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Abstract: We introduce a system of differential equations to assess the impact of (self-)quarantine of
symptomatic infectious individuals on disease dynamics. To this end we depart from using the classic
bilinear infection process, but remain within the framework of the mass-action assumption. From
the mathematical point of view, the model we propose is interesting due to the lack of continuous
differentiability at disease-free steady states, which implies that the basic reproductive number
cannot be computed following established mathematical approaches for certain parameter values.
However, we parametrise our mathematical model using published values from the COVID-19
literature, and analyse the model simulations. We also contrast model simulations against publicly
available COVID-19 test data, focusing on the first wave of the pandemic during March–July 2020
in the UK. Our simulations indicate that actual peak case numbers might have been as much as
200 times higher than the reported positive test cases during the first wave in the UK. We find that
very strong adherence to self-quarantine rules yields (only) a reduction of 22% of peak numbers and
delays the onset of the peak by approximately 30–35 days. However, during the early phase of the
outbreak, the impact of (self)-quarantine is much more significant. We also take into account the
effect of a national lockdown in a simplistic way by reducing the effective susceptible population size.
We find that, in case of a 90% reduction of the effective susceptible population size, strong adherence
to self-quarantine still only yields a 25% reduction of peak infectious numbers when compared to
low adherence. This is due to the significant number of asymptomatic infectious individuals in
the population.

Keywords: infectious disease dynamics; nonlinear transmission process; quarantine; asymptomatic
transmission

1. Introduction

The recent COVID-19 outbreak has reinvigorated interest in the use of mathematical
models by the infectious disease community, i.e., to make predictions and assess various
hypotheses surrounding infectious disease dynamics (in particular COVID-19). One im-
portant question that has been investigated is the role and proportion of asymptomatic
infected individuals in the population, with regard to disease dynamics. This question is
particularly important when studied in relation to assessing the impact of (self)-quarantine,
as clearly without readily available mass testing (as was the case for COVID-19 in early
2020 around most parts of the world), asymptomatic individuals may continue to mix in
the population, and only symptomatic infectious individuals will/may self-quarantine.

Despite the reinvigorated interest in mathematical models of infectious disease dynam-
ics, very few authors ventured to use some novel models, in particular when it comes to the
modelling of the infection process itself; that is how new infections arise from the contact
between susceptible and infected individuals. Apparently almost all recent COVID-19 mod-
elling work uses the classic bilinear infection process, see, e.g., [1–6]; which dates back to
Kermack and McKendrick [7,8]. The idea behind the classic λ SI infection term in the early
works of Kermack and McKendrick is the so-called mass-action assumption, see e.g., [9,10].
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It is hypothesized that every susceptible individual has an equal chance to meet with
any of the infected individuals, hence the number of possible contacts (per unit time) of a
single susceptible individual is proportional to I, which is a linearly increasing function
of the total infected population size I. However, it has been recognised for a while that
the contact network of the population is not homogeneous; still, it can be shown that in
large enough populations with sufficient mixing, ODE systems may provide good enough
average information of the real (stochastic and individual based) process, see, e.g., [11,12].
Another major weakness of the classic SIR model is that its (long-term) behaviour only
depends on the initial number of susceptible individuals, and it is independent of the
infectious ones. It is worthwhile to note that the mass-action assumption originates from
studying chemical reaction networks and indeed it has been criticised, see, e.g., [10] (also
for a complete historical overview). In particular it is acknowledged (see, e.g., [10]) that
the forceful paradigm of using a simple bilinear infection term of the form λ SI is not
necessarily justified from the modelling point of view and its widespread use is rather due
to its simplicity.

On the other hand, one easily finds models in the mathematical literature, which
contain different nonlinear infection terms. One of the earliest of such papers is by [13],
but see also the much more recent ones [14,15]. There are clear arguments that, in many
situations, it will be much more realistic to use an infection term of the form S g(I), where,
for example, g saturates for large values of I. For example it is clear that during a pandemic
as the number of infected individuals increase in the population susceptibles will naturally
reduce the number of their contacts inducing a saturation effect in g. In the next section,
we will introduce a mathematical model incorporating a new nonlinear infection process;
that is the number of contacts will not be a linearly increasing function of the infectious
population size. Partially motivated by the recent COVID-19 pandemic, we focus on two
key aspects:

1. The impact of asymptomatic infectious individuals on disease dynamics.
2. The impact of (self)-quarantine on disease dynamics.

While the first issue can be simply studied by separating the group of infectious
individuals into two compartments; the second issue, we argue, can be handled via
the introduction of a novel infection term. The key finding we obtain using our novel
mathematical model is that the impact of (self)-quarantine is significant only during the
very early phase of an outbreak, and its impact significantly diminishes over time. We argue
that this effect is due to the presence of a significant number of asymptomatic infectious
individuals. This finding is rather interesting in light of the transmission term we use,
as the saturation effect in disease transmission increases with the population density of
infectives in our model. From the practical point of view, our finding is important in light
of the extensive government measures introduced in response to COVID-19 in the UK. We
also contrast our model simulation outputs against publicly available COVID-19 test data,
focusing on the first wave of the pandemic in March–July 2020 in the United Kingdom.

The number of recently published papers using systems of differential equations to
model COVID-19 disease dynamics is enormous. Attempts have been made to design
models, which separate individuals who are known to be infected from those that are
untested/unreported, see, e.g., [3–5]. It is worthwhile to note though that interestingly
enough in [3–5] it is assumed that the transmission rate for symptomatic and asymptomatic
individuals are the same. Early on in the pandemic, it was also hypothesized that environ-
mental transmission was significant, see, e.g., [6]; however, later studies confirmed that
environmental variations cannot explain varying transmission rates see e.g., [16]. What
most researchers would agree on is that quarantine of symptomatic individuals may play
a significant role in infectious disease dynamics, in particular in conjunction with signifi-
cantly different transmission rates for asymptomatic versus symptomatic individuals (see,
e.g., [17]); and these are the two issues we will focus on here.
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2. Materials and Methods

Our goal is to introduce and study a basic compartmental model, which can be
considered as an extension/modification of a classic SEIR model in two major directions:

1. We introduce a compartment for the asymptomatic infectious individuals.
2. We model the effect of (self)-quarantine via the introduction of a new nonlinear

(sublinear to be precise) transmission term.

Thus, in our mathematical model, at any given time, individuals will belong to one of
the following 5 compartments.

• S—susceptible;
• E—exposed;
• A—asymptomatic infectious;
• I—symptomatic infectious;
• R—recovered/removed.

To arrive at a tractable mathematical model (and simultaneously to remain relatively
close in nature to some of the existing compartmental models, for comparison purposes)
we impose the following assumptions:

1. Newly infected individuals all enter the exposed compartment first due to a latency
period. It is clear from the studies that, for COVID-19, there is a significant incubation
period of approximately 7.73 days; see [18].

2. Exposed individuals spend on average in the E compartment α−1 time units (where,
e.g., for COVID-19 α−1 = 7.73 days, according to [18]), after which a proportion:
0 < p < 1 of them becomes symptomatic infectious, while the remaining individuals
become asymptomatic infectious.

3. Both asymptomatic and symptomatic individuals may pass on the disease, but nat-
urally (as is the case for all influenza-like diseases, spread mainly by droplets, e.g.,
COVID-19) the transmission rate is significantly higher for symptomatic individuals:
β I , when compared to the transmission rate for asymptomatic infected individuals:
βA; that is 0 < βA � β I ; still asymptomatic infected individuals may also pass on the
disease (for example via very close contact).

4. We take into account the effect of (self)-quarantine; that is, we assume that at any
given time a subset of the symptomatic infected individuals (self)-quarantine (this
is supported by reports, e.g., during the COVID-19 pandemic, see, e.g., [19,20]). We
use a power law to model this, instead of using, for example, a fixed proportion, as it
is known that (online) human interaction activity will impact adherence rates, and
such activity can be often approximated by power laws (see, e.g., [21,22]). Moreover,
it may be natural to assume that the impact of quarantine will be more significant for
relatively higher infectious population densities. Thus, in combination with the classic
mass action assumption, we propose to use an infection term of the following form:

βA S(t)A(t) + β I S(t)(I(t))κ , 0 ≤ κ ≤ 1.

Note that, for smaller values of κ, the transmission (for example contact) between
susceptibles and symptomatic infectious individuals is reduced. In particular, κ = 0
would correspond to a complete quarantine of the symptomatic infectious population.

5. We do not incorporate population dynamics since we want to focus on the disease
dynamics over a short period of time here (that is, for COVID-19, a 4-month period
during March–July 2020). Moreover, we do not explicitly incorporate disease-induced
mortality into our model, although it can be understood that deceased people have
entered the removed compartment.
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The assumptions above allow us to introduce the following basic model

S′(t) =− βA S(t)A(t)− β I S(t)(I(t))κ

E′(t) =βA S(t)A(t) + β I S(t)(I(t))κ − α E(t)

A′(t) =(1− p) α E(t)− γA A(t)

I′(t) =p α E(t)− γI I(t)

R′(t) =γA A(t) + γI I(t)

(1)

naturally quipped with an initial condition of the form

(S(0), E(0), A(0), I(0), R(0)) := (S0, E0, A0, I0, R0) ∈ R5
+, S0 + E0 + A0 + I0 + R0 = N.

The compartmental model (1) above can be considered an extension of the classic
Kermack–McKendrick SIR model ([7,8]), in two major directions: we introduce an asymp-
tomatic infectious compartment, and we model the effect of (self)-quarantine via the
introduction of a nonlinear infection process. We note that the model above can be con-
sidered a starting point of departure from the classic Kermack–McKendrick SEIR model,
and there are various natural modifications (such as the introduction of time-dependent
parameters), which would make it widely applicable; we discuss some of these extensions
in the last section. For the readers’ convenience, we present a simple diagram below
describing our model.

S E

I

A

R
(βA, β I)

p α

(1− p) α

γI

γA

Note that (because of assumption 5 above) we have

d
dt
(S(t) + E(t) + A(t) + I(t) + R(t)) = 0, ∀t > 0,

that is the total population size (denoted by N below) is preserved

S(t) + E(t) + A(t) + I(t) + R(t) = N > 0, ∀t ≥ 0.

Due to the lack of Lipschitz continuity at I = 0, we establish existence and uniqueness
(and positivity) of solutions (when I 6= 0) below.

Proposition 1. For every initial condition (S(0), E(0), A(0), I(0) 6= 0, R(0)) ∈ R5
+ model (1)

admits a unique solution, which remains non-negative for all times.

Proof of Proposition 1. Let us introduce the notation u(t) = (S(t), E(t), A(t), I(t), R(t))t

and rewrite model (1) in matrix form as

u′(t) = H(u(t)), u(0) =: u0 ∈ R5, (2)
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where we define

H(u) :=


H1(u) = −βA SA− β I SIκ

H2(u) = βA SA + β ISIκ − α E
H3(u) = (1− p)α E− γA A
H4(u) = pα E− γI I
H5(u) = γI I + γA A

. (3)

Next, we note that H is locally Lipschitz continuous on the open set

O := R5 \ {(S, E, A, 0, R) ∈ R5},

hence for any u(0) ∈ O a unique local solution of (1) exist by the Picard-Lindelöf theorem.
To show that solutions exist globally, it is sufficient to show (see, e.g., Corollary 2.5.3 in [23])
that there exists a constant ω ≥ 0, such that

〈H(w), w〉 ≤ ω ||w||22, (4)

for all w ∈ O. Above in (4) 〈·, ·〉 stands for the usual inner product on R5, and || · ||2 for the
standard Euclidean norm on R5. We have

〈H(w), w〉 =(−βA SA− β I SIκ)S + (βA SA + β ISIκ − α E)E

+ ((1− p)α E− γA A)A + (pα E− γI I)I + (γI I + γA A)R

≤max{βA, β I , α, γA, γI}N2 (S2 + E2 + A2 + I2 + R2)

=max{βA, β I , α, γA, γI}N2 ||w||22,

(5)

using that we have S, E, A, I, R ≤ N. Finally we note that we have

H1(w)|S=0 = 0, H2(w)|E=0 ≥ 0, H3(w)|A=0 ≥ 0, H4(w)|I=0 ≥ 0, H5(w)|R=0 ≥ 0, (6)

hence, solutions starting in O+ will remain non-negative for all times, see [24].

With regards to further mathematical properties we note that model (1) admits a
family of steady states of the form:

(S∗, 0, 0, 0, R∗), S∗ + R∗ = N, S∗, R∗ ≥ 0,

(a line in the phase space). On the other hand, from the mathematical point of view it
is worthwhile to note that the right hand side of model (1) is not Lipschitz continuous
when I = 0, for 0 < κ < 1; hence, for example, one cannot linearise the model at its
non-trivial steady states for these κ values. Note that though steady states clearly exist, as
only uniqueness of solutions may be lost when I = 0, but clearly we are not interested in
such solutions. We make it clear that we only intend to use model (1) over a relatively short
time-scale, e.g., during the first wave of the UK pandemic during March–July 2020 (after
which, all compartmental models tend to deviate from the real process, as they are rather
simplistic); hence, asymptotic properties of the model are irrelevant; although we refer the
interested reader to Section 4 for more details on qualitative properties of model (1) for
κ = 1, and in particular in comparison to the classic Kermack–McKendrick model.

3. Results

In this section, we parametrise our model and analyse model simulations, focusing
on the first wave of COVID-19 (pre Delta variant) in the UK during March–July of 2020.
In particular, to parametrise our model (1), we searched the COVID-19 literature to find
some realistic values, although it became quickly clear that there are significant variances
of estimates one finds in different studies. In our model (1), time is measured in days, and
as already previously mentioned, we take an incubation period of 7.73 days, which yields
α = 0.129. For the total UK population, we used the 2020 estimate of N = 67,081,000 by
the Office for National Statistics (see [25]). It is worthwhile to note that it is very difficult to
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find any reliable estimates for transmission probabilities for COVID-19. On the other hand,
there are a lot of published studies estimating the difference between transmission rates
of asymptomatic versus symptomatic infectious individuals. For example, [17] estimates
that symptomatic individuals will have 50% higher transmission rates. Therefore, in our
simulations, initially, we set βA = 2N−1 and β I = 3N−1. Note that, for example, βA
is the per (susceptible) capita contact rate per unit of time (day), times the transmission
probability. So, for example, the value we choose for βA would correspond to 5 contacts per
unit time (day), on average, with a transmission probability of 0.4 (upon contact). Naturally
one would assume that the transmission probability is much higher for symptomatic
infectious individuals. However, the average number of contacts might be reduced; hence,
the 50% higher transmission rate for symptomatic individuals (also used in [17]). Several
studies (see, e.g., [26,27]) reported no or low detectable virus levels 8 days from the onset
of symptoms; hence, we take the recovery rate γI = 0.125. Since there is no reliable
evidence that the recovery rate would be different for asymptomatic cases, we take the
same value for γA. There are a number of studies with widely varying figures (1% to
78%) concerning the proportion of asymptomatic versus symptomatic cases. This is not
surprising as asymptomatic individuals are often not tested; hence, it is very difficult
to obtain reliable estimates for their numbers. A recent study [28] reported that around
the third of cases are asymptomatic; hence, we take p = 0.66 as a baseline figure for our
simulation setups. Note that, in our model, p is the probability to become symptomatic,
and not exactly the proportion of symptomatic individuals among the infected ones at
any given time (which will also depend on the initial conditions used), we will discuss
this further later on when interpreting the simulation results. The parameter κ measures
adherence levels to quarantine and, hence, the reduction of symptomatic transmission of
the disease, which we are going to vary to assess its impact in early and late stages of the
first wave of the pandemic in the UK. Note that a low value of κ means strong adherence
to self-quarantine rules. It is also important to note that κ (naturally) is a dimensionless
(scalar) quantity.

We contrast our model simulation results against publicly available data in [29],
focusing on the first wave (pre Delta variant), March–July 2020 of the COVID-19 pandemic
in the UK. The main issue with most of the publicly available COVID-19 data we found is
that usually only the number of new positive tests and deaths were reported on a daily basis.
However, our simulation output is the total number of currently infectious symptomatic
and asymptomatic individuals, which does not allow for a direct comparison. It is clear
that there is even more ambiguity when we take into account that, for anyone tested (and
reported) positive, it is not known when exactly they acquired the infection; that is, there is
a variation of the days elapsed from the onset of symptoms until a positive test is recorded.
It was not our focus here to perform a rigorous data analysis. Instead, to estimate the
number of current infectious individuals for a given day, we took a backward time window
and added the total number of new cases reported, and subtracted the number of reported
deaths over a two-sided time window spanning 19 days. The value 18 to 19 days from
diagnosis to death was reported in a recent study from Australia [30], and we do not have
any reason to believe that this would be significantly different for the UK.

It is clear that, due to insufficient testing during the first wave (March–July 2020) in
the UK, the actual number of infectious (asymptomatic and symptomatic) individuals
was likely to be much higher than the test data indicates (this is also confirmed by the
volume of positive tests recorded during the second wave, as much as 15 times higher,
when testing was readily available). Our simulations in fact indicate that the actual number
of cases could have been as much as 200 times of that reported via testing (see Figure 1
below). It is also clear that the significant national lockdown significantly reduced the total
number of cases. We are going to investigate this by reducing the “available” (effective)
susceptible population size significantly in Setup 1—reduced S(0), see below. The shape
of the curves (note that 1 March corresponds to time 0 in our simulations) indicate very
good agreement both for Setup 1 and Setup 1 with reduced susceptibles, see, e.g., Figure 1
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below. However, the peak number of individuals in our simulation Setup 1 is around
85 to 90 days, which coincides with the peak number of the data based on positive tests. In
contrast, in Setup 1, with reduced susceptibles, the peak appears to be at 75 days, which
may suggest that despite the national lockdown during March–June 2020, the possible
number of susceptibles coincided with the actual population size. This could be explained
with the high density network structure coupled with the fact that significant layers of the
population were still working and mixing, etc.

Figure 1. Setup 1—model simulation results for the total number of individuals A(t), I(t) and
A(t) + I(t).

Below, we present some key model simulation results. We used discretisation to
produce solutions of model (1) in Python. In Setup 1 and 2, the initial condition we
used consisted of the whole susceptible UK population and a very small number of
exposed, asymptomatic infectious and symptomatic infectious individuals (50, 10 and
40, respectively). In Setup 1 and 2—reduced S(0), we reduced the initial susceptible
population by 90%, and changed, accordingly, the parameter values βA and β I , while the
other parameters were kept the same; see Table 1 below. This means that, we hypothesize
that, in reality, there is an effective susceptible population (which in the simulation is
10% of the total population), and in fact a significant proportion of susceptible individuals
are isolated. From the practical point of view, the reduction of the susceptible population
could be a result of a number of factors, for example a national lockdown, shielding,
self-isolation, etc.

Table 1. We summarise the model parameters used for the model simulations in Python.

Model Parameters βA βI γA γI α p κ

Setup 1 2
67,081,000

3
67,081,000 0.125 0.125 0.129 0.66 0.1

Setup 2 2
67,081,000

3
67,081,000 0.125 0.125 0.129 0.66 0.9

Setup 1—reduced S(0) 2
6,708,100

3
6,708,100 0.125 0.125 0.129 0.66 0.1

Setup 2—reduced S(0) 2
6,708,100

3
6,708,100 0.125 0.125 0.129 0.66 0.9
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We highlight some of our key findings from the model simulations, and in light of the
test data, as follows:

1. Setup 1 (κ = 0.1) simulation results indicate very good agreement between the dates
of the peak number of positive tests from the data and model simulation output for the
total number of cases. In particular, test data indicate a peak at around 63 to 77 days
(see Figure 2), while simulation outputs show infectious case numbers peaking at
around 85 days (see Figure 1), and this is what one naturally expects as someone
who tests positive may remain infectious for a further 5 to 10 days. While the wave
takes place over a much shorter timescale in Setup 2, infectious individual numbers
peak at around days 50–55 (see Figure 3), quarantining of a significant proportion
of symptomatic individuals obviously slows down the spread of the disease. Hence,
in principle, our simulation outputs would indicate that symptomatic infectious
individuals adhered to self-quarantine rules during the first wave of the pandemic in
the UK (indicated by the agreement with Setup 1).

2. Comparing the peak number of cases in Setup 1 of 1.64× 107 (see Figure 1) to that
against Setup 2, which is 2 × 107 (see Figure 3), we can see that a reduction of
approximately 22% of peak numbers was achieved by moving from a very loose
(κ = 0.9) to a very strong (κ = 0.1) adherence to self-quarantine of symptomatic
infectious individuals. Keeping in mind that we assumed that (a significant) two-
thirds of exposed individuals become symptomatic, in our opinion, this is not a
drastic change as one might hope for. Indeed, if for example only a third of exposed
individuals become symptomatic, then our model (1) predicts that the impact of
self-quarantine of symptomatic infectious individuals on peak case numbers would
be negligible. However, self-quarantine has a much more significant impact during
the early phase of the outbreak, which is due to the delay of the onset of the peak.

3. Based on the literature, we choose the parameter value p = 0.66, meaning that, on
average, two-thirds of the exposed individuals become symptomatically infectious.
In both Setup 1 and 2, we observe that A(t)

I(t) tends to the same constant 0.515̇1̇ as time
goes to infinity, which is realistic, as this should be specific to the disease. Note that
0.515̇1̇ = 0.34

0.66 as one would expect, and simulations show that the ratio A(t)
I(t) stabilizes

very quickly.
4. When comparing Figures 4 and 5, we can see that the proportions E(t)

A(t) are drastically
different; this is due to the increased infection pressure in Setup 2, with low adherence
to self-quarantine of symptomatic infectious individuals.

5. Comparing changes (Setup 1 to Setup 1 reduced S(0) vs. Setup 2 to Setup 2 reduced
S(0)), we can conclude that, in both cases, naturally, there is approximately a 90%
reduction in the total number of infectious cases (A(t) + I(t)), due to the 90% reduc-
tion in S(0), the effective susceptible population, (compare Figures 1–6). Infectious
individual number peaks are also shifted (to an earlier date) by 13 days vs. 10 days
in Setup 1 vs. Setup 2 (compare Figures 1–6 and 3–7). Similarly, the reduction in the
peak number of cases from Setup 1 reduced S(0) to that of Setup 2 reduced S(0) is
approximately 25% (compare Figures 6 and 7), which is comparable to the reduction
of 22% from Setup 1 to Setup 2. Importantly, these simulation results may indicate
that there is no significant combined effect of a national lockdown (modelled by the
reduced effective susceptible population) and strong adherence to self-quarantine
rules for symptomatic infectious individuals, when there is a significant proportion of
asymptomatic infectious individuals (≈34%) and no mass testing, as was the case dur-
ing the first wave of the pandemic in the UK. It is also clear from the simulations that
all of the measures (e.g., national lockdown, (self)-quarantine) prolong the pandemic.
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Figure 2. Estimate for the total number of individuals with positive tests at weekly time instances
during March–July 2020 in the UK, based on the data sources in [29].

Figure 3. Setup 2—model simulation results for the total number of individuals A(t), I(t) and
A(t) + I(t).
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Figure 4. Setup 1—model simulation results for the proportions of individuals E(t)
A(t) , E(t)

I(t) and A(t)
I(t) .

Figure 5. Setup 2—model simulation results for the proportions of individuals E(t)
A(t) , E(t)

I(t) and A(t)
I(t) .
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Figure 6. Setup 1 reduced S(0)—model simulation results for the total number of individuals
A(t), I(t) and A(t) + I(t).

Figure 7. Setup 2 reduced S(0)—model simulation results for the total number of individuals
A(t), I(t) and A(t) + I(t).

4. Discussion on R0—The Basic Reproductive Number

From a mathematical point of view, a very important feature of the model we proposed
here is the lack of continuous differentiability when I = 0, for 0 < κ < 1. However, it
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is clear from the modelling point of view that this is not a practical problem, as we are
not interested in solutions starting with I = 0, when uniqueness may be lost. On the
other hand, the lack of continuous differentiability for 0 < κ < 1 also means that the
model cannot be linearised around the infection-free steady state and, hence, the basic
reproductive numberR0 cannot be computed following the established next generation
method, see [31] for example, for these values of κ. The problem is that these approaches,
see also [32], try to define and relate the basic reproductive number to the local asymptotic
stability of the disease-free steady state, which is somewhat questionable in the first place.
It is clear that, as everyone can see in the COVID-19 pandemic, it is meaningless to talk
about convergence to a steady state, and the reproductive number changes at every single
time instance. Indeed due to the mathematical definition of R0, e.g., in [31,32], R0 only
gives you some information at time equals zero, when the disease was introduced into
a (completely) susceptible (and well-mixed) population. We refer the interested reader
to [33], where a new approach was proposed to define basic reproductive functions for
nonlinear models without linearisation. The approach in [33,34] utilises a transformation
of the nonlinear problem into a family of linear ones, and makes use of a spectral theoretic
result found for example in [35].

However, for the sake of interest, using the approach from [32], let us deduce a
formula for the basic reproductive number (or rather function, see later) for the case of
κ = 1, i.e., when no self-quarantine of symptomatic infectious individuals takes place, and
thus our model resembles a classic model. Following [32], we rearrange the components
of the solution vector as (E(t), A(t), I(t), S(t), R(t))t, giving m = 3 (i.e., the first three
components contain infected individuals); and then we have (using the exact same notation
as in [32])

F =


βA SA + β I SI

0
0
0
0

, V =


α E

−(1− p)α E + γA A
−αp E + γI I

βA SA + β I SI
−γI I − γA A

. (7)

F above describes the infection process (the recruitment of exposed individuals), while
V describes the transitioning between compartments. We then compute the derivatives at
(0, 0, 0, S∗, R∗)t (disease free steady states) as follows (m = 3):

F =

0 βA S∗ β I S∗
0 0 0
0 0 0

, V =

 α 0 0
−(1− p)α γA 0
−αp 0 γI

. (8)

The inverse of V is computed as

V−1 =


1
α 0 0

1−p
γA

1
γA

0
p

γI
0 1

γI

, (9)

which then yields

F V−1 =

 βA S∗(1−p)
γA

+ β I S∗p
γI

βA S∗
γA

β I S∗
γI

0 0 0
0 0 0

. (10)

Hence, the spectral radius of F V−1 is simply

R0 = S∗

(
βA(1− p)

γA
+

β I p
γI

)
. (11)
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As we can see from the formula above,R0 actually can be understood as a function
R0(S∗) of the susceptible population size S∗. Recall that our model (1) has a continuum
family of disease-free steady states of the form (S∗, 0, 0, 0, R∗), where S∗ + R∗ = N (the
total population size). Hence, naturally, for each of these steady states, we get a different
value R0(S∗). For example, using the parameter values used in Setup 1, the values for
R0(S∗) range from 21.28 for S∗ = N to, e.g., 2.128, corresponding to Setup 1—reduced
S (90% reduction in the susceptible population size due to national lockdown). There
is a bifurcation point on the line of steady states at S∗ = 1

21.28 N (when R0(S∗) = 1),
meaning that disease-free steady states (S∗, 0, 0, 0, R∗) are locally asymptotically stable
when S∗ < 1

21.28 N ⇐⇒ R0(S∗) < 1, and those steady states for which S∗ > 1
21.28 N ⇐⇒

R0(S∗) > 1 are unstable. This qualitative property of model (1) (again, only for κ = 1)
not surprisingly, is somewhat similar to that of the classic Kermack–McKendrick model.
The practical interpretation of this result is that according to our model, and using the
parameter values as in Setup 1, the pandemic could have been avoided theoretically
(without quarantining, i.e., κ = 1) by isolating 20.28

21.28 % ≈ 95.3% of the susceptible population
(or in other words, an effective susceptible population size of ≈ 4.7% N), a percentage
clearly hard to achieve.

5. Outlook

Our goal here was to introduce a basic compartmental mathematical model, incor-
porating a new infection term, to model (short term, horizontal) disease transmission
dynamics, by focusing on two key aspect: the role of asymptomatic infectious individuals
and (self)-quarantine. From a mathematical point of view, our model is interesting, as, for
example, the basic reproduction number cannot be computed for certain parameter values
following established mathematical approaches. We parametrised our model using studies
from the COVID-19 literature. However, we do not want to overstate our conclusions for
COVID-19 as we only performed a limited number of simulations, and there are significant
challenges and unknowns around data collection (for example test data) and analysis;
important issues on which we did not focus here.

There are various natural modifications and extensions of our model, some of which
we mention here briefly. For example, it is clear that all of the model parameters can be
made explicitly time-dependent. It could be interesting to replace κ with a time-dependent
function κ(t), to allow us to model the effects of COVID-19 fatigue, that is weakening
adherence to self-quarantine of symptomatic infectious individuals. This would be partic-
ularly relevant when focusing on subsequent waves. If we want to look beyond the first
wave, then naturally we may introduce and study the impact of waning immunity. From
the modelling perspective, this would mean individuals re-entering the S compartment
from the R compartment. The introduction of time-dependent model parameters would,
in principle, allow to model long-term disease dynamics and allow for periodic waves of
outbreaks. Naturally acquired COVID-19 immunity (e.g., via infection) can be incorporated
by simply introducing a constant (less than 1) multiplying the parameter values p and 1− p.
This would be important when modelling subsequent waves as a number of people have
acquired immunity through the first wave. It could be interesting to compare simulation
outputs for infectious individual numbers to that of test data during the 2020/2021 winter
wave, when mass testing was available and in the UK we have seen 10–15 times the number
of daily positive tests compared to the first wave, despite that, a significant proportion of
the population may have acquired immunity during the first wave.
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