissures and
compression of the ipsilateral lateral ventricle, as well as the possibility of infectious limbic
encephalitis, which is primarily caused by herpes virus type 1 (HSV-1). After 5 days
of hospitalization and ventilatory weaning, the neurosurgical team requested a second
MRI and ran a new pan-herpes PCR that proved negative. A stereotaxic biopsy of the
temporal lesion was performed to explore a differential diagnosis. The intraoperative
histopathology revealed a grade 2 diffuse astrocytoma, and a complete resection was
performed immediately (Figure 4).
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3. Discussion

Status epilepticus [13,14] is a neurological emergency caused by a variety of intracra-
nial and extracranial disorders, including infections and tumors. Early detection and
treatment of SE improves outcomes and reduces long-term complications [15]. Patients
with SE and epileptogenic activity in the temporal area, accompanied by a hypodense
image of the temporal region on a head CT scan and a pattern of predominance of lympho-
cytes in the cerebrospinal fluid, should be evaluated for herpetic encephalitis (HE) [16] and
treated immediately with antiretroviral medication. Viral meningoencephalitis-associated
complications [17] in the central nervous system (CNS) can lead to vasculitis and throm-
botic events. HE has been shown to predominantly affect the medial temporal lobe [18],
and sometimes the frontal lobes and the cingulate gyrus, while the basal ganglia are nor-
mally spared. HE has a bimodal distribution, with individuals younger than 20 and older
than 50 years being equally affected. ICH [19] is a condition marked by elevated intracra-
nial pressure and can be caused by many underlying diseases, with symptoms such as
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headaches, visual deficits, and mental state changes. Identification and treatment of the
underlying cause, as well as the use of drugs to lower ICH, are common components of its
management [20]. In refractory cases, surgical intervention (decompressive craniectomy)
may be required to alleviate head pressure [21,22].

Transcranial Doppler (TCD) [23,24] may be used to indirectly evaluate ICH. As in-
tracranial pressure rises, cerebral blood arteries may become constricted, resulting in a
reduction in blood flow velocity. TCD can detect these changes in blood flow velocity
and estimate intracranial pressure. The pulsatility index (PI) [25] is a TCD measurement
that has been used to assess intracranial pressure (PI). PI is a measure of the pulsatility
of the waveform of cerebral blood flow and is computed as the difference between the
peak systolic and end diastolic velocities divided by the mean velocity. When intracranial
pressure rises, cerebral blood vessels become less flexible, resulting in a rise in PI. TCD
has been shown to be a reliable [26] and non-invasive method for monitoring changes
in intracranial pressure in individuals with a variety of neurological disorders [27]. TCD
cannot directly measure intracranial pressure but is instead used to estimate intracranial
pressure. It must be interpreted with care and in combination with other clinical and
radiological examinations.

The pulsatility index (PI) is a standard TCD measurement of flow resistance. It is
calculated by subtracting end diastolic velocity (EDV) from peak systolic velocity (PSV)
and dividing the result by the mean flow velocity (Vm) (MFV). A PI value higher than
1.2 suggests substantial blood flow resistance. In clinical settings, a high pulsatility index
in the middle cerebral artery (MCA) has been linked to stroke progression [28] and neuro-
logical impairment following acute cerebral infarction [29]. In addition to the pulsatility
index (PI), the resistive index (RI) [30] is often used to quantify the resistance of a pulsatile
vascular system. The RI is determined by subtracting the EDV from the PSV and dividing
the resulting number by the PSV. In clinical practice, the pulsatility index is a reliable
TCD metric used to evaluate intracranial pressure and blood flow alterations in a vari-
ety of clinical scenarios, including stroke, traumatic brain injury, and hyperbilirubinemia
in newborns.

Ultrasound of the optic nerve sheath diameter (ONSD) [31] has evolved in recent
years as a non-invasive method for assessing intracranial pressure (ICP) or identifying ICH.
It is a safe bedside procedure that can be performed in real time, is repeatable and very
inexpensive, and has no radiation risks [32]. The ONSD varies with the cerebrospinal fluid
(CSF) pressure owing to the layer of subarachnoid space between the optic nerve and its
sheath, which swells in response to increased intracranial pressure. Studies have shown a
link between elevated intracranial pressure and optic nerve sheath diameters higher than
5 mm, as measured 3 mm posterior to the retina [33,34]. A comprehensive review and
meta-analysis have shown that an ONSD greater than 5.0 to 5.70 mm is associated with
ICP of more than 20 mm Hg [35]. The upper-limit maximum ONSD threshold varies from
4.8 to 6.2 mm when measured 3 mm from the globe, while the average maximum ONSD is
5.8 mm when measured 8 mm from the globe on a CT scan. Transorbital ONSD mea-
surement is an emerging approach in the detection and monitoring of ICH. Increasingly,
ultrasound examination of the ONSD is utilized as a marker to identify elevated ICP.
A non-invasive ONSD ultrasonography may be used to assess intracranial pressure or
identify ICH, and the relationship between the ONSD and intracranial pressure results is
well established.

Brain4care [36–38] is a non-invasive point-of-care technology that detects micrometric
changes in the skull volume. Monitoring these small deformations reveals a pulse mor-
phology similar to the intracranial pressure waveform (ICPwf), an important metric related
to intracranial compliance and to the mean value of intracranial pressure. The Brain4care
report showed two parameters, the P2/P1 ratio (P2/P1) and time to peak (TTP). P2/P1 is
the ratio between the amplitude of the P2 pulse and that of the P1 pulse. Values above 1.0
indicate that the P2 component is higher than P1, characterizing a reduction in intracranial
compliance, and values greater than 1.2 suggest ICH. TTP is the direct measurement of
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the normalized time between the beginning of the pulse and its highest point; values
above 0.25 indicate changes in morphology and impairment of intracranial compliance.
Although many studies [39] have shown that ICPwf analysis helps in predicting increased
intracranial pressure and may be an important alarm, Brain4care was the first quantitative
and automated method of monitoring intracranial compliance and evaluating ICH to be
incorporated into our clinical practice [40]. Neuromonitoring methods have evolved into
an indispensable tool in emergency departments and intensive care units for the early
diagnosis and treatment of traumatic brain injuries. Studies have indicated that monitoring
patients in a specialized neurologic intensive care unit (Neuro ICU) may result in better
outcomes and shorter hospital stays [41]. In addition to being advantageous for patients
with a main brain injury, neuromonitoring may be beneficial for people at risk of cerebral
hemodynamic impairment who do not have a primary brain injury [42]. In the neonatal
intensive care unit (NICU), typical neuromonitoring methods include amplitude-integrated
electroencephalography and multichannel conventional electroencephalography [43].

Non-invasive monitoring multimodalities for assessing ICH, while advantageous
in reducing the risks associated with direct intracranial interventions, present several
inherent limitations. First, these techniques offer indirect indicators of ICP rather than
direct measurements, potentially leading to inaccuracies. The results can exhibit significant
inter-individual variability, as seen in measurements of the ONSD, making it challeng-
ing to establish universally applicable thresholds. Moreover, certain modalities such as
TCD are operator-dependent [44–46], with outcomes that vary based on the practitioner’s
expertise. External factors, like changes in the carbon dioxide levels in TCD [47] or the
intraocular pressure of the ONSD, can also influence interpretations. Additionally, the lack
of standardization across some of these techniques [48] can result in interpretation dis-
crepancies [49]. Consequently, while non-invasive methods provide valuable insights,
they should be interpreted cautiously and, ideally, in conjunction with other clinical
assessment data [50].

4. Conclusions

The presentation of astrocytoma that resembles herpetic meningoencephalitis poses a
distinct problem in the field of neurointensivism in terms of both diagnosis and treatment.
The overlapping clinical and radiological characteristics of both illnesses can result in misdi-
agnosis and incorrect therapy. Non-invasive multimodal monitoring approaches, including
TCD, B4C, and ONSD, have been recognized as aids in the management of these intricate
situations. These methodologies enable the monitoring of ICP and cerebral perfusion in
real time, facilitating prompt treatment and mitigating the potential hazards associated
with invasive techniques. The incorporation of non-invasive monitoring techniques into
neurointensive care regimens will enhance diagnostic precision and patient outcomes.
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