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Abstract: Background: Coronavirus Disease 2019 (COVID-19) was described to affect red blood cells
(RBC) in both severe and mild disease courses. The aim of this study was to investigate whether
hematological and hemorheological changes that were previously described for COVID-19 patients
after the acute infection state are still prominent after another 4 months to assess potential long-term
effects. Methods: Hematological and RBC rheological parameters, including deformability and
aggregation, were measured 41 days after infection in COVID-19 patients and non-COVID control
(T0) and 4 months later in COVID-19 patients (T1). Results: The data confirm alterations in hemato-
logical parameters, mainly related to cell volume and hemoglobin concentration, but also reduced
deformability and increased aggregation at T0 compared to control. While RBC deformability seems
to have recovered, hemoglobin-related parameters and RBC aggregation were still impaired at T1.
The changes were thus more pronounced in male COVID-19 patients. Conclusion: COVID-19-related
changes of the RBC partly consist of several months and might be related to persistent symptoms
reported by many COVID-19 patients.

Keywords: red blood cells; COVID-19; red blood cell deformability; red blood cell aggregation;
hemoglobin

1. Introduction

Since the beginning of 2020, the Coronavirus Disease 2019 (COVID-19) pandemic,
induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been af-
fecting the entire global population. During this pandemic, the number of COVID-19 cases
increased rapidly because the virus is highly infectious and very easily transmitted [1]. Typ-
ical symptoms are breathlessness, cough, fever, ageusia, and loss of smell; however, there
might also be cases with asymptomatic or mild disease courses. Reduced fitness is reported
by many patients [2,3], which might be related to impaired oxygen transport and/or release
by red blood cells (RBC) [4]. The SARS-CoV-2 virus has been demonstrated to invade
erythroid precursors and progenitors [4] which can lead to hematopoietic stress, resulting
in RBC morphological abnormalities, an inability to respond to cues from the environment,
and a premature exit from the bone marrow [4]. Indeed, an altered hematological profile in
COVID-19 patients has been observed in the acute phase of the disease, including lower
RBC count, mean cellular hemoglobin concentration (MCHC), hemoglobin concentration
(hb), and hematocrit (hct) [5]. Other findings also indicated reduced mean cellular volume
(MCV) and mean cellular hemoglobin (MCH) [6]. Additionally, an increased red blood cell
distribution width (RDW) has been described [4,7]. These alterations are associated with
functional changes of the RBC. Many patients exhibit cold extremities and weak peripheral
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pulses, which might be an indicator of microcirculatory dysfunction [8]. Recent investi-
gations revealed impaired rheological characteristics of COVID-19 RBC, including lower
deformability, increased blood viscosity and RBC aggregation [9,10]. This might be related
to membrane lipid remodeling and structural protein damages, affecting the cytoskeleton,
which is crucial for the ability of the RBC to deform [11]. An impaired deformability is
discussed to decrease the functional capacity of RBC for oxygen transport and/or release,
resulting in tissue hypoxia [12]. These phenomena have been related to damages of the
beta-chain of the hemoglobin or a rising formation of methemoglobin, which might increase
the affinity for oxygen of the undamaged hemoglobin [4,13].

Alterations of the RBC have been described not only for severe infections [5], but also
for mild disease courses [6]. Moreover, there are recurrent reports of COVID-19 symptoms
persisting beyond the acute phase, sometimes for months after a severe infection, leading
to the Long-COVID disease [14]. Back et al. (2022) documented losses of lung function
and cardiorespiratory capacity one month after an infection with only mild symptoms [15].
This raises the question of whether the alterations of the RBC system persist in the long
term, even in formerly mild disease courses.

Thus, the aim of this study was to investigate whether the hematological and hemorhe-
ological changes that were previously described are still prominent after a 4-month follow-
up test in order to further understand the long-term effects of a mild SARS-CoV-2 infection
on the RBC system.

2. Materials and Methods
2.1. Study Participants and Sample Processing

A total of n = 22 participants (n = 15 male, n = 7 females) were tested after SARS-CoV-2
infection. Samples were taken between October 2020 and May 2021, and the prevalent
SARS-CoV-2 variants during this period were alpha, beta and delta. The infection was
verified by respective PCR and antibody tests. A total of 18 participants showed mild symp-
toms; 4 remained asymptomatic. None of the participants were hospitalized. Moreover, no
other diseases were documented. None of the participants had been vaccinated against
SARS-CoV-2 at the time of this study. Age of the subjects is presented for the whole study
population as well as for the sub-cohorts “COVID-19 male” and “COVID-19 female”. Age
(range): 23.9 ± 4.6 years (15 to 31 years); COVID-19 male: 24 ± 5.1 years (15–31); COVID-19
female: 23.3 ± 3.7 years (20–31). All participants showed normal BMI values. They were
examined 41 days (median) after their SARS-CoV-2 infection (T0) and were therefore no
longer in the acute stage of disease progression at this time. A second examination was
performed four months after the first examination (T1).

A NO-COVID control group, with n = 42 (n = 30 male, n = 12 females) participants,
was tested once (T0) to assess to what extent the study parameters of the observation group
had changed related to SARS-CoV-2 infection. The control group also showed normal BMI
values. Age range of the control group was 23.7 ± 5.5 years (15 to 36 years); Control male:
24.1 ± 5.6 years (17–37); Control female: 23.8 ± 6.4 years (16–33). Persons of the NO-COVID
group were selected from the cohort of regular examined persons without current or prior
COVID-19-disease who conducted their mandatory yearly medical assessment at our center.
The persons were matched in characteristics to the COVID group and had, at the time
of testing, never had (a) typical COVID symptoms, (b) a positive COVID test, and (c) no
specific antibodies in the blood sample.

Sample size calculation was performed with a power of 0.8 and α = 0.05 and revealed
that n = 20 subjects per group were necessary for proper analysis. The number of examined
subjects within this study is thus higher than recommended; however, we aimed to include
all available participants to increase the statistical power.

Venous blood samples were collected at rest from the vena mediana cubiti into EDTA
vacutainer (Becton Dickinson GmbH, Heidelberg, Germany) and immediately processed.
Unless stated otherwise, the described parameters were analyzed for all tested participants.
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2.2. Sample Analysis
2.2.1. Basal Blood Parameters

A complete blood count was performed using the hematology analyzer Sysmex Dig-
itana KX-21N (Sysmex Digitana AG, Horgen, Switzerland). The presented parameters
include RBC count, hemoglobin concentration (hb), hematocrit (hct), mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin
concentration (MCHC), and RBC distribution width (RDW).

2.2.2. RBC Hemorheological Parameters
RBC Deformability

Deformability of the RBC was measured by ektacytometry using the LORRCA Max-
Sis (RR Mechatronics, Zwaag, The Netherlands) after dilution of 10 × 107 RBC into
polyvinylpyrrolidone (PVP) solution (29 cP at 37 ◦C, RR Mechatronics). The main principle
has already been described in detail [16,17]. Briefly, samples were sheared in a Couette
system, and nine consecutive shear stresses were applied to the samples. The diffraction
pattern of a laser beam passing through the samples was analyzed by the LORRCA soft-
ware for each applied shear stress, resulting in a corresponding elongation index (EI). The
LORRCA software then computed the maximum elongation index (EImax), which is the
maximum deformability at infinite shear stress, and SS1/2, which represents the shear stress
at one-half EImax. The SS1/2:EImax ratio was then calculated from the two parameters.
Thus, higher values indicate lower RBC deformability [16–18].

RBC Deformability under Osmotic Gradient

The LORRCA MaxSis also performed osmotic gradient ektacytometry (osmoscan),
measuring the deformation of RBC shape at a defined shear stress and constant temperature
(37 ◦C) under various osmotic conditions [16]. Approximately 109 RBC were mixed with
5 mL of PVP and placed into the Couette system. The LORRCA software provided the
following parameters as a result of the procedure: Omin represents the osmolality at
which RBC deformability reaches its minimum in the hypotonic environment. EImax, the
maximum deformability near the isotonic osmolality, and Ohyper reflects the hyperosmotic
osmolality corresponding to 50% EImax.

RBC Aggregation

After the hct of the samples was adjusted to 40% using autologous plasma, aggregation
of the RBC was measured at 37 ◦C by syllectometry using the LORRCA MaxSis. Prior
to the measurement, all samples were completely oxygenated for 15 min with a Roller
Mixer (Karl Hecht KG, Sondheim vor der Rhön, Germany). The oxygenated samples
were transmitted to the Couette system, and changes in backscattered light were recorded
over 120 s with two photodiodes and presented as a graph (syllectogram) to compute an
Aggregation-Index (AI%). An iteration procedure was performed to calculate dIsc min,
and afterwards, the threshold shear rate balancing RBC aggregation and disaggregation
was received. This parameter defines the minimum change in backscatter intensity during
the iteration process and represents the minimum shear rate where RBC aggregates start to
disaggregate (y at dIsc min (s−1)) [19].

2.3. Statistics

Statistical analyses of the data were performed using GraphPadPrism software 9.3.1
(GraphPad Software, Boston, MA, USA). Data were analyzed for normal distribution
using Shapiro–Wilk Test. A one-way ANOVA with the Tukey multi comparison test
or Kruskal–Wallis with Dunn’s correction for multiple comparisons was performed to
identify effects between Control and COVID-19 during follow-up. Statistical differences
were considered significant at values of p < 0.05. Box-Whisker-Plot were prepared for
graphical representation of the data. Otherwise, data are presented as mean ± SD. Pearson
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Correlation analysis was performed to reveal interrelations between SS1/2:EImax ratio
and MCV.

3. Results
3.1. Blood Parameters

The blood values of the Total sample size are presented in Table 1. Statistical analysis
revealed significantly lower MCV values in the COVID-19 group at T0 (p < 0.01) and T1
(p < 0.05), respectively, than in Controls. However, MCV values significantly increased at
T1 compared to T0 in COVID-19 (p < 0.01). Further, compared to the control group, values
for hb (p < 0.05), MCH (p < 0.01), and MCHC (p < 0.05) were significantly lower at T1 in
COVID-19 subjects.

Table 1. Blood parameters of total participants. Mean values (SD) of n = 42 Control and n = 22
COVID-19.

Parameter Total Control Total COVID-19 T0 Total COVID-19 T1

RBC [×106/µL] 4.73 (0.50) 4.69 (0.32) 4.72 (0.53)

Hb [g/dL] 14.55 (1.48) 14.11 (1.26) 13.41 (1.36) *,†

Hct [%] 42.78 (4.21) 41.01 (2.57) 41.70 (4.40)

MCV [fL] 90.61 (3.54) 87.45 (3.74) ## 88.39 (3.39) **,†

MCH [pg] 30.84 (1.54) 30.08 (1.99) 29.56 (2.79) **,††

MCHC [g/dL] 34.05 (1.59) 34.39 (1.45) 31.88 (3.02) **,†

RDW [%] 12.75 (0.68) 12.62 (0.58) 12.80 (0.75)

* p < 0.05; ** p < 0.01 COVID-19 T0 vs. T1, ## p < 0.01 Control vs. COVID-19 T0, † p < 0.05; †† p < 0.01 Control vs.
COVID-19 T1.

Comparing T0 and T1 in COVID-19 subjects, values for hb (p < 0.05), MCH (p < 0.01),
and MCHC (p < 0.01) were significantly lower at T1. RBC count and RDW were not different
between the groups.

Table 2 shows the blood values of the male cohort. The separation by sex revealed
a similar pattern for the male group as for the total sample size. MCV was significantly
lower in male COVID-19 at T0 than in the male control group (p < 0.01). Hb (p < 0.01),
MCH (p < 0.001), and MCHC (p < 0.01) were significantly lower in male COVID-19 at T1
compared to the male control group. The comparison between male COVID-19 T0 and
male COVID-19 T1 revealed significantly lower values for hb (p < 0.05), MCH (p < 0.05),
and MCHC (p < 0.05) at T1 and higher values for MCV at T1 (p < 0.05). Again, RBC count
and RDW were not different between the groups.

Table 2. Blood parameters of the male cohort. Mean values (SD). N = 30 Control; n = 15 COVID-19.

Parameter Male Control Male COVID-19 T0 Male COVID-19 T1

RBC [×106/µL] 4.84 (0.51) 4.79 (0.31) 4.83 (0.57)

Hb [g/dL] 15.01 (1.42) 14.38 (1.23) 13.56 (1.38) *,††

Hct [%] 43.69 (4.22) 41.57 (2.04) 42.52 (4.64)

MCV [fL] 90.45 (3.51) 87.01 (3.78) ## 88.10 (3.31) *

MCH [pg] 31.09 (1.54) 30.07 (2.11) 28.27 (3.03) *,†††

MCHC [g/dL] 34.39 (1.63) 34.55 (1.60) 31.47 (3.49) *,††

RDW [%] 12.71 (0.66) 12.63 (0.66) 12.91 (0.87)

* p < 0.05 COVID-19 T0 vs. T1, ## p < 0.01 Control vs. COVID-19 T0, †† p < 0.01; ††† p < 0.001 Control vs. COVID-19 T1.

The blood parameters of the female cohort are presented in Table 3. Statistical analysis
revealed significantly higher MCV values in female COVID-19 at T1 than at T0 (p < 0.05).
The remaining parameters were comparable between the groups and time points.
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Table 3. Blood parameters in female participants with data representing Mean (SD). n = 12 Control;
n = 7 COVID-19.

Parameter Female Control Female COVID-19 T0 Female COVID-19 T1

RBC [×106/µL] 4.45 (0.38) 4.50 (0.26) 4.49 (0.37)
Hb [g/dL] 13.42 (0.94) 13.54 (1.20) 13.10 (1.35)

Hct [%] 40.49 (3.33) 39.80 (3.29) 39.96 (3.50)
MCV [fL] 91.03 (3.73) 88.40 (3.76) 89.00 (3.73) *
MCH [pg] 30.21 (1.42) 30.09 (1.87) 29.19 (2.30)

MCHC [g/dL] 33.18 (1.10) 34.03 (1.08) 32.76 (1.51)
RDW [%] 12.84 (0.74) 12.60 (0.42) 12.56 (0.32)

* p < 0.05 COVID-19 T0 vs. T1.

3.2. Red Blood Cell Deformability

RBC deformability was represented by the SS1/2:EImax ratio (Figure 1A–C). Anal-
ysis of the entire study cohort (Figure 1A; Total) revealed higher SS1/2:EImax values in
the COVID-19 T0 group than in the Control group (p < 0.01), which represents lower
deformability. The values of COVID-19 at T1 were significantly lower compared to T0
(p < 0.01) and comparable to the Control values. A sex-separated analysis of the study
data revealed a similar pattern for the male cohort as for the Total sample (Figure 1B).
The values of the female group showed no significant differences between Control and
COVID-19 at T0 (p = 0.07), nor between COVID-19 at T0 vs. T1 (Figure 1C). Correlation
analysis revealed a moderately negative correlation between SS1/2:EImax ratio and MCV
(Pearson r: −0.3064).
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Figure 1. Influence of COVID-19 on RBC deformability. SS1/2:EImax Ratio of the (A) total sample and
the (B) male cohort was higher in COVID-19 at T0. Values decreased from T0 to T1. (C) SS1/2:EImax
in females showed no difference between the groups or time points. Sample size: (A) n = 41 control,
n = 22 COVID-19; (B) n = 30 control, n = 15 COVID-19; and (C) n = 11 control, n = 7 COVID-19.
* p < 0.05; ** p < 0.01.

3.3. Red Blood Cell Osmoscan

Considering the total sample size, Omin was significantly lower in COVID-19 at T0
compared to Control (p < 0.05). At T1, values of COVID-19 were significantly higher
compared to COVID-19 T0 (p < 0.001) but also compared to Control (p < 0.05) (Figure 2A).
When only the male subjects were considered, Omin was higher in COVID-19 T1 compared
to Control (p < 0.01) and higher compared to COVID-19 T0 (p < 0.01). In the female
group, Omin was lower in COVID-19 at T0 compared to Control (p < 0.05). At T1, values
were higher compared to T0 in COVID-19 (p < 0.001) (Figure 2C). The values of EImax
obtained during osmoscan were not altered in COVID-19 compared to Control and the
values of COVID-19 T0 were comparable to T1. No sex effects were detected (Figure 2D–F).
Ohyper was comparable between Control and COVID-19 T0 and T1, respectively. This was
observed for the Total sample size and for male participants, respectively (Figure 2G,H). In
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the female study cohort, Ohyper was significantly lower in COVID-19 at T0 compared to
Control (p < 0.01). Values of female COVID-19 increased at T1 (p < 0.001) (Figure 2I).
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Figure 2. Influence of COVID-19 on deformability under an osmotic gradient (Osmoscan). Omin
of (A) the total sample size showed lower values for COVID-19 at T0 compared to control and
higher values in COVID-19 at T1 compared to T0 and control, respectively. (B) Males showed higher
values for COVID-19 at T1 compared to T0 and control, respectively. (C) Females showed lower
values for COVID-19 at T1 compared to control and higher values in COVID-19 at T1 compared to
control. EImax of (D), the total sample size, I, the male cohort, and (F), the female cohort, showed
no differences between the groups or timepoints. Ohyper of (G) the total sample size (H) the male
cohort showed no differences between control and COVID-19 and no difference between the time
points. (I) The values of the female cohort were significantly lower in COVID-19 at T0 compared to
control and significantly higher in COVID-19 at T1 compared to T0. Sample size: (A,D,G): n = 42
control and n = 20 COVID-19; male cohort (B,E,H): n = 30 control, n = 13 COVID-19 T0 and n = 13
COVID-19 T1; female cohort (C,F,I): n = 12 control, n = 7 COVID-19 T0 and n = 7 COVID-19 T1.
* p < 0.05; ** p < 0.01; *** p < 0.001.
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3.4. Red Blood Cell Aggregation

Analysis of the Total study values showed that RBC aggregation index (AI%) was
significantly higher in COVID-19 at T1 compared to T0 (p < 0.05) and compared to Control
(p < 0.05), respectively (Figure 3A). Separate analyses of the sexes revealed higher values at
T1 in male COVID-19 compared to T0 (p < 0.05) (Figure 3B). In female subjects, no difference
in aggregation index was observed (Figure 3C). γ at dIsc min of Total sample size was
higher in the COVID-19 group at T0 (p < 0.05) and T1 (p < 0.001) compared to Control,
respectively (Figure 3D). γ at dIsc min of the male participants was significantly higher at
T1 compared to Control (p < 0.01) (Figure 3E). γ at dIsc min of the female study group was
significantly higher in COVID-19 at T1 compared to Controls (p < 0.05) (Figure 3F).
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Figure 3. Influence of COVID-19 on RBC aggregation parameters. Aggregation index of (A) the total
sample size was significantly higher in COVID-19 at T1 compared to T0 and control, respectively.
(B) In the male cohort, the aggregation index was higher in COVID-19 at T1 compared to T0. (C) In
the female cohort, the aggregation index did not differ between the groups or timepoints. γ at dIsc
min of (D), the total sample was significantly higher in COVID-19 at T0 and T1 compared to Control.
(E) Values of the male cohort were significantly higher in COVID-19 at T1 compared to Control, and
(F) in the female cohort, values of COVID-19 at T1 were higher compared to Control. Sample size:
(A,D): n = 24 control and n = 14 COVID-19; male cohort (B,E): n = 15 control, n = 8 COVID-19 T0 and
n = 8 COVID-19 T1; female cohort (C,F): n = 9 control, n = 6 COVID-19 T0 and n = 6 COVID-19 T1.
* p < 0.05; ** p < 0.01; *** p < 0.001.

4. Discussion

SARS-CoV-2 infection and subsequent COVID-19 were associated with RBC morphol-
ogy changes and impaired cell function that might result in reduced oxygen supply in the
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microcirculation [6]. To the best of our knowledge, follow-up investigations on hematologi-
cal and hemorheological alterations have not been conducted after a mild disease course.
However, as more and more studies show that COVID-19-related infections can persist
over a long period of time, resulting in Long-COVID, this knowledge would add valuable
information to further understand this phenomenon.

The results of the present study confirm alterations in hematological parameters,
mainly related to cell volume and hemoglobin concentration, but also reduced deformabil-
ity and increased aggregation after COVID-19 infection [5,6,9,10,20]. However, the findings
also revealed that some changes persist for more than four months after infection, which
might indicate long-term modifications of the RBC by the virus. The results indicate lower
hemoglobin-related parameters and a reduced RBC volume in the COVID groups com-
pared to control subjects, thus supporting recent data [5,21]. Interestingly, the data from this
recent study also indicate that MCV increases 4 months after infection while hemoglobin
parameters further decrease. SARS-CoV-2 infection of RBC is induced through the binding
of the S1 spike protein of the virus and the Band-3 protein of the RBC membrane [22]
and is able to interact with protoporphyrin IX. This binding possibly causes hemoglobin
denaturation, resulting in a decreasing percentage of fully functional hemoglobin in oxygen
transport [23]. In addition, an increased oxygen affinity of hemoglobin has been suggested
as a compensatory mechanism for weakened lung function to ensure oxygen transport
in COVID-19 patients [4]. This would be advantageous for loading the hemoglobin with
oxygen in the lungs; however, would lead to a tighter binding of oxygen to the hemoglobin
when it should be unloaded at the target cells [24]. In contrast to other studies [7], that
investigated severe COVID-19 courses, no changes in RDW could be observed in this study.
This supports the findings of other studies that RDW is related to disease severity [25].
These observed alterations in specific hematological parameters might be related to im-
paired oxygen transport and could partly explain various long-term symptoms such as loss
of lung function and cardiorespiratory capacity, because RBC remain in the body due to
their life span of about 120 days [20].

RBC deformability represents a unique cell characteristic allowing the passage of
microcirculatory vessels with smaller diameters than the RBC [26]. It is described that
proper deformability also determines the life span of the RBC itself but also affects blood
circulation [27] since rigid cells might block small blood vessels [28]. Further, it is speculated
whether RBC deformability affects oxygen supply within the microcirculation [29]. RBC
deformability has been reported to be reduced after SARS-CoV-2 infection in critically ill
patients but also in patients showing a rather mild disease course [5,6,9,20,30]. The results
of the present investigation support recent findings showing reduced RBC deformability at
T0 in COVID-19 patients compared to Control; but further, the data indicate that values
tend to adjust to Control levels 4 months after the SARS-CoV-2 infection. Yet, RBC with only
minor impairments of deformability may pass through the spleen without being noticed
and stay in the blood circulation for months because of the long RBC life span. The altered
physical properties of those cells might induce mechanical stress and affect the function of
the spleen to filter out abnormal RBC. This might contribute to the long-term symptoms
experienced by many COVID-19 patients [20]. Related to deformability measurements
under an osmotic gradient (osmoscan), previous studies revealed a shift of the osmoscan
curve to the left and downwards, even after a mild disease course, which might reflect
stiffened cells [6]. The present results in part confirm these findings but suggest that these
changes are reversible in the long term.

RBC deformability has been correlated to MCV [31] which is in part supported by
the findings of the present study. Correlation analysis revealed a moderately negative
correlation between SS1/2:EImax ratio and MCV, indicating a higher SS1/2:EImax ratio
(lower deformability) might be associated with a low MCV. Indeed, in this study, MCV
values increased over time, which was also observed for deformability parameters. How-
ever, it should be noted that other parameters related to deformability, including MCH
and MCHC [31] were still reduced after 4 months, suggesting that the increase in RBC
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deformability during follow-up investigation is not exclusively related to improvements
in hematological parameters. Previous studies described morphological changes of the
RBC after SARS-CoV-2 infection [6,32,33] which might affect RBC deformability. It needs
to be investigated whether these morphological changes are less prominent months after
recovery because the affected RBC have meanwhile been removed from the circulation by
regular erythrophagocytosis at the end of the RBC lifespan [34] or whether they persist in
the long term.

RBC aggregation is another parameter known to impact blood flow properties [35] and
increased RBC aggregation has been reported for COVID-19 patients during the acute phase
of the disease and is associated with hyperviscosity observed in these patients [6,9,10].
Aggregation parameters measured in the recent study add new information to the previous
reports. While the former study of moderate disease courses after SARS-CoV-2 indicates
unaltered aggregation indices soon after the infection [6], the recent data show an increase in
aggregation index and a further increase in shear rate needed to separate formed aggregates
four months after the first data acquisition. Higher aggregation in COVID-19 patients has
been associated to an elevated fibrinogen level in COVID-19 patients [36]. However, it
remains to be investigated whether fibrinogen levels or other factors, such as morphological
alterations, are responsible for the present observations. The high individual range of γ at
dIsc min might indicate that additional factors might affect the outcome. Among those,
physical exercise, although there is no consensus in the literature [37,38], might be one
parameter that might positively affect RBC aggregation [39]. The resumption or increase
in physical activity after the COVID-19 disease may also explain the improvement in
deformability between T0 and T1.

The presented data were further separated by sex to also address the known hema-
tological and rheological differences between males and females [40,41]. These differ-
ences are associated with higher testosterone levels in males [42] and menstrual blood
losses in females [43]; leading to a younger circulating RBC population and thus, higher
deformability [40]. In total, differences between healthy Controls and COVID-19 subjects
were more pronounced in the male cohort of this study than the female cohort. Especially
certain hematological and deformability parameters were less different between female
COVID-19 and respective control than male COVID-19 and respective control. The normal
range for hemoglobin concentration in males is 13.8–17.2 g/dL. At T0, four males and at
T1, eight males were below this range. The lowest value was 10.8 g/dL. However, there
were also two controls below this range. In females, the normal range for hemoglobin
concentration is 12.1–15.1 g/dL. Only one control was below this value but no COVID-19
female. This might lead to the assumption that men are more affected by the SARS-CoV-2
infection compared to women. And indeed, the disease severity and mortality rates seem
to be higher in older males, while children, adolescents, and females tend to be mildly
symptomatic or asymptomatic [11,44]. A sex-separated analysis of study data is thus
advisable in order to evaluate physiological changes related to COVID-19 disease.

The results might be limited by the small number of female participants in this study.
In addition, a comparative measurement four months later would have been useful for the
controls as well, in order to exclude natural fluctuations. However, previous studies have
shown a constancy of hematological values over a long period of time [40].

5. Conclusions

To the best of our knowledge, these are the first data to show altered hematological and
rheological parameters after a mild COVID-19 infection that persist several months after
infection. The changes include enduring reduced hb, MCH, and MCHC and higher RBC
aggregation values that might possibly affect oxygen transport through the body. However,
RBC deformability and MCV, which were significantly reduced shortly after the infection,
seemed to recover in the months afterwards. The presented changes were more pronounced
in male COVID-19 patients, suggesting that the infection has a higher impact on males than
on females. Further investigations on the exact underlying mechanisms of prolonged al-
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tered RBC properties and sex differences are needed to develop specific therapies, especially
considering the increasing number of patients suffering from Long-COVID.
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