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Abstract: The COVID-19 pandemic placed significant stress on an already overburdened health
system. The diagnosis was based on detection of a positive RT-PCR test, which may be delayed
when there is peak demand for testing. Rapid risk stratification of high-risk patients allows for
the prioritization of resources for patient care. The study aims were to classify patients as severe
or not severe based on outcomes using machine learning on routine laboratory tests. Data were
extracted for all individuals who had at least one SARS-CoV-2 PCR test conducted via the NHLS
between the periods of 1 March 2020 to 7 July 2020. Exclusion criteria: those 18 years, and those with
indeterminate PCR tests. Results for 15437 patients (3301 positive and 12,136 negative) were used to
fit six machine learning models, namely the logistic regression (LR) (the base model), decision trees
(DT), random forest (RF), extreme gradient boosting (XGB), convolutional neural network (CNN) and
self-normalising neural network (SNN). Model development was carried out by splitting the data into
training and testing set of a ratio 70:30, together with a 10-fold cross-validation re-sampling technique.
For risk stratification, admission to high care or ICU was the outcome for severe disease. Performance
of the models varied: sensitivity was best for RF at 75% and accuracy of 75% for CNN. The area
under the curve ranged from 57% for CNN to 75% for RF. RF and SNN were the best-performing
models. Machine Learning (ML) can be incorporated into the laboratory information system and
offers promise for early identification and risk stratification of COVID-19 patients, particularly in
areas of resource-poor settings.
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1. Introduction

With the emergence of COVID-19 caused by the novel SARS-CoV-2 [1], in late 2019
and the early months of the year 2020, the world was put on hold. Since 17 January 2020,
when the World Health Organization (WHO) announced it as an international public health
concern, the numbers of people who contracted COVID-19 increased dramatically. As of
15 November 2022, the confirmed cases stood at 635 million with a death toll of 6.6 million
people worldwide. These figures are four million and 102 thousand respectively, for South
Africa (https://www.google.com/search?q=covid+19+world+stats&rlz=1C1VDKB_enZA9
43ZA944&oq=&aqs=chrome.0.69i59i450l8.107752819j0j15&sourceid=chrome&ie=UTF-8, ac-
cessed on 20 September 2022). These numbers led the world leaders to seek solutions to
contain viral spread. Among many methods, national lockdowns, social distancing, and
wearing protective face masks were used and these methods proved to be effective in
at least the management of the viral spread [2]. South Africa was in various national
lockdown levels from April 2020 lasting until June 2022.
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The rapid spread, high infectivity and quick progression of the disease in positive
patients [3] stressed the health care systems. This stress meant that there was always an
urgent need for quick and effective diagnostic and risk stratification measures, in order
to identify patients that require intensive care. The most common test for the virus is
the PCRs which involves testing swabs from various respiratory tracts, but mainly the
nasopharyngeal swab [4]. Delays in the traditional risk stratification methods causes a lag
in hospital admission time and bed assignment for patients as well as possible exposure of
the healthcare givers to infected patients.

This study aimed at using machine and statistical learning models to predict the
severity of COVID-19 using quick and readily accessible routine laboratory tests. The
problem is approached as a classification problem using supervised, machine learning
algorithims. Routine lab tests are available within 30 min to 2 h. The tests results provide a
number of analyte markers values which, together with some pre-known health conditions,
can be used for risk stratification. An analyte is a biochemical compound, which is a target
for chemical analysis, hence an analyte marker is made by spiking the compound to make it
effective in measurements. Artificial intelligence has inspired machine learning algorithms
capable of the initial diagnosis and risk stratification of various diseases [5–11].

1.1. Aim

The aim of the research was to classify whether the positive COVID-19 cases had
severe COVID-19 symptoms or not, hence helping to decide the type of hospital ward
where the patients would be admitted. Severe COVID-19 symptoms include: difficult
breathing, body weakness, high fever and muscle and joint pains. The classification was
carried out using the data provided from a network of laboratories in South Africa, which
contains various analyte measures. The analytes were used as variables in the classification.

1.2. Objectives

The objectives followed the aim. These were:

• To use machine learning and statistical learning models to classify the severity of
COVID-19, which is (RS).

• To compare the fitted machine learning models using different measures of performance.
• To identify the top-performing model for the above-mentioned objectives.
• To identify the top important analytes relevant to the risk stratification of COVID-19.

1.3. Research Design

A retrospective study design was used to describe results extracted from the Central
Data Warehouse (CDW) of the National Laboratory Health Services (NHLS), for all patients
tested between 1 March 2020 and 7 July 2020, in the public sector healthcare facilities of the
country. The CDW houses all laboratory results for public sector patients in South Africa.

1.4. Data

We extracted data for all individuals who had at least one PCR test conducted via the
NHLS between 1 March 2020 and 7 July 2020. Patient data was anonymized to prevent
traceablility. A six month period of demographic, biochemical and haematological and
microbiology data was extracted for all patients who had a SARS-CoV-2 PCR test. Out
of a total of 842,197 tests, 11.7% were positive and 88.3% negative. A critical case was
defined as a patient who was admitted into a ward because of COVID-19 complications
and non-critical patients are positive cases that were not admitted.

2. Literature Review

This section presents a review of the findings of various studies that are similar to
this study. The literature review goes through various papers, and other publications
that looked, directly or indirectly to the use of machine learning in prediction of COVID-
19 as well as risk stratification. Multiple articles were written and/or presented that
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used different predictors, which include analytes and imaging techniques to predict and
stratify COVID-19 risk. The section analyses and critiques various methods used by other
researchers as well.

2.1. Background of Using Routine Lab Results for COVID-19 Diagnosis

Clinical characteristics of COVID-19 have been well studied and a lot of abnormalities
have been noticed in patients infected with the disease [12]. These abnormalities demon-
strate that they play an important role in early diagnosis, detection and even management
of the disease [13]. The table in Figure 1 shows the findings of their research and how
COVID-19 affected the various listed analytes.

Figure 1. Main abnormalities noted by [12] in COVID-19 patients.

With the devastating nature of COVID-19, it is important to identify and rank groups
of patients who are at risk of severe COVID. Several authors have documented risk factors
mostly associated with severe COVID-19 outcomes. These studies included mostly comor-
bidity conditions such as HIV infection [14], type 1 and type 2 diabetes [15]. Hesse et al. [16]
presented findings using the same data as used for this research. The study looked at
how comorbidity factors which include: HIV, TB, and Diabetes HBA1c and other related
laboratory analytes affect the severity of COVID-19. All these studies demonstrated that it
is possible to use routine lab test results and comorbidity factors to predict and diagnose
COVID-19 status and severity.

2.2. Machine and Statistical Learning in Predicting COVID-19 Severity

Zimmerman et al. [17] review the prospective uses of machine learning and artificial
intelligence for cardiovascular diagnosis, prognosis, and treatment in COVID-19 infection in
a number of cardiovascular applications. Applications of Artificial intelligence, particularly
machine learning, have the potential to take advantage of platforms with a lot of data and
change how cardiovascular illness is identified, risk-stratified, prevented, and treated. The
authors also cite how improvements in AI have been made in various fields of cardiology.

There have been various studies that have documented how statistical and machine
learning models can be used to diagnose and predict COVID-19 and its severity [18–20].
These have used supervised learning albeit with different features. The models that have
been developed demonstrated great predictive performances.

Zoabi et al. [18] used machine learning models to diagnose COVID-19 based on
symptoms experienced. The study features space comprised of sex, age, and symptoms
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such as cough, fever, sore throat, shortness of breath, headache, and whether one was
in contact with a positive COVID-19 case. The study employed the gradient-boosting
model in Python and used the ROC curve to assess model performance with the bootstrap
re-sampling method. The model demonstrated high predictive performance with the area
under ROC curve being 86% as shown in Figure 2.

Yang et al. [19] used 27 laboratory tests together with demographic features (age, sex,
race) to fit machine learning models in the R software [21] for COVID-19 prediction and
risk stratification. The research fitted a logistic regression classifier, decision tree, random
forest, and gradient-boosting decision tree classifiers. A 5-fold cross-validation re-sampling
method was employed, with the area under the ROC curve used predominantly as the
measure of model performance. As shown in Figure 3, the two ensemble models which
are gradient boosting models and random forest outperformed the singular models of
logistic regression and single decision tree in that order. All the models, however, had a
high predictive performance.

Figure 2. ROC curve showing model performance with high AUC of 86% [18].

Figure 3. 5-Fold Cross-validation of the four models stated. (a) Comparison of ROC curves (b) com-
parison of AUC, specificity, and sensitivity. Gradient Boosting DT is shown to be the best model [19].
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Jucknewitz et al. [20] used statistical learning to analyse prior risk factors for the
severity of COVID-19. The study used factors such as age, gender, nationality, occupation,
employment, income, etc. LASSO was used in variable selection, and a regression model
together with gradient boosting models were used. ROC, AUC, and accuracy were used to
evaluate the models’ performances. Figure 4 shows the ROC curves for the models, the
gradient boosting model shows an AUC of 88.79%, and the baseline model had an AUC of
87.55%.

Figure 4. Adapted from [20], the figure shows a set of ROC curves for gradient boosting and logistic
regression models.

A study was conducted from 287 COVID-19 samples from King Faha University
Hospital in Saudi Arabia by [22] on prediction of the disease using three classification
algorithms, namely, random forest, logistic regression, and extreme gradient boosting
model. The data was re-sampled using 10-k cross-validation with SMOTE to alleviate the
imbalances that were present. The modeling was conducted on 20 features that included
some symptoms as well. The RF model outperformed the other classifiers with an accuracy
of 0.938, sensitivity of 0.947, and specificity of 0.929, with the results given in a table shown
in Figure 5.

Alballa et al. [23] compiled a review of a number of studies that employed machine
learning in COVID-19 diagnosis, mortality and risk predictions. The study noticed that
most studies employed supervised machine learning models. The papers aims were to:

• Review ML algorithms used in the field mainly used for diagnosis of COVID-19 and
prediction of mortality risk and severity, using routine clinical and laboratory data
that can be accessed within an hour.

• Analyses the top features/variables that were found to be top predictors, i.e., the most
important features relevant to machine learning predictor models.

• Outline the algorithms mostly used and for which purpose.
• Points out some areas of improvement as well as areas of further study.
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Figure 5. Table of results adapted from [22] of the study from King Faha University Hospital in Saudi
Arabia, using the three machine learning models.

The paper concluded that the results of machine learning and statistical models are
consistent with those of pure medical studies. It also pointed out the issue of imbalance
and missing values in the data usually used in the studies. The results from their study are
shown in Figures 6–8.

Figure 6. The machine and statistical models used for COVID-19 diagnosis and prognosis adapted
from [23].
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Figure 7. Top features found as most important features in diagnosis of COVID-19 modified from [23].

Figure 8. Top features found as most important features in prognosis of COVID-19 modified from [23].

3. Methodology

This section provides detailed explanations and descriptions of various methods that
were implemented and used in the study in order to arrive at the intended results.

Consider supervised data with predicted variable Y and predictor variables
X = (X1, X2, . . . , Xp), X̄ is a vector representation of the predictor variables Xi, i.e.,
the predictor variables and analytes from routine clinical tests. Let Yi ∈ {0, 1} be an in-
dicator variable with Yi = 0 be not-Severe COVID-19 and Yi = 1 be Severe COVID-19.
This study classified this supervised data set for Logistic regression, Decision Trees, Ran-
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dom Forest, Extreme Gradient Boosting, the Self Normalising Neural Network and the
Convolutional Neural Network.

3.1. Missing Values

The data used in this study contained missing values. The missingness of values in
the data is both structural missing (data missing because of an explainable reason, e.g.,
patients who did not get any blood tests because they were not hospitalised) and Missing
Completely at Random (MCR) (i.e., data missing because of reasons that cannot be traced).
This is because some patients were not admitted or some test values were not available.

3.1.1. missForest Missing Value Imputation

missForest is a non-parametric missing value imputation method that uses the random
forest algorithm [24] on every single variable to estimate and predict the missing values.
We used the package missForest [25] in R which enables control of the process with an
adjustable number of trees, number of iterations and other parameters to tune.

3.1.2. Simple Statistics Missing Value Imputation (SSMVI)

SSMVI is a non-parametric method of missing values imputation which assumes
a symmetric distribution of the data points of any given variable [26,27]. This imputes
numeric missing values with the mean of the observed values and imputes factor values
with the modal class of the observed values. We created an algorithm that implemented
what is known as a predictive mean matching for numeric variables in R, as well as
predictive mode matching for factor variables.

3.2. Variable Selection
3.2.1. Boruta Algorithm for Feature (Variable) Selection

With the high volumes of data presented in the machine and statistical learning
modeling practices, it is of much necessity to reduce the volume of the data, particularly
the number of variables. This process is conducted by removing redundant and correlated
features, which in turn helps to produce non-complex models that are relatively easy to
interpret and faster to compute [28].

The Boruta algorithm was named after the Slavic mythology god of the forest, as it modi-
fies and improves on much of the variable importance algorithm used in RF models [29,30]
(Algorithm 1).

Algorithm 1: Boruta Variable Selection Algorithm [29]

1. Create Shadow Features: the data set is duplicated column by column and all
values are randomly permuted and hence removing any relationship that
might have originally existed.

2. Random Forest Training: the data set is trained using a random forest classifier
and the variable importance from the training are collected.

3. Comparison: for each variable, the algorithm compares the feature importance
of the original variable and the maximum importance of all shadow variables
(The best shadow variable). A shadow variable is one that has been created
with similar characteristics as the original variable given in a data set. If the
feature importance is higher than the best shadow variable it is recorded as an
important variable.

4. Iterations: the process continues until a pre-defined number of iterations is
obtained and a table of hits is recorded and these are the variables that will be
selected for the model.

The Boruta algorithm is widely used as it gives the user more flexibility in the number
of iterations one can run and has produced good results for biomedical data [30]. We used
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the Boruta package [29] in R, which is computationally cheap and gave the advantage of
tuning the number of trees and the number of iterations.

3.2.2. LASSO Feature Selection

The method was first coined by [31]. The Least Absolute Shrinkage and Selection
Operator (LASSO) concentrates on doing two fundamental tasks, i.e., regularisation and
feature selection, with regularisation being the driving factor used in the feature selection.
Regularisation is defined as the reduction of data values towards a central point, usually the
mean. LASSO introduces a penalty over the sum of the absolute values of the coefficients
of the model (model parameters). This results in shrinking (regularisation), where some of
the coefficients are shrunk to zero. In the feature selection process, the variables that will
remain with a non-zero coefficient value (after shrinking) are then selected for modeling.
This is conducted with the objective of minimising the prediction error (SSE) [32].

The strength of the penalty is controlled and determined by the value of a tuning
parameter say ζ. The larger the value of ζ, the more the coefficients are forced to zero, hence
more variables are rendered insufficient during shrinking. Notice that if ζ = 0, the model
is an OLSs regression [31,32].

The study used the Buhlmann and Van de Geer formulation of the LASSO model-
ing [33], for a linear model

Y = X̄β + ε (1)

with X̄ and Y as vectors, defined before, with β being the the coefficient matrix and ε
being the error vector. The LASSO estimate is defined by the solution to the l1 penalty
optimisation problem.

minimise

(
||Y− X̄β||22

n

)
subject to

p

∑ ||β||1 < t (2)

where t is defined as the upper bound of the sum of all coefficients βi for n data points.
This minimisation is the same as the parameter estimation that comes after

β(ζ) = argmin
β

(
||Y− X̄β||22

n
+ ζ||β||1

)
(3)

where ||Y− X̄β||22 = ∑n
i=0(Yi− (X̄βi)

2, ||β||1 = ∑n
j=1 |β j| and ζ ≥ 0 is the penalty parameter.

Lasso was used in conjunction and compared to Boruta. LASSO gives accurate models,
since the shrinking process results in reduced bias. Model interpretability is highly im-
proved by LASSO due to the elimination of irrelevant features [32,33]. The study used the
Caret package [34] to perform LASSO in R as it allows adjustments of various parameters
and is computationally cheap.

3.3. Logistic Regression

Let π indicate the probability of a patient being COVID-19 positive, and let βi be
regression coefficients associated with the feature xi and β0 be the intercept. Presently, a
logistic regression (LR) model [35] is given by the equation:

log
(

πi
1− πi

)
= β0 +

n

∑
i=1

βi(xi) (4)

Regression coefficients can be fitted using the maximum likelihood estimation [36]. To
solve each probability of success using the logit use:

πi =
exp (β0 + ∑n

i=1 βi(xi))

1 + exp (β0 + ∑n
i=1 βi(xi))
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The probability can be estimated using a set threshold [36,37] to determine which
class a patient belongs to. The study used a threshold of 0.5, that is, if πi > 0.5, then a
patient belongs to the positive class and if πi ≤ 0, then the patient belongs to the negative
class. Based on the algorithm, predictions are made to quantify the accuracy and other
measures of performance. We used the Caret package [34] in R to fit a logistic regression.
The package allows the adjustment of various parameters as well as the implementation of
automatic cross-validation.

3.4. Tree-Based Methods
3.4.1. Decision Tree

Decision Tree (DT) algorithms are non-parametric techniques that seek to classify data
according to various rules where they continuously divide and split (divide and conquer)
the feature space [38,39]. The partitioning splits the feature space into small chunks of
non-overlapping spaces, whose response values correspond as guided by the set rules. The
predictions are then obtained by fitting simple models (such as a constant) to each chunk of
space [40]. DT are used, since they require less assumptions compared to classical methods
and can handle huge varieties and types of data [39].

Tree Structure

Trees are characterised by two features, which are decision nodes and leaves. Leaves
represent the decisions and/or the final label while decision nodes show points where
data are divided. Figure 9 shows an example tree from the data and how classification can
be conducted.

The Tree Building Algorithm

The algorithm commences by looking for a variable that divides the data into two
nodes. This division is arrived at by minimising the impurity measurement at that node. A
node that has two or more classes is impure while a node that has only one node is pure,
hence a measure of impurity measures how much each node has multiple classes. The
algorithm’s division is recursive and will continue until a certain stop criteria is achieved.
Some examples of stop criteria include when a tree is too large and complex or when the
set depth of the tree is reached [41].

Classification and Regression Tree Algorithm

For the Classification and Regression Tree (CART) algorithm, the impurity measure at
each node is the MSE. This results in a tree, which is a collection of estimators at each node
from the starting node to the terminal node [41]. In R, the study used the rpart package
[42] to implement the CART algorithm.

Gini Importance

The Gini index is often used as a measure of impurity for splitting in tree-building
algorithms for classification outcomes. The aim is to maximise the decrease in impurity at a
node. A large Gini index indicates a large decrease in impurity at a node and hence a covari-
ate split with a large Gini index can be considered to be important for classification [43,44].
Given that the decrease in impurity at a node, h is denoted as i(h), the Gini importance of a
covariate, Xj in a tree is the total decrease in impurity at all nodes of all trees in a forest
(I = ∑h i(h)) where the variable of interest is selected for splitting. That is the sum of all
the Gini indices at all nodes in which covariate Xj is selected for splitting. The average of
all tree importance values for the covariate, Xj is then termed the Gini importance of the
random forest for Xj.

3.4.2. Random Forest

A random forest is an ensemble of multiple CART decision trees [45]. The ensemble is
fast and flexible, as it grows by bootstrapping without pruning the data. Random forest
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employs a modification of an algorithm known as bagging. They are many contemporary
deployments of random forest algorithms but the most popular is Leo Breiman’s algo-
rithm [40]. This involves a method of aggregating simple bootstrap to single tree general
learners [40,46].

Figure 9. Decision Tree for risk stratification COVID-19.

3.4.3. Extension of the Bagging Algorithm
Out of Bag (OOB) Performance

RF are popularised because of their great OOB performance, usually giving high
accuracy even from the default parameters in R (the study used the rfviz package [47]).

Variable Importance

Random forest models are usually considered black box, due to the ubiquity of the
inner workings of the algorithm (Algorithm 2). To this end, for a degree of explainability
it is recommended that one evaluate some form of variable importance when using RF
models. Variable importance helps to obtain which covariates were more influential
together with their degree of influence on the resulting classification model [48]. The most
common measure of variable importance is usually the Gini importance and permutation
importance, although the Gini importance is often biased. On the other hand, permutation
importance bases its value on the effect of the covariate on the predictive power of the
resulting forest [49].
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3.4.4. Extreme Gradient-Boosted Models (XGB)

Extreme Gradient Boosting (XGB) is a family of ensemble of the same type of machine
learning models [50]. For the data, the study used gradient boosting for classification;
however, it was also applied in regression prediction. For extreme gradient boosting, they
consist of an ensemble of decision trees. Unlike RF which ensemble deep independent trees
(multiple trees connecting in parallel) XGB ensemble shallow trees (single trees connected
in series). For this model, the study adds trees to the ensemble one tree per time [50,51].
Each tree seeks to correct and mend the errors that the previous ensemble model would
have made [52]; see Figure 10 for illustration.

Algorithm 2: Random Forest Algorithm [44]

1. Obtain training data (selecting a random number of data points) and select
number of trees to be built (say n trees;

2. For every tree, obtain a bootstrap sample and grow a CART tree to this data;
3. For each bootstrap split, obtain m (where m is half the total number of all variables)

variables out of all variables and select the best variable at the split. Then, divide
the arising node into 2;

4. Apply a tree stopping criteria (without pruning) to know when the tree is
complete;

5. From the above, obtain the output of this tree’s ensamblage.

With gradient boosting models, the study fitted models by the use of a differentiable
loss function and an algorithm that minimises (optimises) gradient descent [52]. Presently,
extreme gradient boosting is designed for high effectiveness and computational efficiency.
This is because it uses an open-source approach to implement [53] and we used the xgboost
package [54] in R.

Figure 10. Illustration from Natekin and Knoll (2013) showing how the XGB model ensemble trees
sequentially with improving on the previous ensemble as opposed to the bagging method used in RF
and single classifiers such as LR and DT.
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3.5. Artificial Neural Networks (ANNs)

ANN are a mathematical copy of how the brain has an interconnected network of
nodes called neurons. Each neuron is connected to another and can receive, process and
output information. Neural networks are made of three main layers of neurons: (1) Input
layer, (2) hidden layer and (3) output layer [55]. There are many arrangements and
configurations onto which the various neurons connect to each other, and this configuration
determines the type and how the network functions. A mathematical neuron has three
main features [55]

1. Weighted inputs ωi;
2. An adder function that computes addition functions on the inputs;
3. An activation function that determines the type of the output.

Deep Learning, also known as Deep Structure Learning, is under the family of ANNs
machine learning methods based on a group of algorithms based on a multi-layer NN that
is able to perform various machine learning tasks [56]. These algorithms include more than
one hidden layer in the NN structure, hence the name deep. The most common form of
Deep Learning algorithms is the FFN, which allows information to move in the forward
direction only without any recurrence [57]. Because of its computational flexibility, it is
easy to tune hyper-parameters and good visual outputs, especially during the net training
process; we used the Keras package in R [58] to fit both the SNN and the CNN.

3.5.1. Self Normalising Neural Network (SNNs)

The study implemented the SNNs, a deep learning method capable of performing
classification and regression (statistical models capable of predicting the values of an outcome
y, using the values of predictor variables x) machine learning. Normalisation is changing and
adjusting data values to a similar scale. The SNN network, unlike other NNs, uses a unique
and different activation function called SELU as well as a unique and different dropout
method, called the alpha dropout [59]. These two features provide the unique self normalising
(normalising data without need of any human input) property of this neural network.

3.5.2. Scaled Exponential Linear Units (SELU)

The SNNs use SELU as the activation function. SELU make the SNN self normalising
by the construction of a special mapping g, which maps normalised inputs to outputs.
RELU, leaky RELUs tanh unit and sigmoid units can not be used to construct SNNs [59].
SELU is defined, for any value, say x, as:

SELU(x) = λ

{
x, if x > 0.
αex − α, if x ≤ 0.

(5)

Hyperparameters, λ and α. λ > 1, can be controlled to ensure that there are positive
net inputs, which can be computed and normalised to obtain a Gaussian distribution. To
make sure that the distribution mean is 0 and variance 1, set α = 1.67326 and λ = 1.0507.

Alpha Dropout

Another different feature that is presented by SNNs is their dropout technique.
Dropout is defined as the method in which a NN ignores neuron units during the training
phase. The ordinary dropout sets the activation of x to zero with probability (p), and hence
keeps the average of the input distribution to the output distribution, albeit does not do so
for the variance. For SNNs’ properties to be implemented, a NN needs to keep the mean
and variance at 0 and 1, respectively. The standard traditional dropout fits RELUs (ReLU
functions are either non-linear or linear but piece-wise, whose output equals the input
for a positive input, otherwise the output is zero) and other activation functions without
issues. Unlike the traditional dropouts, for SELU the alpha dropout, [59] is proposed, since
the standard traditional dropout does not perform well with the SELU activation function.
Hence, the alpha dropout is unique in two ways:
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1. It randomly set the dropout input values to some value ά instead of zero.
2. It keeps both the mean and variance at (0,1).

3.5.3. Convolutional Neural Network

This study implemented a convolutional neural network (CNN) to the data. The
CNN is a feed-forward neural network, with a depth of up to 30 layers and multiple
cells. The layers are connected in a series (one after the other), with the hidden layers
consisting of convolutional layers followed by either activation layers or pooling (poling
layers are there to reduce the number of parameters and calculations required in the
network). Convolutional layers are different from regular layers in other NNs because
they use convolutions (convolutions sum two functions, usually polynomials, to obtain
an output) rather than matrices [60,61]. Activation layers in CNN use different activation
functions depending on the function of the network. This study used the sigmoid function,
and RELU in the activation layers.

3.6. Measures of Model Performance
3.6.1. Confusion Matrix

The study used the confusion matrix as given in Table 1 to define various measures of
performance and thus compared how the models performed against each other (Visa et al., 2011).

Table 1. Confusion matrix.

Model Predicted Values

A
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lV

al
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s

Positive Negative Total

Po
si

ti
ve

True positive
(TP)

False Negative
(FN) P′ = TP + FN

N
eg

at
iv

e

False Positive
(FP)

True Negative
(TN) N′ = FP + TN

P = TP + FP N = FN + TN T = P + N = P′ + N′

3.6.2. Accuracy, Precision, and Sensitivity

Accuracy, precision, and sensitivity are defined as [62,63]

Accuracy =
TN + TP

P + N

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

Higher values of the accuracy, precision, and sensitivity demonstrate more correct
predictions the model makes. Hence, a model with higher classification or regression
accuracy, precision, and sensitivity will be better than that with lower accuracy, precision,
and sensitivity [62,63].
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3.6.3. Cohen’s Kappa κ

This quantifies the reliability and accuracy of a classification method [64]. Unlike
accuracy, Cohen’s κ takes into account the agreement that can happen merely by chance.
Presently, it is defined as

κ =
p0 − pe

1− pe

where p0 is the relative observed agreement and pe is the chance agreement probability.
Cohen’s κ ranges from 0 to 1 with κ = 1, meaning that there is complete agreement, while
with κ = 0, there is no agreement.

3.6.4. Predictive Values (PPV/NPV)

Predictive values measure the probability of correct predictions. Positive Predictive
Value (PPV) is the probability that a model predicts a positive result given that the individ-
ual is actually positive. Negative Predictive Value (NPV) is the probability that a model
predicts a negative result given the individual is actually negative [65]. The higher the
values of PPV/NPV, the better the predictive performance of a model. Lower values of
PPV/NPV indicates that the model predicts many false positives/negatives [65,66]. PPV
and NPV are computed by:

PPV =
TP
P′

NPV =
TN
N′

3.6.5. Receiver Operating Characteristic

The Receiver Operating Characteristic Curve (ROC) is a great way of visualising the
performance of a classifier. The graph has been used for a long time to paint a picture of
the trade-off between false alarm rates and hit rates of a classifier [67]. The ROC curve and
Area Under Curve (AUC) have been mostly adopted in conjunction with other performance
measures to provide a comprehensible comparison between classifiers [67,68]. TPR and
FPR is defined as:

FPR =
FP

P + N
= Sensitivity

TPR =
TP

P + N
= Precision

The ROC graphs are plotted on a 2-D with TPR on the Y axis and FPR on the X-axis
with Figures 2 and 3 being examples of ROC curves. This thus shows the trade-off between
gains (true positives) and losses (false positives) [68]. The higher the value of AUC, the
better the performance of the model. An AUC value of 50% or less is worse than random
guessing.

3.6.6. The Wald Test

To test for the significance of a variable in a regression classifier, this study used the
Wald test [69] at a 5% level of significance. Consider the LR model given in Equation (4) on
Section 3.3:

log
(

πi
1− πi

)
= β0 +

n

∑
i=1

βi(xi)

The Wald test (sometimes known as the Z-test), tests the null hypothesis H0:βi = 0
against an alternative hypothesis of H1:βi 6= 0. Failure to reject H0 means that the variable
whose coefficient is given by βi is not significant to the model, while rejecting H0 means
that there is enough evidence to suggest that the variable with coefficient βi is significant to
the model [70].
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4. Exploratory Data Analysis

This section describes various methods of data exploratory and steps that were taken
to achieve the data structure as required by the analysis of the study. It also provides
summary statistics and visualisations of the data.

4.1. Data Preparation

For data preparation, we took all repeated test results from individuals who had two
or more tests into one reading. An individual with at least one positive PCR COVID-19
test was labeled as positive. For other analytes and variables, an average over all the
tests available was used. Analytes’ data was then filtered for time relevancy by taking
results seven days prior and 14 days past the recorded COVID test result, although data
concerning chronic diseases such as HIV, TB, and DM were taken six months preceding
the SARS-CoV-2 test. The exclusion process is shown in Figure 11 and the summary of the
demographics of the final data results are given in Table 2. For validation and re-sampling,
the research split the data set into training and testing sets of the ratio 70:30, respectively.
The data split was coupled together with 10-fold cross-validation repeated five times in
each of the proposed models.

Figure 11. Data inclusion/exclusion.
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Table 2. Basic demographics.

Demographic Variables Total Number Positive Negative

Gender
Male 6513 1320 5193

Female 8768 1958 6810
Other/unknown 156 23 133

Age groups
18–39 years 5839 870 4969
40–60 years 5771 1385 4386

Above 60 years 3827 1046 2781

HIV status
Positive 4055 502 3553

Negative/unknown 11 382 2799 8583

TB status
Positive 863 59 804

Negative/Unknown 14 574 3242 11 332

4.2. Missing Values and Imputation

Figure 12 (the blue bars represent the percentage of missing values for each variable),
shows that most variables have at least 80% missing values. The missingness in the data
was structural because not all tested patients were admitted to obtain their routine blood
tests. To deal with missing values, we used the missForest package in R [21], which is robust
to deal with such an amount of missing values, and compared it with simple statistics
missing values imputation (SSMVI) using measures of central tendency, specifically the
mean and mode. Results of the comparison of the methods coupled with two robust
variable selection methods, applied on the base ML method of logistic regression are shown
on Table 3.

Table 3. Comparative permutations of the methods of missing values imputation and variable
selection applied on the base ML model (LR).

Simple Statistics Imputation missForest Imputation
Boruta Algorithm LASSO Algorithm Boruta Algorithm LASSO Algorithm

Accuracy 80.31 79.53 84.42 75.10
Kappa 19.02 11.87 47.04 34.64

Sensitivity 97.80 99.09 46.12 34.64
Specificity 15.96 9.02 94.90 84.76

PPV 81.06 79.70 71.23 39.29
NPV 66.39 73.33 86.54 84.00
AUC 63.29 70.80 86.00 61.30

4.3. Variables and Variable Selection
4.3.1. Variables

The data contained analytes that were grouped by physiological system as follows:
inflammatory [Creactive protein (CRP), IL-6, procalcitonin (PCT), ferritin, erythrocyte sedi-
mentation rate (ESR)], coagulation (D-dimer; INR; fibrinogen), full blood count [white cell
count (WCC) total, red cell count, haemoglobin, haematocrit, mean corpuscular volume,
mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red cell
distribution width, platelet count], WCC differential [absolute count, neutrophil, lym-
phocyte, monocyte, eosinophil, basophil, as well as the neutrophil to lymphocyte ratio
(NLR)], liver related [aspartate aminotransferase (AST), alanine aminotransferase (ALT),
gamma-glutamyl transferase (GGT), lactate degydrogenase (LDH), total bilirubin, albu-
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min)], cardiac related [troponin T, troponin I, N-terminal pro b-type natriuretic peptide
(NT-proBNP)], endocrine related (HbA1c) and renal function-related [urea, creatinine,
estimated glomerular filtration rate (eGFR)].

Figure 12. Percentage of missing values in the data per variable.

4.3.2. Variable Selection

To begin with, the research removed features that had a confounding effect on the
results and/or those that were created because of a positive COVID-19 test exemplified by
features such as severity of the COVID-19 disease and some which included results of the
methods that are used to arrive at HIV, TB and DM results. Eventually, there was a total of
37 variables with names displayed in Table 4.

We compared the two methods of variable selection, namely the LASSO and the Boruta
algorithm. The two methods are paired with the two methods of missing data imputation
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and the resulting data was run through the LR base model. The results of the comparative
permutations of the methods of missing value imputation and variable selection applied
on our base ML model are given in Table 3.

In Table 3, the top performing measure is coloured in red. The combination of the
missForest missing values imputation method and the Boruta variable selection algorithm
outperforms the other three permutations on five out of seven measures of the model
performance. Thus, we concluded that both missForest missing value method and the
Boruta algorithm for variable selection were the best methods for the data given. The data
and variables selected from the combination of the two methods is used in further ML
modelling both in status prediction and risk stratification.

Table 4. List of variables used.

Demographics Kidney Function Tests Liver Function Tests

age Creatinine Albumin total (ii) bilirubin
Gender (M = M, F = F) eGFR Alanine transaminase (alt)
HIV Urea Lactatede hydrogenase (ld)
TB Aspartate transaminase (ast)

Gamma glutamyl transferase (ggt)

Diabetes markers Haematology Neutrophil to lymphocyte ratio
Coagulation markers

Glucose random Ferritin International normalized ratio
hba1c (hemoglobin A1c) Erythrocyte sedimentation rate (ii) fibrinogen

Myogloin (iii) d-dimer
Monocytef eosinophils basophils
D-dimer redcellcount
Haemoglobin haematocrit
Meancellvolume
Meancell haemoglobin concentrat
Immaturecells
Meancellhaemoglobin

Cardiac biomarkers Inflammatory markers

Creatine kinase(ckmb) Neutrophils
Troponin high sensitivity Procalcitonin sensitive
ntprobnp Crp (c-reactive protein)

Cortisol
Procalcitonin rapid screen

4.3.3. Boruta Variable Selection

We ran the initial 43 variables and data obtained after missing value imputation using
missForest in the Boruta algorithm. The results of the variable selection are shown in the
Figure 13. The variables with green (38 variables) shaded box plots are the important
variables, with those in red (five variables) not being of importance to the model. Shadow
variables are shaded in blue. The variables whose box-plots are coloured in blue are selected
for use in this study.
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Figure 13. Variable selection using the Boruta Algorithm. Note that 5 variables were deemed less
useful with the other 38 deemed useful.

5. Results: Risk Stratification

This section analyses results of ML models fitted for risk stratification (RS). As noted,
a critical case was defined as a patient who was admitted into a ward because of COVID-19
complications, non critical patients are positive cases that were not admitted. Of the 3301
positive cases, 1036 were classified as risky and 2265 not risky. The study fitted each model
with a 70% training set and 30% test set, together with 10-fold cross validation repeated
5 times for re-sampling.

5.1. Logistic Regression

The study fitted the Equation given on Section 3.6.6 with the predicted variable being
severity of the patient, i.e, critical or not critical and the predictors as the variables selected
from running the Boruta algorithm as given in Section 4.3.3. Table 5 shows the values
of the coefficients βi and intercept β0 for all variables i in the fitted model. Wald tests
for variable significance at 5% level of significance and the null hypothesis H0:βi = 0
against an alternative hypothesis of H1:βi 6= 0. Figure 14 shows variables that were
important to the logistic regression in risk stratification. Cortisol, lactate dehydrogenase,
erythrocyte sedimentation rate, crp and d-dimer were the top five important variables
whilst, immaturecells, eonophils, ntprobnp, basophil and fibrinogen were the five least
important variables to the model. This agrees with the Wald test results. LR model being
the base model was used to compare with others, as it outperforms DT; however, it did not
outperform the other five models. The results of LR model performance compared to other
models are given in Table 6 and Section 5.7.
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Figure 14. Variable importance from LR on risk stratification.



Infect. Dis. Rep. 2022, 14 921

Table 5. Summary of the results of the logistic regression model for risk stratification.

Variable Coefficient βi Significance

Intercept 7.77 × 100

Age −1.433 × 10−3 sig
CreatinineeGFR 1.426 × 10−4 not sig
Urea −6.104 × 10−3 not sig
Albumin −1.986 × 10−2 sig
Totalbilirubin 3.646 × 10−3 sig
Alanine transaminase −1.095 × 10−3 not sig
Aspartate transaminase 2.121 × 10−3 sig
Lactate dehydrogenase −1.238 × 10−3 sig
Creatine kinase 6.906 × 10−2 sig
Troponin highsensitivity 5.627 × 10−4 not sig
Nt probn 1.504 × 10−6 not sig
Neutrophils −7.154 × 10−3 not sig
Procalciton insensitive −8.988 × 10−4 sig
Crp 1.919 × 10−3 sig
Cortisol −4.539 × 10−3 sig
hba1c 2.472 × 10−2 not sig
Glucose random −8.645 × 10−3 not sig
Ferritin 1.026 × 10−4 not sig
Erythrocyte sedimentation rate 1.058 × 10−2 sig
Int normalised ratio inr 2.823 × 10−1 sig
Fibrinogen 2.527 × 10−2 not sig
D dimer 5.455 × 10−2 sig
Redcellcount 2.304 × 10−1 not sig
Haemoglobin −4.404 × 10−1 sig
Haematocrit 1.055 × 101 not sig
Mean cell volume −8.338 × 10−2 not sig
Mean cell haemoglobin 3.541 × 10−1 sig
Mean cell haemoglobin concentration −2.521 × 10−1 not sig
Platelete count 1.085 × 10−3 sig
Monocytes −3.767 × 10−1 sig
Eosinophils −7.946 × 10−2 not sig
Basophils 4.290 × 10−1 not sig
Immature cells −2.843 × 10−2 not sig
Nleutrophil lymphocyte ratio 2.945 × 10−2 sig
Gender_M 1.112 × 100 not sig
HIV positive −3.8956 × 10−2 sig
TB positive 2.330 × 100 sig

Table 6. Model performance comparison for risk stratification.

LR DT RF XGB CNN SNN

AUC 66.41 60.00 75.11 72.37 56.53 57.31
Sensitivity 94.88 93.45 98.44 94.21 63.43 65.32
Specificity 11.20 34.55 15.43 27.66 68.41 65.82
PPV 69.59 75.36 73.54 75.67 74.22 75.78
NPV 50.53 71.12 80.56 66.67 81.26 71.30
Accuracy 68.24 74.70 73.94 74.57 70.23 75.28
Kappa 07.67 32.45 18.13 26.35 26.79 31.14

5.2. Decision Tree

The study fitted a regression tree using the Gini index as the impurity measure at each
node. Figure 15 shows the resulting DT from the data.
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Figure 15. Decision tree structure for COVID-19 risk stratification.

Figure 16 shows the variable importance for the decision tree model. Cortisol, ery-
throcytesedimentation, plateletcount, procalcitonin and lymphocytes were the variables
with top 5 importance measure. Fibrinogen, INR, nt prob, age and LDH were the least
important variables. This suggests that they are significant to the risk stratification of
COVID-19 patients when the decision tree model is used. The computed measures of
model performance for the decision tree model are given in Table 6 and Section 5.7, which
demonstrates that although the model performed well in absolute terms, it was the fourth
performing model relative to the other six models. It outperformed the base model LR and
XGB model.



Infect. Dis. Rep. 2022, 14 923

Figure 16. Variable importance for decision tree model on risk stratification.

5.3. Random Forest

A random forest of 500 trees with 6 variables being tried at each split was fitted.
For resampling, a 10-fold cross validation method was employed and the OOB error was
low at 18.29%, which demonstrates a high performance of the model’s predictive power.
Figure 17 shows the variable importance from the fitted model. Cortisol, erythrocyte
sedimentationrate, mean cell haemoglobin concentration, troponin high sensitivity, d-dimer
and crp were the top important variables. Meancellhaemoglobin, eosinophils, haematocrif,
age and totalbilirubin are the least important variables. Cortisol shows an irregularly higher
importance compared to the other important variables; this may be because it is a stress
hormone. The model performance as compared to the other models is shown in Table 6
and Section 5.7. The random forest model is the second best performing model overall after
the self normalising neural network.
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Figure 17. Variable importance from random forest model on risk stratification.

5.4. Extreme Gradient Boosting

An extreme gradient boosting model employing stochastic gradient boosting with 120 it-
erations, with the final model employing 150 trees, was fitted. The final model with 150 trees
and accuracy of 70% and a kappa value of 18% was employed. Figure 18 shows variable im-
portance from the gradient boosting model. Cortisol, erythrocyte sedimentation rate, d-dimer,
crp and troponin were the top five important variables. The least performing variables were:
immature cells, basophils, haemoglobin, haematocrit and aspartatetransaminase.

5.5. Convolutional Neural Network

A deep feed-forward convolutional neural network (CNN) with one hidden layer
was fitted to the data for risk stratification. The input layer had 256 neurons with RELU
activation function and a dropout rate of 0.4, the hidden layer had 128 neurons with RELU
activation function and 0.3 drop out rate. The output layer had a sigmoid activation, as
it works best for binary outputs. Binary cross-entropy was the loss function employed
as well as using the ADAM learning rate optimiser. Table 6 shows that the convolutional
neural network was the third best performing model after the random forest model and
self normalising neural network. Note: that there is no variable importance for this neural
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network model due to its black box nature, as well as the keras package does not have
the feature.

Figure 18. Variable importance from extreme gradient boosting model.

5.6. Self Normalising Neural Network

The study fitted a deep feed forward self-normalising neural network (SNN) with two
hidden layers to the data for risk stratification. The input layer had 128 neurons with SELU
activation function and a dropout rate of 0.4, the first hidden layer had 64 neurons with
SELU activation function and 0.3 drop out rate. The second hidden layer had 32 neurons,
SELU activation and dropout rate of 0.1. The output layer had a sigmoid activation, as it
works best for binary outputs. Binary cross-entropy was the loss function employed as well
as using the ADAM learning rate optimiser. Table 6 shows that the self normalising neural
network was the second best performing model after the random forest model. Note: that
there is no variable importance for this neural network model due to its black box nature,
as well as the fact that the keras package does not have this feature.
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5.7. Model Performance Comparison and Discussion

Table 6 shows how the different models performed in COVID-19 risk stratification.
The top performing model value for each measure of performance is coloured in red
whilst the second best value is coloured in green. Figure 19 shows the corresponding ROC
curves of the models. From Table 6 and Figure 19, here is the average rank of the models’
performance from the best to the worst:

1. Self normalising neural network;
2. Random forest;
3. Convolutional neural network;
4. Decision tree;
5. Extreme gradient boosting;
6. Logistic regression.

Figure 19. Combined ROC curves.

These results are consistent with existing literature, as summarised by [23]. Table 7
shows the important variables from the four models we fitted and the ones reported by over
20% of other research on the same subject, as summarised by [23] and given in Figure 7. All
the models’ important variables are the same as those reported in literature, the exceptions
being age, Oxygen and blood urea nitrogen and comorbidity, which were reported by the
other studies but were not used in this study. Note: that there is no variable importance
for neural network models due to their black box nature, as well as the fact that the keras
package does not have the feature.



Infect. Dis. Rep. 2022, 14 927

Table 7. Top important variables in COVID-19 risk stratification.

LR DT RF XGB >20% Studies

Cortisol Cortisol Cortisol Cortisol Age
LDH Erythrocyte sedimentation rate Erythrocyte sedimentation rate Erythrocyte sedimentation rate LDH
Erythrocyte sedimentation rate Platelet count Mean cell haemoglobin concentration CRP Lymphocytes
CRP Procalciton insensitivity Troponin insensitive Troponin insensitive CRP
D-dimer Lymphocytes D-dimer Fibrinogen Oxygen
Platelet count Mean cell haemoglobin concentration CRP Lymphocytes BUN
nlr Monocytes Mean cell haemoglobin concentration Procalciton insensitive D-dimer
Mean cell haemoglobin concentration D-dimer Lymphocytes Procalciton insensitive Comorbidities

5.8. Conclusions

The models fitted in this research and the results obtained are consistent with the ones
presented in the existing theory, summarised by [23]. However, not many studies cited
used deep learning models. The base model (LR) performed very well, as did the other
five models fitted. Below, we present the ranking of the models’ overall performance on
risk stratification:

1. Self normalising neural network;
2. Random forest;
3. Convolutional neural network;
4. Decision tree;
5. Extreme gradient boosting;
6. Logistic regression.

The reported variables that were important to various models are also consistent with
the literature, as summarised by [23] and shown on Table 7 and Figure 7. It is noted that
cortisol was recorded as important by all models fitted in this study but not by more than
20% of other studies in literature. We also noted that oxygen is recorded in literature as a
big risk factor by other studies in literature but not by any of the models fitted in this study.
The data used in this study did not contain oxygen saturation. These two deviations from
the literature calls for further study.

6. Discussion and Conclusions

We proposed the use of six machine learning algorithms (LR, DT, RF, XGB, CNN
and SNN) to predict COVID-19 risk stratification using routine lab blood tests, other
comorbidities such as HIV, TB and DM as well as a few demographic features of individuals.
The chosen methods of approach had high perfomance.

SNN was the best and RF was the second best performing model. All models per-
formed better than the base model. The highest AUC and sensitivity were 75% and 98%,
respectively, both recorded from the RF model, whilst the top specificity and NPV were 68%
and 81%, respectively, with both recorded from CNN. SNN recorded the highest PPV and
accuracy, with values of 76% and 75%, respectively. DT performed better than all models
on the Kohen’s kappa, with a recorded value of 32%.

Cortisol, commonly known as the stress hormone, is the top important variable
in four of the models implemented. This is expected, as the body will produce more
cortisol when under stress from the virus. Erythrocyte sedimentation rate is a variable
that shows the rate of red blood cells sedimentation, which measures the rate of body
inflammation. The body is expected to have a high rate of the sedimentation due to stress
from the virus. LDH, CRP, D-dimer and fibrinogen are also top variables common in all the
model’s variable importance. These top variables are also capable of capturing the clinical
pathway/trajectory, as they are vital signs of the disease. They are dynamic and can be
used for better predictive utility during the time of hospitalisation of hospitalised patients.

Unlike earlier studies in literature, which proposed machine learning models on
CT images for risk stratification, using routine laboratory tests data is economically and
computationally cheaper, as well as faster.
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The models that we implement in this study were used by various other researchers
on the same topic. These studies are gathered up together and summarised by [23], and
Figure 6 shows the commonly used models in these studies. Although few studies use
neural networks, just a handful, if any, used CNN and SNN. The model performance results
agree with the literature as well.

Table 7 show the features/variables that were important to models used in this study.
The results as shown in the tables are in concordance with the literature. The important
variables from our models such as: age, LDH and d-dimer were also presented in more
than 20% of the studies.

6.1. Strengths

• The use of data from NHLS gives a sample with a fair representation of the population,
because most studies use hospital centralised data rather than nation-wide data.

• The use of over 30 laboratory blood test analytes, comorbidities and demographics,
gives a variety of prediction variables. Other studies focus on only one family of
variables, i.e, either focusing on blood test analytes or comorbidities or demographics.

• The use of six ML models with dissimilar approaches gives a wide range of techniques
to choose from and is useful for comparative purposes. Most studies employed 2 or
3 models.

6.2. Limitations and Improvements

• The data had a lot of missing values, with some variables having at least 80% miss-
ing values, and with less missing values the ML models could perform better than
they did.

• The data was not balanced. To balance the data, the study used a data balancing
method that replicate the data. The method was not efficient.

• Over-fitting during the preliminary results was a potential issue, but we solved this
by balancing the data as well as normalising some variables. Cross-validation, as well,
helped mitigate this issue as it was employed for all the models given.

• The data did not have information on oxygen saturation, which was demonstrated to
be important in other studies in literature, and the addition of a simple observation
such as oxygen saturation may improve the model significantly.

• We could improve intepretability by using SHapley Additive Explanation (SHAP) and
Local Interpretable Model Agnostic Explanations (LIME) frameworks.

6.3. Clinical Integration

The proposed algorithms, particularly the top two performing models—RF and SNN,
can be integrated into most of the clinical support software with the aim of identifying
affected patients and risk stratification. Sensitivity and specificity on prediction for RF are
96.25% and 57.76%, respectively, whilst the same is 85% and 86.29%, respectively for SNN.
Sensitivity and specificity on risk stratification for RF are 98.44% and 15.43%, respectively,
whilst the same is 65.32% and 65.82%, respectively for SNN. The risk of the integration of
the algorithms lies more on false positives and false negatives. This is because of the need
to limit false positives, as they can take up space for the patients who need care, whilst
avoiding false negatives for patients in need of hospital care. The predictive performances
shown by the top two algorithms (RF and SNN) are high specifically on prediction, and
hence we can minimise the risks.

This study demonstrated that we can feasibly use machine learning models to stratify
the risk associated with COVID-19, using routine laboratory test data, demographics and
comorbidities. The robust and high performance results from the proposed models was
confirmed on test and validation data sets for all the models. RF and SNN models were top
performing models and the other four fitted models’ performance were not far off either.
The study has demonstrated greater agreement with existing literature, on the variables
that are important to COVID-19 risk stratification. Thus, the proposed models and methods
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can be integrated into hospital and clinical systems for rapid patient identification and risk
stratification. This is particularly important in the remote parts of South Africa and Africa
at large where there might not be a laboratory capable of performing RT-PCR.

Author Contributions: Conceptualization, F.M. and J.G.; methodology, C.C. and F.M.; validation,
F.M., J.G. and C.C.; formal analysis, C.C. and F.M.; investigation, F.M. and C.C.; resources, J.G.; data
curation, C.C. and F.M.; writing—original draft preparation, C.C.; writing—review and editing, F.M.,
C.C. and J.G.; supervision, F.M. and J.G. All authors have read and agreed to the published version of
the manuscript.

Funding: Cyril Chironda would like to thank the National Research Foundation (NRF) for funding
his MSc degree. NRF Grant number: MND200517522383.

Institutional Review Board Statement: The Ethics Committee at the University of the Witwatersrand
approved this study.

Informed Consent Statement: The data used in this study was anonymized.

Data Availability Statement: The data used in this study is available upon application from the
Central Data Warehouse (CDW) of the National Laboratory Health Services (NHLS).

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. WHO. Advice on the Use of Point-of-Care Immuno Diagnostic Tests for COVID-19: Scientific Brief ; World Health Organisation: Geneva,

Switzerland, 2020; pp. 1–3.
2. Javid, B.; Balaban, N.Q. Impact of population mask wearing on Covid-19 post lockdown. Infect. Microbes Dis. 2020. [CrossRef]
3. Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019

(COVID-19). J. Gen. Intern. Med. 2020, 35, 1545–1549. [CrossRef] [PubMed]
4. Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting diagnostic tests for SARS-CoV-2. J. Am. Med Assoc. 2020, 323, 2249–2251.

[CrossRef]
5. Beaulieu-Jones, B.K.; Yuan, W.; Brat, G.A.; Beam, A.L.; Weber, G.; Ruffin, M.; Kohane, I.S. Machine learning for patient risk

stratification: Standing on, or looking over, the shoulders of clinicians? NPJ Digit. Med. 2021, 4, 62. [CrossRef]
6. Myers, P.D.; Scirica, B.M.; Stultz, C.M. Machine learning improves risk stratification after acute coronary syndrome. Sci. Rep.

2017, 7, 12692. [CrossRef] [PubMed]
7. Maniruzzaman, M.; Rahman, M.; Al-MehediHasan, M.; Suri, H.S.; Abedin, M.; El-Baz, A.; Suri, J.S. Accurate diabetes risk

stratification using machine learning: Role of missing value and outliers. J. Med. Syst. 2018, 42, 92. [CrossRef] [PubMed]
8. Van Rosendael, A.R.; Maliakal, G.; Kolli, K.K.; Beecy, A.; Al’Aref, S.J.; Dwivedi, A.; Singh, G.; Panday, M.; Kumar, A.; Ma, X.; et al.

Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve
risk stratification; insights from the CONFIRM registry. J. Cardiovasc. Comput. Tomogr. 2018, 12, 204–209. [CrossRef] [PubMed]

9. Zeiberg, D.; Prahlad, T.; Nallamothu, B.K.; Iwashyna, T.J.; Wiens, J.; Sjoding, M.W. Machine learning for patient risk stratification
for acute respiratory distress syndrome. PLoS ONE 2019, 14, e0214465. [CrossRef]

10. Than, M.P.; Pickering, J.W.; Sandoval, Y.; Shah, A.S.; Tsanas, A.; Apple, F.S.; Blankenberg, S.; Cullen, L.; Mueller, C.; Neumann, J.T.
Machine learning to predict the likelihood of acute myocardial infarction. Circulation 2019, 140, 899–909. [CrossRef]

11. Liang, H.; Tsui, B.Y.; Ni, H.; Valentim, C.C.; Baxter, S.L.; Liu, G.; Cai, W.; Kermany, D.S.; Sun, X.; Chen, J. Evaluation and accurate
diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 2019, 25, 433–438. [CrossRef]

12. Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med. (CCLM) 2020,
58, 1131–1134. [CrossRef] [PubMed]

13. Plebani, M.; Laposata, M.; Lippi, G. A manifesto for the future of laboratory medicine professionals. Clin. Chim. Acta 2019, 489,
49–52. [CrossRef] [PubMed]

14. Bhaskaran, K.; Rentsch, C.T.; MacKenna, B.; Schultze, A.; Mehrkar, A.; Bates, C.J.; Eggo, R.M.; Morton, C.E.; Bacon, S.C.; Inglesby,
P. HIV infection and COVID-19 death: A population-based cohort analysis of UK primary care data and linked national death
registrations within the Open SAFELY platform. Lancet HIV 2021, 8, e24–e32. [CrossRef]

15. Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N. Associations of
type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol.
2020, 8, 813–822. [CrossRef]

16. Hesse, R.; van der Westhuizen, D.; George, J. COVID-19-Related Laboratory Analyte Changes and the Relationship Between
SARS-CoV-2 and HIV, TB, and HbA1c in South Africa. In Clinical, Biological and Molecular Aspects of COVID-19; Springer: Cham,
Switzerland, 2021; pp. 183–197.

17. Zimmerman, A.; Kalra, D. Usefulness of machine learning in COVID-19 for the detection and prognosis of cardiovascular
complications. Rev. Cardiovasc. Med. 2020, 21, 345–352. [CrossRef]

http://doi.org/10.1097/IM9.0000000000000029
http://dx.doi.org/10.1007/s11606-020-05762-w
http://www.ncbi.nlm.nih.gov/pubmed/32133578
http://dx.doi.org/10.1001/jama.2020.8259
http://dx.doi.org/10.1038/s41746-021-00426-3
http://dx.doi.org/10.1038/s41598-017-12951-x
http://www.ncbi.nlm.nih.gov/pubmed/28978948
http://dx.doi.org/10.1007/s10916-018-0940-7
http://www.ncbi.nlm.nih.gov/pubmed/29637403
http://dx.doi.org/10.1016/j.jcct.2018.04.011
http://www.ncbi.nlm.nih.gov/pubmed/29753765
http://dx.doi.org/10.1371/journal.pone.0214465
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.041980
http://dx.doi.org/10.1038/s41591-018-0335-9
http://dx.doi.org/10.1515/cclm-2020-0198
http://www.ncbi.nlm.nih.gov/pubmed/32119647
http://dx.doi.org/10.1016/j.cca.2018.11.021
http://www.ncbi.nlm.nih.gov/pubmed/30445032
http://dx.doi.org/10.1016/S2352-3018(20)30305-2
http://dx.doi.org/10.1016/S2213-8587(20)30272-2
http://dx.doi.org/10.31083/j.rcm.2020.03.120


Infect. Dis. Rep. 2022, 14 930

18. Zoabi, Y.; Deri-Rozov, S.; Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. NPJ Digit.
Med. 2021, 4, 3. [CrossRef]

19. Yang, H.S.; Hou, Y.; Vasovic, L.V.; Steel, P.A.; Chadburn, A.; Racine-Brzostek, S.E.; Velu, P.; Cushing, M.M.; Loda, M.; Kaushal, R.
Routine laboratory blood tests predict SARS-CoV-2 infection using machine learning. Clin. Chem. 2020, 66, 1396–1404. [CrossRef]

20. Jucknewitz, R.; Weidinger, O.; Schramm, A. Covid-19 risk factors: Statistical learning from German healthcare claims data. arXiv
2021, arXiv:2102.02697.

21. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.
22. Aljameel, S.S.; Khan, I.U.; Aslam, N.; Aljabri, M.; Alsulmi, E.S. Machine Learning-Based Model to Predict the Disease Severity

and Outcome in COVID-19 Patients. Sci. Program. 2021, 2021, 5587188. [CrossRef]
23. Alballa, N.; Al-Turaiki, I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review.

Inform. Med. Unlocked 2021, 24, 100564. [CrossRef]
24. Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012,

28, 112–118. [CrossRef] [PubMed]
25. Stekhoven, D.J. Using the missForest Package. R package 2011, 1–11. Available online: https://cran.r-project.org/web/packages/

missForest/index.html (accessed on 20 September 2022).
26. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67.

[CrossRef]
27. Alice, M. Imputing Missing Data with R; MICE Package; R Core Team: Vienna, Austria, 2015.
28. Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Elsevier: Amsterdam, The

Netherlands, 1992; pp. 249–256.
29. Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A system for feature selection. Fundam. Inform. 2010, 101, 271–285. [CrossRef]
30. Degenhardt, F.; Seifert, S.; Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Briefings

Bioinform. 2019, 20, 492–503. [CrossRef]
31. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [CrossRef]
32. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2009.
33. Bühlmann, P.; Van De Geer, S. Statistics for High-Dimensional Data: Methods, Theory and Applications; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 1–16.
34. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
35. Wright, R.E. Logistic Regression; American Psychological Association: Washington, DC, USA, 1995; pp. 27–33.
36. Gasso, G. Logistic Regression; INSA Rouen-ASI Departement Laboratory: Saint-Etienne-du-Rouvray, France, 2019; pp. 1–30.
37. Menard, S. Applied Logistic Regression Analysis; Sage: Thousand Oaks, CA, USA, 2002; Volume 106.
38. Loh, W.Y.; Vanichsetakul, N. Tree-structured classification via generalized discriminant analysis. J. Am. Stat. Assoc. 1988,

83, 715–725. [CrossRef]
39. Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany,

2005; pp. 165–192.
40. Breiman, L. Random Forests; Springer: Berlin/Heidelberg, Germany, 2001; Volume 45, pp. 5–32.
41. Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]
42. Therneau, T.; Atkinson, B.; Ripley, B.; Ripley, M.B. Package ‘rpart’. 2015. Available online: cran.ma.ic.ac.uk/web/packages/

rpart/rpart.pdf (accessed on 20 September 2022).
43. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984;

pp. 1–11.
44. Wright.; Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. arXiv 2015,

arXiv:1508.04409.
45. Siroky, D.S. Navigating random forests and related advances in algorithmic modeling. Stat. Surv. 2009, 3, 147–163. [CrossRef]
46. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
47. Beckett, C.; Beckett. Package ‘rfviz’. J. Stat. Softw. 2018, 20, 1–26.
48. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures. In Proceedings of the

Workshop on Statistical Modelling of Complex Systems, New York, NY, USA, 8–9 June 2006.
49. Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform.

2008, 9, 307. [CrossRef] [PubMed]
50. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [CrossRef]
51. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
52. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
53. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
54. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package

Version 0.4-2; R Core Team: Vienna, Austria, 2019.
55. Marsland, S. Machine Learning: An Algorithmic Perspective; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–11.

http://dx.doi.org/10.1038/s41746-020-00372-6
http://dx.doi.org/10.1093/clinchem/hvaa200
http://dx.doi.org/10.1155/2021/5587188
http://dx.doi.org/10.1016/j.imu.2021.100564
http://dx.doi.org/10.1093/bioinformatics/btr597
http://www.ncbi.nlm.nih.gov/pubmed/22039212
https://cran.r-project.org/web/packages/missForest/ index.html
https://cran.r-project.org/web/packages/missForest/ index.html
http://dx.doi.org/10.18637/jss.v045.i03
http://dx.doi.org/10.3233/FI-2010-288
http://dx.doi.org/10.1093/bib/bbx124
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1080/01621459.1988.10478652
http://dx.doi.org/10.1002/widm.8
cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf
cran.ma.ic.ac.uk/web/packages/rpart/rpart.pdf
http://dx.doi.org/10.1214/07-SS033
http://dx.doi.org/10.1186/1471-2105-9-307
http://www.ncbi.nlm.nih.gov/pubmed/18620558
http://dx.doi.org/10.3389/fnbot.2013.00021
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2


Infect. Dis. Rep. 2022, 14 931

56. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387. [CrossRef]
57. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
58. Arnold, T.B. kerasR: R interface to the keras deep learning library. J. Open Source Softw. 2017, 2, 296–300. [CrossRef]
59. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the Advances in

Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 971–980.
60. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
61. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional

neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]
62. Kitchenham, B.A.; Pickard, L.M.; MacDonell, S.G.; Shepperd, M.J. What accuracy statistics really measure. IEE Proc.-Softw. 2001,

148, 81–85. [CrossRef]
63. Visa, S.; Ramsay, B.; Ralescu, A.L.; Van Der Knaap, E. Confusion Matrix-based Feature Selection. MAICS 2011, 710, 120–127.
64. Berry, K.J.; Mielke, P.W., Jr. A generalization of Cohen’s kappa agreement measure to interval measurement and multiple raters.

Educ. Psychol. Meas. 1988, 48, 921–933. [CrossRef]
65. Trevethan, R. Sensitivity, specificity, and predictive values: Foundations, pliabilities, and pitfalls in research and practice. Front.

Public Health 2017, 5, 307–310. [CrossRef] [PubMed]
66. Steinberg, D.M.; Fine, J.; Chappell, R. Sample size for positive and negative predictive value in diagnostic research using

case–control designs. Biostatistics 2009, 10, 94–105. [CrossRef]
67. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
68. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
69. Gourieroux, C.; Holly, A.; Monfort, A. Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality

constraints on the regression parameters. Econom. J. Econom. Soc. 1982, 50, 63–80. [CrossRef]
70. Bewick, V.; Cheek, L.; Ball, J. Statistics review 14: Logistic regression. Crit. Care 2005, 9, 112–118. [CrossRef]

http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.21105/joss.00296
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1049/ip-sen:20010506
http://dx.doi.org/10.1177/0013164488484007
http://dx.doi.org/10.3389/fpubh.2017.00307
http://www.ncbi.nlm.nih.gov/pubmed/29209603
http://dx.doi.org/10.1093/biostatistics/kxn018
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.2307/1912529
http://dx.doi.org/10.1186/cc3045

	Introduction
	Aim
	Objectives
	Research Design
	Data

	Literature Review
	Background of Using Routine Lab Results for COVID-19 Diagnosis 
	Machine and Statistical Learning in Predicting COVID-19 Severity

	Methodology
	Missing Values
	missForest Missing Value Imputation
	Simple Statistics Missing Value Imputation (SSMVI)

	Variable Selection
	Boruta Algorithm for Feature (Variable) Selection
	LASSO Feature Selection

	Logistic Regression
	Tree-Based Methods
	Decision Tree
	Random Forest
	Extension of the Bagging Algorithm
	Extreme Gradient-Boosted Models (XGB)

	 Artificial Neural Networks (ANNs)
	Self Normalising Neural Network (SNNs)
	Scaled Exponential Linear Units (SELU)
	Convolutional Neural Network

	Measures of Model Performance
	Confusion Matrix
	Accuracy, Precision, and Sensitivity
	Cohen's Kappa 
	Predictive Values (PPV/NPV)
	Receiver Operating Characteristic
	The Wald Test


	Exploratory Data Analysis
	Data Preparation
	Missing Values and Imputation
	Variables and Variable Selection
	Variables
	Variable Selection
	Boruta Variable Selection


	Results: Risk Stratification
	Logistic Regression
	Decision Tree
	Random Forest
	Extreme Gradient Boosting
	Convolutional Neural Network
	Self Normalising Neural Network
	Model Performance Comparison and Discussion
	Conclusions

	Discussion and Conclusions
	Strengths
	Limitations and Improvements
	Clinical Integration

	References

