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Abstract: Microorganisms are ubiquitous and have been exploited for centuries to generate primary
and secondary metabolites essential for human welfare and environmental sustainability. Microorgan-
isms occupy a prominent position in the industrial sector due to their unique properties, such as the
limited time and space required for their growth and proliferation, as well as their easy manipulation
of the genetic material. Among all the microorganisms, probiotics have grabbed the attention of
researchers because of their nonpathogenic nature and immersive application in treating digestive
ailments and vitamin deficiency, boosting immunity, and detoxifying harmful chemicals. Further-
more, probiotics are widely used to treat various diseases such as constipation, colon cancer, type
2 diabetes mellitus, and obesity, as well as a range of intestinal disorders, including inflammatory
bowel disease, among others. The updated information on these diseases and the role of probiotics
has not been updated in the past few years. The present review covers updated information on
the role of probiotics in these topics. The growth of populations around the globe has attracted the
attention of scientists, primarily investigating diverse technologies to meet the gap between probiotic
production and demand. With the support of standardized tools and techniques, researchers have
explored the potent probiotic strains feasible for industrial production and treating health ailments.
In the current review, we have curated the potential information essential for the screening, strain
selection, production, and application necessary for probiotic researchers.
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1. Introduction

Microorganisms, such as bacteria, fungi, archaea, protists, plankton, and amoebae, are
prevalent in our day-to-day lives. The most recent estimate is that about 38 trillion (1012)
microorganisms live in and on human individuals and play a crucial role in stimulating the
immune system, detoxifying potential toxins, and synthesizing vitamins and amino acids
essential for cellular metabolic functions. Among all the genera of microorganisms, Lacto-
bacillus, Bifidobacterium, Escherichia coli, Clostridium, Streptococcus, Peptococcus, Ruminococcus,
Fusobacterium, Bacteroidetes, Actinobacteria, Proteobacteria, Bacteroides, and Eubacterium are
dominant in the regulation of human metabolic homeostasis. Human gut microbiome
diversity and abundance are significantly reduced when exposed to therapeutic leads
like antibiotics, proton pump inhibitors, non-steroidal anti-inflammatory drugs, antacids,
antidepressants, sleeping pills, laxatives, and statins. This is followed by changes in the
metabolic activity of the host gut microbiota [1]. The reduction or removal of these micro-
bial flora causes toxic product accumulations that impair cellular processes and prevent
vitamin synthesis, resulting in malnourishment and impairing the host system’s anabolic
and catabolic reactions, which are crucial for the regulation of the biological system. As a re-
sult, there is a growing variety in the market of probiotic-containing foods and supplements.
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In 2001, the World Health Organization (WHO) and the Food and Agriculture Organization
(FAO) organized an expert meeting that resulted in the definition of probiotics as “live
microorganisms that, when administered in adequate amounts, confer a health benefit on
the host”. Later, in 2014, this definition was modified for grammatical reasons [2].

Probiotics are becoming more and more popular in the healthcare industry, and by
2024, supplement sales are expected to reach USD 35–65 billion. In the 20th century, the field
of probiotic research was investigating new strains of probiotics; however, Nobel laureate
Élie Metchnikoff discovered that adding lactic acid-producing bacteria to dairy products
improved the defense system’s performance and had a greater therapeutic effect on the host
system. A few fermented food product reports stated that Brem [Bali, Indonesia], Rusip
[Indonesia], Kimchi [Korea], Gochujang [Korea], Kefir [Russia], Gundruk [India], Khalpi
[Nepal], Wine [America], Garris [Sudan], Yoghurt [Mesopotamia, Central Asia], and Ergo
[Ethiopia] favor the growth of probiotic genera such as Streptococcus, Enterococcus, Alloiococ-
cus, Aerococcus, Lactococcus, Oenococcus, Vagococcus, Lactobacillus, Carnobacterium, Pediococcus,
Leuconostoc, Tetragenococcus, Weissella, Bifidobacterium, Symbiobacterium, and Atopobium [1].

Regarding the outcome of the probiotics research, a couple of guidelines about efficient
strain design and development were introduced in the 1980s. As per these guidelines,
therapeutic probiotics must meet all the following criteria: (a) strains must show a symbiotic,
therapeutic effect; (b) they must be non-immunogenic and non-pathogenic; (c) strains
should be compatible with the host system’s microbial environment, and be adaptable
in the host system by keeping their variability; (d) strains should protect the healthy
environment of the gut microbial flora; (e) during production, formulation, and storage,
strains must be stable in their metabolic activities [2]. By keeping the standard guidelines,
researchers explored the health benefits of potent probiotic strains ranging from gene to
species level to avoid species-level variation effects in the treatment process. With the
existing literature, tools, and technologies, probiotic researchers conducted experiments on
human and animal models to prove the clinical potential and efficacy of various probiotic
strains against numerous health ailments. The potential studies and clinically reported data
confirmed that the probiotic strains are feasible for treating diarrhea, lactose intolerance,
antimicrobial therapy, and anti-colorectal cancer activities. It was also reported that a few
strains are also involved in reducing irritable bowel conditions and inflammations in the
gut of the host system [3,4].

Selecting clinically important probiotic organisms with high durability is very crucial;
previous reviews focused on any one of the probiotics and their applications. In this review
we have broadly emphasized different probiotics and their applications, beginning with the
screening, characterization, production, and application studies (with suitable examples).
We also summarized recent findings for probiotic strain selection and the determination of
their viability, production, and applications, which are essential for probiotic researchers in
finding novel therapeutic probiotic strains.

2. Probiotic Strain Selection Criteria and Requirements

To meet the clinical requirements, EFSA (European Food Safety Authority), WHO,
and FAO issued mandatory guidelines to probiotic researchers, stating that the strains
must meet safety and functionality requirements, such as the route of strain selection,
nonpathogenic, non-immunogenic nature, resistance to antibiotics, long durability in
the gastrointestinal tract, and the ability to maintain their activity during production,
processing, and preservation, which are crucial for patient safety [5,6]. The carriers or
matrix employed in the formulation are also vital since they can impair the strain’s viability,
lowering the product’s quality [7,8]. The following critical factors are tested during the
initial screening and selection of probiotics:

• Stability of phenotypes and genotypes, including plasmid stability;
• Tolerance to bile and acid, as well as survival and growth;
• The adhesion characteristics of intestinal epithelial cells;
• Antimicrobial compound production;
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• Patterns of antibiotic resistance;
• Inhibition of known gut pathogens;
• Immunogenicity, spoilage organisms, or both.

2.1. Probiotics with the Best Characterization: In Health Point

Before denoting beneficial microorganisms as probiotics, most culturable microbiota
are promoted in fermented food products for their health-promoting activities (Figure 1).
Among all the culturable microorganisms, lactic acid bacteria (LAB), used in yogurt, cheese,
and pickles, attained a prominent position as the best probiotic supplement due to its unique
properties (as mentioned by EFSA) and lack of lipopolysaccharides (LPS) and harmful
extracellular proteases. During the research for efficient probiotics, researchers reported
that Lactococcus and Streptococcus are predominant in the human ileum and jejunum, as well
as, at lower densities, in the colon. This symbiotic relationship raised researchers’ attention
to the molecular mechanisms that make these strains suitable for treating intestine-related
ailments. With the advent of sophisticated technology, researchers found that these strains
colonized the intestine for a limited time by releasing primary and secondary metabolites
extracellularly without trapping them in the periplasm. This indigenous property prompted
the researchers to develop engineered therapeutic probiotics, keeping Lactobacillus strains
as reference strains to deliver molecules directly to the mucosa without any drawbacks or
adverse effects on systemic distribution [9].
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2.2. Probiotic Viability: What Factors Affect It?

To make the therapeutic formulation, it is also essential to consider the physiochemical
parameters associated with the food products that influence the probiotic viability and
functionality during production and preservation [Figure 1]. Intrinsic product parameters
such as pH, salt, oxygen concentration, water, sugar content, and other elements such as
fermentation settings and microbiological parameters, are among these factors [10]. On an
industrial scale, including probiotics in meals poses several microbiological, technological,
and economic problems.
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Based on previous studies, the encapsulation of probiotics enhanced the cell viability
of yogurt samples. Multilayer emulsion was an effective tool in preserving the viability of
bacteria at the recommended effectiveness level [11,12]. Probiotic bacteria encapsulation
is an emerging technology that facilitates the incorporation and protection of efficient
strains in functional foods to meet therapeutic needs. Nonetheless, certain probiotic
viability enhancement technologies, like microencapsulation, increase the cost of food
manufacturing. To minimize the cost and meet the demands in the globalized market
for functional products, it is necessary to explore inexpensive technologies to keep the
product cost within accessible limits. The identification of appropriate bacterial strains,
as well as the microencapsulation materials and technique, are significant problems that
must be addressed further. The effectiveness, durability, and ecological acceptability of the
microencapsulation techniques employed are crucial. Implementing microencapsulation
on an industrial scale is hampered by several issues [13,14]. Different microencapsulation
technologies have not been fully utilized yet and require more testing before they can be
deployed correctly in real food matrices.

Microencapsulation industries are facing technological difficulties in maintaining
optimistic, higher-beneficial-value goods. In this situation, the food industry will need
additional resources and skills to successfully present the most innovative technologies
to develop the next generation of food products [15]. To enhance the viability of probiotic
strains during processing and preservation, and to overcome the adverse gastric conditions
in the gastrointestinal system, extensive research should be conducted, providing appropri-
ate technologies for microbial strain screening and encapsulation matrixes involved in the
protection of probiotics in gastric conditions.

2.3. Physicians’ Guidance

In microbiome research, the discovery rate of new organisms with therapeutic potential
for the human host is rapidly growing. Some microbial strains with systemic immunomod-
ulatory functions are being studied in new ways [16], including food allergy diagnosis and
treatment [17,18], regulation of the gastrointestinal–liver axis [19], neuroactive metabolite
synthesis [20], and in regard to their antimicrobial action in the gastrointestinal system,
skin, and urogenital tract [21]. Furthermore, microorganisms are increasingly recognized as
being crucial to various metabolic functions [Figure 2] [22]. New microbial-based therapies
will develop as a result of these discoveries, and physicians should review the following
parameters before considering these strains for therapeutic applications:

• Evidence that the strains were tested in a randomized, controlled, or comparable
human experiment and categorized based on specific host or microbial genetic charac-
teristics in a varied population.

• In the product, the dose and viability are the same as in the human experiment.
• There is whole-genome strain characterization and precise strain designation available.

However, many fundamental metabolic activities are maintained among individuals in
a community, according to human microbiome research. Despite substantial interpersonal
variability at the species level, many essential metabolic activities are carried out among
individuals in a population [5]. As the subject of personalized medicine grows in popularity,
proponents of personalized therapies must explicitly identify the foundation for group
separation and validate the efficacy of the proposed sophisticated treatment in the targeted
subpopulation [23]. The discovery and validation of microorganisms having significant
and repeatable impacts across a varied population would be a more general strategy [24].
If the influence on human health is established in a controlled human study, therapies in a
stratified and diverse population would meet the probiotic recommendations [22].
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2.4. Dairy Starter Cultures of Probiotic for Manufacturing

With the available knowledge to get rid of any microbial-associated ailments, cus-
tomers seek probiotic-supplemented dietary and dairy products. One such traditional
dairy product is yogurt. Yogurts are made with Lactobacillus bulgaricus and Streptococcus
thermophilus starter cultures, and they have become very popular among consumers as
nutritious foods. Yogurt cultures are generally acknowledged to have been designated as
probiotics because of their advantageous impacts on human health. Popović et al. charac-
terized the functional yogurt starter cultures of the autochthonous strains S. thermophilus
BGKMJ1-36 and L. bulgaricus BGVLJ1-21, which were isolated from artisanal sour milk
and yogurt, respectively, and have health-promoting qualities. The strains BGKMJ1-36
and BGVLJ1-21 possess the capacity to hydrolyze αs1-, β-, and κ-casein, form curd after
five hours at 42 ◦C, and exhibit antibacterial activity against Listeria monocytogenes. The
strain BGKMJ1-36 generates exopolysaccharides that are crucial to the yogurt’s rheological
characteristics. The strains of BGVLJ1-21 and BGKMJ1-36 colonies passed through the
yogurt’s simulated gastrointestinal system [25]. In manufacturing, the targeted probiotic-
supplemented product should have efficient and viable cells that can sustain the adverse
condition, be stable, and work consistently in the various treatments [26]. Customers
anticipate a product with a high count and long-lasting viability across a wide range of
ambient humidity and temperatures, and so stretching on a high-quality functional food
supplement should be considered in clinical research [27]. On the other hand, customers
want quick and efficient strains involved in the rapid acidification of milk and milk prod-
ucts for more therapeutic benefits. The process methodologies are briefly detailed in the
production process, and critical problems for manufacturing and troubleshooting uniform
product performance are highlighted.

2.5. Production and Strains Development

It is critical to scale up to an intermediate level in the pilot to evaluate and mitigate
these more typical production conditions before moving to economical assembly. Freeze-
drying methodologies must be regularly assessed before formulation, from prototype to
commercial production. The probiotic dose levels used in the final product should be based
on those proven to be effective in human trials. Colony-forming units per gram of product
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are also a crucial factor. Although there is still a lack of knowledge regarding the minimum
effective concentrations, it is generally agreed that probiotic products should have a min-
imum concentration of 106 cfu/g and that a total of 108 to 109 probiotic microorganisms
should be consumed daily for the probiotic effect to be transferred to the consumer [27,28].
The strains should also be able to develop under standard manufacturing and commercial
circumstances and should maintain viability throughout storage.

Maintaining optimum freeze-drying intervals while manufacturing the probiotic prod-
uct is crucial. This is done by monitoring the pressure, temperatures, pellet bed thickness,
water content, cell quality, and quantity, followed by viability stability [27]. To protect cell vi-
ability during processing, the cryoprotectant composition or dosage might be changed [28].
It is critical to figure out whether the freeze-drying system in the manufacturing unit
scales up to an industrial scale. The frequency of freeze-drying cycles, condensing, and
heat transfer rates must be evaluated to eliminate the moisture content generated during
product drying and maintenance to obtain an efficient product.

A strain’s development qualities vary slightly from strain to strain as well. L. aci-
dophilus is eosinophilic and exhibits strong acid and bile resistance. It may proliferate and
develop in conditions that prevent other LABs from doing the same. Moreover, it can
perform homotype fermentation using glucose, fructose, lactose, and sucrose, as well as
ferment DL-lactic acid. During the development process, significant attention is paid to
comprehending the production of probiotics on a commercial scale and evaluating the
strains’ performance in the lab under identical circumstances. Every stage during the
procedure depends on the one before, so detecting strain-dependent sensitivities and main-
taining the cells’ viability during production and processing are critical. Harvesting the
cells from the production medium might take several hours due to the enormous volume
of the medium to be passed. In the initial downstream lab, scale centrifugation plays a
significant role in separating small quantities. To keep cells in a viable mode during down-
stream processing, large-scale centrifugation, which generates heat and shear effects, must
be avoided [28]. Additionally, during commercial-scale production, many processes where
cells are pumped do not usually occur during counter-scale research and development.
Furthermore, in economic manufacturing, cells are exposed to various situations, such as
pH, temperature, and other conditions that remain challenging to replicate at the lab scale.
For instance, Lactobacillus acidophilus essentially cannot grow at temperatures below 20 ◦C,
and their ideal culture temperature is often 35–38 ◦C. L. acidophilus grows best at a pH
of 5.5–6.0 and is not very heat resistant. Moreover, B. bifidum, B. breve, and B. longum are
common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders,
including intestinal infections and cancers. For instance, the ideal growth temperature
ranges for strains isolated from humans and animals are 36–38 ◦C and 41–43 ◦C, respec-
tively. Furthermore, it has been discovered that B. animalis and B. thermacidophilum are also
metabolically active at pH 3.5–4.0, with pH 6.5–7.0 being the ideal range for growth. With
a few exceptions, like B. boum, B. thermophilum, B. dentium, and B. psychraerophilum, which
may survive in microaerophilic environments, the majority of Bifidobacterial species are
strict anaerobes [29,30].

2.6. Nutritional Necessities of the Strain

Nutritional needs for the growth and development of probiotic strains are crucial;
carbon and nitrogen sources, especially amino acids, will facilitate the metabolic functions
of the LAB and Bifidobacteria strains. Modifications to raw materials can significantly
impact growth and productivity. Complex substances, like protein sources such as milk and
yeast extract, simpler ingredients like salts, and simple carbohydrates, are commonly used
as carbon sources. The nutritional microbes can adapt to the environment, and the source
from which they were obtained is typically linked to the intricacy of these autotrophic and
nutrient requirements [29]. Lactobacillus plantarum, for example, contains fewer autotrophs
since it is generated from plant material [30]. Lactobacillus johnsonii, isolated from the upper
gastrointestinal tract of a human, has more biosynthetic self-sufficiency and is found in
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an environment with more resources, such as tiny peptides, amino acids, and polysac-
charides [31]. Creating a unique fermentation medium for microbial needs facilitates the
high-performance end product [9,32–37]. Additionally, cane and beet molasses are available
globally, offering high performance and quality that can be utilized in fermentations with
peptones and yeast extracts to produce long-lasting results [38].

2.7. Raw Material Production

Since the fermentation medium is vital in producing bifidobacteria and LAB, alter-
ations in the rare constituents can significantly impact performance and growth develop-
ment. The supplier’s modifications to raw constituents could result from cost reductions to
procedure enhancements, production method variations, or an ingredient source change.
Compositional differences in intricate substances, such as milk, yeast extract, etc., and
limited complex constituents, mainly salts and carbohydrates, are more evident. Based on
the nutritional necessities and sensitivities of the strains being produced, a good amount of
variation in intricate essential ingredients can go undiscovered, with some strains having
consistent results. In contrast, the effectiveness of other strains is more negatively or posi-
tively impacted. With more complex substances like yeast extract, the strain performance
changes more than the peptide size distribution, amino acid, nucleotide, carbohydrate,
vitamin, and salt levels. Baker’s yeast is grown with beet, and cane molasses were iso-
lated for yeast extract and peptone for food applications [38]. During manufacturing, the
components used to culture the yeast to form the yeast extract and peptone cannot affect
strain performance [39]. Furthermore, beet molasses and cane can be supplied, having
demonstrated effective performances across the globe and a level of quality that can have
long-term impacts when combined with yeast extracts and peptones in fermentations.
Following investigations involving humans and demonstrating that bacteria qualify as
probiotics, the next step is to investigate further to determine whether the strains can be
cultivated on a large scale and effectively integrated into consumer items [40,41]. To avoid
studying an uncommercialized strain, this stage of probiotic commercialization should
occur concurrently with clinical trials. Pilot-scale culturing and industrial production
have extremely diverse strain necessities compared to laboratory culturing [42,43]. The
medium requirements also vary due to the production cost. A quality control program
must be developed to assure the strain’s high efficiency, from inputs to the final product.
It is advisable to maintain a quality assurance cell to conduct and produce dependable
manufacturing procedures. All of this necessitates meticulous documentation of proce-
dures and outcomes. After generating a sizeable probiotic bulk, the probiotic strains must
be supplemented into consumer food products [44]. During the process, ranging from
protecting shelf life to the storage conditions of the product, these products have various
requirements. In any case, the consumer should receive a minimally effective dose at the
end of the shelf life. Because probiotics are living microbes, this is a difficult task. It is
essential to investigate and determine the health benefits for use with both humans and
animals, then convey these benefits to the user by selecting the appropriate strains, culture
conditions, and manufacturing processes [45].

3. Applications of Probiotics

Probiotics influence the intestinal microbiota, enhance the synthesis of short-chain fatty
acids (SCFA), and reduce the chance of developing diseases [46]. The details are mentioned
in Figure 3. Probiotics minimize the risk of several diseases, such as constipation, colon
cancer, type 2 diabetes mellitus, and obesity, and they treat a range of intestinal disorders,
including inflammatory bowel disease, among others [47].
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3.1. Probiotic’s Role in Colorectal Cancer

Probiotics are recognized bioactive compounds that can be used to cure a wide range
of diseases. Research utilizing probiotics showed that digestive tract microbiota modulation
inhibited the growth of malignancies. Similarly, probiotic supplements protect patients
with colorectal cancer against side effects associated with their treatment [48]. According
to the studies, a number of factors, including strain, host physiology, dosage, duration
of the intervention, and other food supplements, can be used to assess the therapeutic
efficacy of probiotic supplementation [49]. Probiotic therapy reduces carcinogens, boosts
the microbiota, creates antimicrobials and anti-carcinogenic compounds, and enhances
tight junction function, intestinal permeability, and enzyme activity in patients with col-
orectal cancer [49]. Numerous probiotic species, their metabolites, and other prebiotic
components have been found to influence gut immunity and colon cancer incidence. Pro-
biotics have been demonstrated to have immune system-regulating, anti-oxidative and
anti-inflammatory properties. They can reduce lactose intolerance, minimize inflammation,
and prevent diarrhoea [50].

Probiotics have been linked to colorectal cancer, according to research, and data from
many trials suggests that a single-genus and multistrand probiotic may be an additional
treatment option for patients with colorectal cancer [48]. Using in vitro and in vivo inves-
tigations, the inhibitory impact of probiotics on colorectal cancer has been demonstrated.
Probiotic administration increased CD8 cell activation while decreasing and reducing the
growth of CT26 tumors. Moreover, the probiotic supplements reduced the migration, prolif-
eration, and invasion of CT26 cells. Research has demonstrated that a variety of probiotics
can cooperate to boost the immune system and slow the growth of tumors, suggesting that
probiotics may prove to be a potent new anticancer medication for use in future treatment
plans [49]. Butyrate, a compound produced by the gut microbiota, is widely known for its
positive effects on health. The effects of butyrate’s antiproliferative properties on colon
cancer cell lines, HCT116 and SW620, were investigated. Butyrate has been shown to inhibit
cancer cells from growing by decreasing the biomarkers. Moreover, catenin degradation
was demonstrated by the Wnt/β-catenin signaling pathways, which further reduced the
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transcriptional activity of malignant cells [50]. When more thorough descriptions of gut
biodiversity and precise assessments of changes in response to anticancer therapy are
achievable, the significance of probiotics in avoiding cancer and minimizing its side effects
will become evident. Furthermore, many probiotic strains, such as L. acidophilus HB56003, L.
casei, L. paracasei IMPC2.1, L. rhamnosus GG, L. plantarum, Streptococcus thermophilus HB5621,
Enterococcus faecalis HB62001, Bifidobacterium longum HB55020 are commercially available to
treat colon cancer.

3.2. Probiotic’s Role in Type 2 Diabetes Mellitus and Obesity

Probiotic supplements with many strains were administered to type 2 diabetes mellitus
(T2DM) patients who had not used medication for 12 to 13 weeks. This resulted in a small
reduction in abdominal fat and a significant increase in homeostasis model assessment of
insulin resistance (HOMA-IR) [51]. In type 2 diabetics, probiotics only slightly lowered
fasting insulin levels and glycated hemoglobin (HbA1c). You might absorb fewer calories
from food if you take probiotics; additionally, they affect the amounts of proteins and
hormones linked to hunger and fat storage, potentially reducing inflammation, which
lowers the risk of obesity. To fully assess the role of probiotics in T2DM patients, as well as
establish the hypothetical background for probiotics to be widely used in clinical settings
to treat fasting blood glucose (FBG), HbA1c, and T2DM homeostasis model evaluation of
insulin resistance, research studies have demonstrated the impact of probiotics on three
significant T2DM markers.

Tao et al. investigated the efficacy of probiotics in T2DM by meta-analysis. The out-
come of the meta-analysis showed that probiotics treatment could decrease HbA1c, FBG,
and insulin resistance levels in T2DM patients. Additional clinical data and research into
the probiotic mechanism is needed to clarify the importance of probiotics in T2DM [52].
Kheirkhah et al. studied the therapeutic significance of a specialized probiotic supplemen-
tation to improve glycemic outcomes in T2DM patients, such as HbA1c, fasting plasma
glucose, fasting plasma insulin, and HOMA-IR. The most notable effects on these glycemic
parameters seem to be produced by multi-strain probiotics containing Lactobacillus aci-
dophilus, Streptococcus thermophilus, Lactobacillus bulgaricus, and Bifidobacterium lactis, which
are taken once daily for six to twelve weeks, and the colony forming unit (CFU) dosages
of the probiotics varied from seven million to over 100 billion per day [53]. In addition, a
few more strains, such as Bacteroides, Faecalibacterium, Akkermansia, Roseburia, Ruminococ-
cus, Fusobacterium, and Blautia, were used to manage T2DM. Probiotic supplementation
has potential and is becoming a more common option for treating type 2 diabetes; still,
more studies, both in vivo and in vitro, are required to understand how it generally affects
glycemic control.

3.3. Probiotic Role in Inflammatory Bowel Disease (IBD)

An additional source of evidence in support of probiotic use in inflammatory bowel
disease is clinical. It is generally known that in patients with Crohn’s disease, diverting
the fecal stream usually results in mucosal healing [54]. However, inflammation quickly
develops after restoring intestinal continuity, and fecal contents are then returned to the
healing bowel. Saccharomyces boulardii can be administered as maintenance for inflamma-
tory bowel disease patients to provide more targeted support and obtain the benefits of
robust anti-inflammatory actions [55]. Engineered probiotic ECN-pE(C/E)2 works as an
effective chemical drug for inflammatory bowel disease. The oral administration of the
drug improves the expression of tight junction associated proteins that protect the colon
epithelial cells from inflammation induced apoptosis [56]. Also, it helps in eliminating
reactive oxygen species and increases anti-inflammatory cytokines in IBD, which brings
out the therapeutic use of probiotics in chronic diseases like IBD [57]. The gut microbiome
plays an important role in IBD. Any imbalance in gut microbes damages the gut barrier and
causes inflammatory responses, a condition known as dysbiosis. The person with chronic
IBD experiences a progressive increase in pathogenic microbes while decreasing the bene-



Gastroenterol. Insights 2024, 15 230

ficial bacteria. Mainly short chain producing bacteria like Faecalibacterium prausnitzii are
observed to be reduced in those patients, which further impairs the immune responses and
intestinal inflammation [58,59]. Certain probiotics, such as Lactobacillus sp. Are recognized
as producing some antimicrobial components that activate aryl hydrocarbon receptors
associated with IBD [60]. According to recent research, it has been observed that overex-
pression of TNF-α and other pro inflammatory substances contributes to the occurrence of
IBD. In order to reduce the hyperactive signaling pathways, total gut restoration (TGR) is
supplemented. TGR is a mixture of five strains of probiotics that improves the IL-6 and
TNF-α signaling pathways [61]. Another study focused on the NF-kB signaling pathway
in order to regulate the genes that are responsible for the inflammatory defense system.
Probiotic supplements with Lactobacillus, S. boulardii, Lactobacillus GG, EcN 1917, and VSL#3,
Escherichia coli Nissle 1917, and Bifidobacterium decrease the pro inflammatory activity of
IL-6 and IL-1β that deal with inflammatory responses in GI epithelial cells [62,63].

3.4. Probiotics on Cholesterol Metabolism

Multifactorial diseases, neurological disorders, and liver-related diseases are becoming
more common in today’s society due to unhealthy dietary consumption. Metabolic dys-
functions inhibit the majority of diseases. Obesity, high blood pressure, and heart disease
are primarily caused by disturbances in lipid metabolism. Living bacteria, or probiotics,
contribute to greater health advantages. It can also be included in dietary supplements to
help regulate body weight. Research employing multi-strain probiotic supplementation
demonstrates a noteworthy reduction in TNF-α and LDL-cholesterol in children who are
obese [64]; additionally, it raises the body’s HDL cholesterol levels. The probiotics that are
most frequently utilized, such as Streptococcus, Saccharomyces, Bacillus, Clostridium, Candida,
lactobacillus and bifidobacterium spp., decrease the composition of the gut microbiome, which
in turn causes lipid oxidation in the liver. However, they additionally minimize the body’s
accumulation of fat [65]. According to a recent study, functional foods like probiotics
have a significant effect on increasing the hydrolase enzyme, which increases intestinal
absorption of cholesterol and causes the bile salts to hydrolyze. Despite being less effective
than anti-obesity drugs, it has demonstrated a noteworthy impact on lipid metabolism in
metabolic disorders [66]. Probiotics regulate the essential enzymes involved in cholesterol
metabolism and production, such as phenyl transferase and HMG CoA synthetase [67].
Both de novo lipogenesis and lipid oxidation regulate the accumulation of fat in the liver.
Probiotics increase the expression of PPAR alpha and SREBP1, which in turn increase lipid
oxidation and de novo lipogenesis [68].

3.5. Probiotics in Lactose Metabolism

Due to decreased production of the lactose disaccharide, lactose intolerance has been
found in over 60% of the world’s population. In the presence of the enzyme lactase,
glucose and galactose combine to form lactose in the intestine [69]. Clinical effects of
abnormal lactose production include bloating, cramping in the abdomen, nausea, diarrhea,
and more [70,71]. This is carried out through microbial fermentation, where lactose is
preserved in its undigested state. This lowers the hydrolytic activity and helps in the
formation of short chain fatty acids in the colon, which can lead to lactose intolerance
in some people. Probiotics are a good source of lactase, which is provided externally
to promote lactose fermentation, and they also assist in increasing the amount of gut
microbeam in the intestine [72]. Probiotics also have an antagonistic effect on the bacteria
in the gastrointestinal tract lining that produce a lot of CO2 and methane [69,73]. In
the absence of the lactase enzyme, β-galactosidase contributes to the breakdown and
transgalactosulation of lactose. It generates continuous glycolysis and readily absorbs
glucose and galactose by tissue. In the GI tract, probiotics have been shown to exhibit
β-galactosidase activity. Probiotics with high levels of β-galactosidase activity include
Lactobacillus acidophilus (strains W22 and W70), Lactobacillus delbrueckii spp., Lactic acid
bulgaricus, Bifidobacteria, and Streptococcus thermophilus (W69) [74].
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3.6. Probiotics in Immune Response

Studies have demonstrated the modulatory effects of probiotics on dendritic cells,
macrophages, T-cells, and B-cells. Because probiotics have clinical significance in immune
cell regulation, multiple studies have investigated the possibility of using them as an adju-
vant therapy for immunological-related disorders. It has been demonstrated that probiotics
significantly affect Toll-like receptors (TLRs) and their adaptors’ ability to distinguish be-
tween endogenous and foreign substances. Furthermore, it encompasses a broad range of
pathogen recognition [75]. Studies have demonstrated that two probiotics produced from
fish, Bacillus amyloliquefaciens, Bifidobacterium bifidum, Bifidobacterium breve, Lactobacillus,
Saccharomyces, and Lactococcus lactis, can improve crayfish tolerance to pathogens and elicit
an innate immune response. Further, they increase the expression of immunogens, boost-
ing the gut microbiome [76]. The fermented product of probiotics, known as prebiotics,
helps exhibit energy binding on exopolysaccharides. Probiotics stimulate macrophages
to alter their cytokine production while suppressing the formation of short chain fatty
acids and bacteriocins (pathogens). Additionally, it facilitates the production of additional
antibodies (IgA) by B-cells by attaching microbe associated molecular patterns to dendritic
cell pathogen recognition receptors. More IL-10 and TNF-β are then released, acting as a
catalysts for the host immune response [77].

3.7. Antioxidant Activity of Probiotics

Oxidative stress is implicated in the development of various multifactorial and neu-
rodegenerative diseases. GAPDH activity is suppressed at elevated levels of oxidative
stress, and this inhibited glycolysis process lowers the amount of ATP produced by cells.
Reduced ATP production hampers Na/K-ATPase and calcium pumps, which further create
excess stress in cellular metabolism and prompt apoptosis. For that reason, the methods
to reduce ROS species are a great challenge for all medical researchers [78,79]. Recently,
probiotics have been implemented with natural antioxidants, increasing their safety and
acceptability among the population. For example, phenolic antioxidants donate a hydrogen
atom to radicals that prevent the formation of a radical chain reaction. Hence, they reduce
the effectiveness of oxidative stress [80]. Studies have demonstrated that the flavonoid
extracts have been effectively shown to inhibit lipid peroxidation, which is a major risk
factor for certain cancers and cardiovascular diseases [81,82]. Various studies have shown
that incorporating Lactobacillus acidophilus has successfully increased the antioxidants in
Rosa roxburghii tratt by fermentation. Probiotics help to reduce undesirable components
like aldehydes by enhancing the alcohols and esters that have a great impact on health
benefits [83]. Additional investigation is warranted to examine the potential of microbial
metabolites as antioxidants.

3.8. Probiotics and Oral Health

Oral health and general quality of life are closely related, according to the WHO Global
Programme. According to the WHO, around 3.5 billion people worldwide will have been
affected by oral disease in 2023 [84]. When taken in sufficient quantities, probiotics have
positive effects. In the past ten years, research has shown that probiotics can also improve
adaptive immune responses, reduce the risk of respiratory tract infections, and even treat
oral disorders. Traditionally, they have been employed to treat issues related to gut health.
Breast milk composition is influenced by specific probiotic bacteria that have been obtained
from mothers [85], and research has revealed that some bacteria among all oral microorgan-
isms may be beneficial for preserving dental health, such as Lactobacillus, Bifidobacterium,
Streptococcus strains, L. reuteri strains, L. brevis (CD2), L. casei Shirota, L. salivarius WB21,
Bacillus subtilis, L. bulgaricus, L. acidophilus, L. casei, L. helveticus, and L. lactis [86]. Their
antagonistic effect on other commensal oral microbes is recognized to protect oral cavities
from infections [87]. Furthermore, taking probiotics does not change IgA, which stops
germs from sticking to tooth surfaces. In order to protect against oral infections, probiotics
assist in preserving the balance of the oral microbiota. Probiotics have been shown to help
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preserve the balanced environment of excellent oral health by lowering the symptoms
of gingivitis, periodontitis, and halitosis, even though the clinical data on their actual
effectiveness in oral health is still uncertain [88,89]. Probiotics work in combination with
conventional dental care practices to provide an effective preventive intervention. Because
of their beneficial effects on oral health, probiotics have been recognized for incorporation
into oral medications [90,91].

4. Summary and Future Directions

Probiotics are used for health and medical consumption, as new strains have been
developed with probiotic products. The international scientific community has convened
and discussed probiotics and prebiotics as being of potentially acute importance. Pro-
biotics are targeted in clinical trials in health care and are near the quality standard for
the patient’s health (cancer, gastrointestinal, and neuron disorders) [92]. Research into
microbial delivery or changing the human microbiome to enhance health has advanced
staggeringly since “probiotics” were discovered. The Human Microbiome Project has
amplified this trend, supported by multidisciplinary initiatives outside of microbiology
that have contributed to the rapid growth of microbiome research worldwide [93]. The
ability to regulate these microbial communities holds considerable promise for new disease
prevention and treatment strategies. The concept of swallowing or injecting live bacteria for
medicinal purposes is gaining traction. Still, many microbiome studies in rats and humans,
on the other hand, “oversell” their results. Misuse of the term “probiotic” has resulted
in substantial misinformation. The basic principles presented here, which urge a proven
scientific definition of “probiotics” and a detailed examination of their real-world clinical
outcomes, are hoped to provide more clarity and create a deeper understanding of this
dynamic subject [94].

In conclusion, probiotic research has recently gained much attention to fill the gap
between production and demand. It aims to produce efficient strains supplemented with
dietary formulations and will provide various health benefits. This review has emphasized
the benefits of therapeutic bacterial strains, raising the likelihood of their usage today and
in the future. According to research, probiotic bacteria control pathogen colonization and
clear the gut through various mechanisms, including competition for limited resources in
the intestine and modulation of the mucosal immune system. As a result of the findings of
different in vivo and in vitro studies, which show a significant link between these beneficial
microorganisms and adaptive immunity responses, more research has shifted to the need
for probiotic strains in therapeutic applications to treat various ailments in recent years.
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