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Abstract: Accurate prediction of substation project cost is helpful to improve the investment
management and sustainability. It is also directly related to the economy of substation project.
Ensemble Empirical Mode Decomposition (EEMD) can decompose variables with non-stationary
sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy
of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS) algorithm
can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel
functions of Support Vector Machines (SVM) model are optimized. By comparing the prediction
results with other models, this model has higher prediction accuracy.

Keywords: cost prediction of substation project; Ensemble Empirical Mode Decomposition;
Cuckoo Search; Support Vector Machines

1. Introduction

The prediction of the cost level of the power grid project is an important part of the economic
evaluation of the power system. Grid projects are often capital-intensive and have high technical
requirements [1]. It is of great significance to predict the cost level of grid projects effectively for
improving the investment efficiency and sustainability. Grid projects mainly include transmission
projects and substation projects, and these two types of projects are directly related to the safety
production, normal operation, and economic benefits of the power grid. At present, there are many
researches on the cost prediction of transmission project [2,3]. Whereas, few scholars have studied the
cost prediction of the substation project [4,5]. In the construction of substation projects, a reasonable
cost prediction can provide decision support and reference for the power grid companies, which is
also helpful to promote the sustainable development of the investment in substation projects [6].
However, due to the impact of regional economic development, the surrounding natural environment
and project management level, the cost of substation projects often tends to be non-linear, irregular,
and difficult to predict [7].

Scholars around the world have conducted in-depth studies on the cost of transmission and
substation projects. The researches mainly include the construction and prediction of transmission
project cost index [8,9], the analysis of transmission and substation project cost affecting factors [10–12],
and the prediction of substation project cost [13], etc. In terms of constructing the cost index,
Liu et al. [8] built the cost index of power grid projects by considering different technologies and
voltage classes, and obtained the total project cost index by weighting the typical program, in which
the weight could be determined by the Paasche index analysis method or Laspeyres index analysis
method. Tao et al. [3] selected more than 300 cost indicators of transmission projects from 2002 to
2010, and pointed out that changes of transmission project cost were affected by the previous period.
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The Markov chain prediction model was applied to describe the changes of each period. In addition,
the total investment of transmission project was composed of the construction cost, the installation
cost, the equipment cost, and other expenses. From the four parts, nine key indicators were selected
as the comprehensive cost index to be predicted. Hua et al. [9] constructed cost index analysis
and prediction model based on Autoregressive Integrated Moving Average Model (ARIMA) and
exponential smoothing models, and then, realized the process of modeling and obtained forecast results
through SPSS software, which have some references meaning for the application of prediction method.

In terms of the analysis of affecting factors of project cost, Wang et al. [12] set up the evaluation
system of cost index of 500 kV transmission project according to the samples of transmission project cost.
Activity Based Classification (ABC) analysis, key parameter simplification, and principal component
analysis were applied to deal with the samples. Three level indexes and their calculation formulas
were obtained through calculation. Furthermore, the Least Squares Support Vector Machine (LSSVM)
based on particle swarm optimization was used to calculate and verify the evaluation index system;
the results proved that the proposed model has high prediction accuracy. The influence of various
factors on the cost of substation engineering was studied from the aspects of technology, organization,
external environment, and cost parameters in [13].

In the prediction of project cost, the prediction methods mainly include time series method,
multiple regression model, and intelligent prediction method, and the selection of prediction
methods could affect the accuracy of prediction results directly. Xu et al. [14] pointed out that the
building cost index had been widely used to measure the cost level of the construction industry.
However, to improve the accuracy of measurement, the interaction between the cost indices and other
variables (such as consumer price index) should be considered. Therefore, the cointegration theory
and Vector Auto Regression (VAR) model was proposed for predicting the changes of construction
cost, which could assess the risk and uncertainty of rising costs. Zhu et al. [15] took the situation
of the region, transaction date, transaction conditions, and individual factors into account firstly to
construct a hierarchical structure system of real estate price factors. Then, the 1–9 scale was used to
build the comparison judgment matrix and the ranking weight of case level relative to price could be
calculated layer by layer. Moreover, the stochastic fuzzy regression analysis method was introduced
to predict the cost of residential buildings accurately. Shahandashti et al. [16] pointed that the cost
of highway construction could vary greatly over time, which was directly related to the income of
highway contractors. Therefore, the research selected sixteen indices from the National Highway
Construction Cost Index (NHCCI) as candidate indices through the literature research. Based on the
results of the co-integration test, a Vector Error Correction (VEC) model was established to predict the
construction cost index of national highway and the results showed that the multivariate time series
model was more accurate than the single variable model.

In the field of intelligent prediction model, scholars had explored a series of high-precision intelligent
prediction methods. Qin et al. [17] considered qualitative and quantitative cost index as an input set
and a single cost as an output set of indicators. The correlation of housing project cost input indicators
could be eliminated by means of principal component analysis. Support Vector Machines (SVM) and
LSSVM were applied, respectively, to predict the cost of 25 residential projects in Hangzhou, in which
the prediction error was within 7%. Zhou et al. [18] predicted the cigarette sales based on LSSVM
and optimized the LSSVM parameters on the basis of the improved Cuckoo Search (CS) algorithm.
The introduction of inertia weights in the path and location updates of the cuckoo nest helped to avoid
falling into local optimum. When considering the after-effectiveness of cigarette sales, the best time delay
was determined by comparing the prediction accuracy under different delay numbers, and the cigarette
sales at the current time and five time periods ahead was proved to be corresponding by calculating the
actual data. Besides, this article made multi-step prediction through the iterative method and predicted
the sales volume of cigarettes in different periods in the future, which improved the dynamics of the
prediction. Shao et al. [19] proposed that it was of great practical significance to explain the dependence
between medium-term demand and external variables scientifically. He solved the problem of nonlinear
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power demand prediction by combining Ensemble Empirical Mode Decomposition (EEMD) method with
semi-parametric model. The model could capture the potential important features, including the climate
and economic development from the original electricity demand data. Reliable confidence interval of
longer term fluctuation trend was obtained by means of predicting the actual monthly electricity demand
data from Suzhou and Guangzhou.

However, the accuracy of the existing prediction methods cannot meet the requirements of the
modern management of power grid projects. In view of the above problems based on the traditional
prediction methods, this paper proposes an optimized SVM model based on the improved CS algorithm
that decomposed by EEMD to predict the substation projects’ cost.

2. Basic Theory

2.1. EEMD

Empirical Mode Decomposition (EMD) method can decompose the irregular signal into a number
of well-characterized Intrinsic Mode Function (IMF) components, and EMD algorithm is essentially
a stationary signal process [20–24]. However, due to the existence of modal aliasing in the EMD
algorithm, the precision and breadth of the EMD algorithm are restricted. In this paper, it is chosen
to add the uniformly distributed Gaussian white noise signal to the EMD to decompose the signal,
in order to avoid the EMD algorithm modal aliasing influences. This decomposition method is the
EEMD algorithm, and the steps of the algorithm are as follows [25–28]:

1. Determine the number of decomposed IMFs and the number of decompositions
2. Add Gaussian white noise sequence to the input signals
3. Normalize the signals after adding the white noise sequence
4. Decompose the normalized signals to obtain multiple IMF components and one surplus variable:

X(t) =
N

∑
i=1

M

∑
j=1

cj,i(t), i = 1 . . . N, j = 1 . . . M (1)

x(t) =
1
N

N

∑
i=1

M

∑
j=1

cj,i(t) =
N−1

∑
i=1

σi(t) + r(t), i = 1 . . . N, j = 1 . . . M (2)

Among them r(t) is the remainder. The method is applied to predict the cost level of substation
project. The original irregular cost data can be decomposed into a number of stationary IMF
components through the EEMD processing, which are then input into the SVR model for prediction.
Finally, the predictive value of substation project cost level can be obtained by adding the total amount.

2.2. SVM

SVM was proposed by Cortes and Vapnik in 1995 [29–31], which can solve the small sample and
complex nonlinear regression problems effectively. It maps the data Xi into high-dimensional space
F by nonlinear mapping φ, and performs linear regression in high-dimensional space. The mapped
linear function is f (x) = ωφ + b, which is used to solve the optimal function Equation (1) by finding
the weight ω and threshold b in the linear function, according to the SVM criterion [32–35].

min
1
2
‖ω‖2 + C

l

∑
i=1

ξi (3)

s.t.


yi(ωφ + b) ≥ 1− ξi

ξi ≥ 0
C > 0

(4)
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The above problem can be transformed into a dual problem by introducing Lagrange multiplier
αi ≥ 0, βi ≥ 0, thus the classification decision function of SVM becomes:

f (x) = sgn(
l

∑
i=1

yiαiK(xi, xj) + b) (5)

K(xi, xj) in the formula is a kernel function. This paper selects radial basis function (RBF) as a
kernel function.

K(xi, xj) = exp(−
‖xi − xj‖2

2σ2 ) (6)

where σ is the width of the kernel function.
The key to the accuracy of SVM regression model is the penalty factor C and the width of kernel

function σ [36]. Therefore, this paper chooses the improved CS algorithm to optimize C and σ in order
to improve the generalization ability of SVM.

2.3. Optimized CS Algorithm

The CS algorithm can search the optimization much faster and more accurately by simulating the
random walking process of cuckoo in the search for the suitable egg laying hosts [37–39]. According to
existing research, the CS algorithm has the following three rules [40,41]:

1. The number of eggs produced by a cuckoo per time is 1.
2. The host bird’s nest where high-quality eggs are located is the optimal solution and will be

retained for the next generation.
3. The number of host nests is certain, and the probability that cuckoo eggs are found by nest

owners is Pa ∈ [0, 1].

During the search, cuckoo’s flight search path follows the Lévy distribution, namely:

x(t+1)
i = x(t)i + α⊕ L(λ) i = 1, 2, · · · , n (7)

where x(t+1)
i and x(t)i are the bird’s nest positions of the (t + 1)th and the tth generation, n is the number

of cuckoo, ⊕ is the point to point multiplication, and L(λ) is the Lévy flight path. The relationship
between searching path and time is as follows:

L(λ) ∼ u = t−λ(1 < λ ≤ 3) (8)

In the traditional CS algorithm, the probability of finding cuckoo eggs and the step size α of
position updating are fixed values, which leads to the problems of the weak global searching ability,
slow convergence speed, and low precision. Therefore, an improved cuckoo algorithm is proposed in
this paper to update the values of Pa and α dynamically, as follows [42,43]:

Pa(t) = Pamax −
t(Pamax − Pamin)

N
(9)

α(t) = αmaxe
ln( αmax

αmin
)×t

N (10)

where t and N are the number of current iterations and the total number of iterations, Pamax and Pamin

are the maximum and minimum values of the detection probability, αmax and αmin are the maximum
and minimum step coefficients.

However, CS algorithm has defects of lacking of search vitality and slow speed of.
The optimization ability of CS algorithm can be improved effectively by adding Gauss perturbation [44].
Assuming that the optimal location of the nest x(i)i , (i = 1, 2, · · · , n), is obtained after the calculation of t
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times CS iterations. In order to prevent the next iteration of x(i)i and maintain the Gaussian disturbance,

the next phase of x(i)i is searched. Suppose that the matrix pt = [x(t)1 , x(t)2 , · · · , x(t)n ]
r

is made up of the

better position x(i)i of the bird’s nest, x(i)i is a d-dimensional vector, and the dimension of pt is d× n.
Matrix pt combined with Gaussian perturbation is the basic step of GCS algorithm, namely:

pt = pt + a⊕ ε (11)

where ε is a random matrix with the same order of pt, which follows N(0,1) distribution, and a is
constant. In the search for a better nest position vitality at the same time, the position of the bird’s nest
can be overextended easily because of the large random range of ε. Therefore, the selection of suitable
a is particularly important. After obtaining a reasonable set of pt and comparing it with each nest in pt,
only a better nest position is reserved to obtain a better set of nest positions pt [45].

3. Substation Project Cost Prediction Model Based on EEMD-GCS-SVM

The cost prediction of substation project is affected by many factors, and the cost level is
non-stationary and irregular. The specific process of substation project cost prediction model based on
EEMD-GCS-SVM is shown in the Figure 1. Specific steps are:
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Figure 1. Flow chart of the Ensemble Empirical Mode Decomposition (EEMD)-GCS- Support Vector
Machines (SVM) prediction model.

1. Decompose the substation cost data to obtain the IMF components and surplus variables through
the EEMD method, and normalize the data.

2. Initialize the parameters and kernel functions of SVM model, input the normalized decomposed
variables into SVM model, and find and determine the optimal parameters and kernel function of
SVM model by using GCS algorithm. In order to search for the best parameters of the prediction
model faster, the range of c, ε are set as [0.01, 100], [0.01, 100], respectively. Then, train the
prediction model by plugging the historical data into the model and search the best parameter by
using the GCS Algorithm. Firstly, set the Nnest (number of birds’ nest) as 20, while Pa (probability
of bird’s eggs by bird’s nest owner) is 0.45, and N (number of iterations) is 200. After that,
randomly generate Nnest bird nest location W = (W1, W2, ..., Nnest)T. Each bird nest Wi has s
parameters (s = the number of weights between input layer and hidden layer + the number of
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weights between hidden layer and output layer + the number of translation factors + the number
of expansion factors). The predicted values of each bird’s nest were calculated, and the nest
which has the smallest error in the 20 nests is found, marked as Wbest. Then Wbest retain to the
next generation.

3. Train the SVM model by using the training set, and then input the test set data to obtain the
predictive value of the cost data.

4. Example Analysis

4.1. Basic Data

There are a lot of voltage levels in the substation projects. 220 kV is a widely used voltage level of
substation projects, and its cost data is more easily obtained at the same time. Thus, take the cost level
data of 220 kV new outdoor substation projects at certain place in 2014–2016 (as shown in Table 1) as an
example to validate the model. The cost level of substation projects is represented by the cost per kVA
as the research data sample. Starting from the data of the first sample project, taking approximately
equal time as the interval between the selected samples, we get the cost data of 72 samples, and sort
them according to the completion time of the projects.

Table 1. The cost level of 220 kV new outdoor substation project at a certain place.

Serial
Number

Cost
(Yuan/kV·A)

Serial
Number

Cost
(Yuan/kV·A)

Serial
Number

Cost
(Yuan/kV·A)

Serial
Number

Cost
(Yuan/kV·A)

1 284.22 19 396.62 37 438.26 55 285.86
2 337.44 20 279.78 38 314.15 56 288.38
3 369.32 21 257.53 39 299.14 57 321.98
4 347.03 22 259.8 40 454.53 58 466.19
5 419.99 23 290.07 41 342.54 59 398.09
6 358.64 24 275 42 344.12 60 498.41
7 449.02 25 320.91 43 370.65 61 425.52
8 383.35 26 343.77 44 304.73 62 342.21
9 308.3 27 306.23 45 329.5 63 423.47

10 346.53 28 335 46 355.37 64 367.21
11 262.64 29 381.5 47 296.73 65 330.49
12 297.97 30 394.85 48 319.74 66 275.96
13 257.35 31 400.6 49 371.6 67 297.36
14 235.51 32 430.9 50 298.83 68 364.17
15 339.83 33 354.63 51 361.29 69 292.85
16 407.24 34 390.91 52 427.77 70 354.06
17 348.25 35 371.08 53 283.38 71 347.54
18 284.35 36 372.2 54 294.15 72 278.54

First of all, decompose the cost level data by EEMD into five IMF components, and the decomposition
results are shown in Figure 2.
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Figure 2. The result of the EEMD. (a) Original data; (b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; and
(f) IMF5.

From the decomposition results, each IMF component obtained after the EEMD algorithm
shows obvious regularity and periodicity, the algorithm helps to improve the prediction accuracy of
subsequent SVM model. Then, the first 54 sets of cost data are taken as training group, the decomposed
IMF components and the surplus components are input into the GCS-SVM prediction model,
respectively, for training. The total cost of each component is reduced to the predictive value after the
prediction results of each component are obtained. The latter 18 sets of cost data are used as test group
to verify the prediction effect of the model.

4.2. Results Analysis and Comparison

After training the forecasting model, the best value of c and ε are 29.8425 and 0.4871, respectively.
In order to verify the accuracy of the model, the GCS-SVM model without EEMD algorithm,
the EEMD-CS-SVM model with the non-optimized CS algorithm, and the EEMD-GCS-SVM model are
used to predict the samples in this paper. The results are shown in Figure 3a–c.

It can be seen from Figure 3a–c that the prediction result by EEMD-GCS-SVM model, which has
been decomposed by EEMD and optimized by GCS algorithm, has the highest fitting and prediction
accuracy. The results indicate that the EEMD and GCS algorithm is helpful to improve the accuracy of
the model.

In addition, BP neural network model, SVM model, GCS-SVM model, EEMD-CS-SVM model,
and EEMD-GCS-SVM model are, respectively, used to predict the data of the test set in this paper,
and the error comparison results are shown in Table 2 and Figure 4.

According to the above table, the RMSE of the EEMD-GCS-SVM model is 0.51, MAE is 0.43,
and MAPE is 0.13%, which indicates that the prediction accuracy is higher than EEMD-CS-SMV and
GCS-SVM, and is significantly better than the BP neural network model and the SVM model.

The boxplot can directly reflect the accuracy of each model. It can be seen from the boxplot that
the prediction error of EEMD-GCS-SVM is smaller. It means that this model is more accurate than
other models, and is more suitable for the prediction of the cost level of 220 kV substation project.
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Table 2. Comparison of the model errors.

Model BP SVM GCS-SVM EEMD-CS-SVM EEMD-GCS-SVM

RMSE (yuan/kV·A) 78.47 53.45 24.76 36.02 0.51
MAE (yuan/kV·A) 57.85 42.10 16.71 31.38 0.43

MAPE 16.42% 12.36% 4.72% 9.28% 0.13%
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5. Conclusions

With the development of power system reform, it is urgent to improve the cost management level
of power grid project. Thus, it is of great significance to control the cost level of grid projects effectively
for improving the investment efficiency and sustainability. However, the prediction of substation
project cost level is difficult, and the prediction accuracy of the traditional method is insufficient.

(1) The EEMD-GCS-SVM model established in this paper can effectively improve the prediction
accuracy of substation project cost with a MAPE value of only 0.13%, which is much better than
that of the un-optimized and EEMD models.

(2) EEMD method can decompose irregular and non-stationary sequence signals into multiple IMF
components and surplus components. The decomposed signals show regularity and periodicity
obviously, which improves the prediction accuracy of the model.

(3) On the basis of CS optimized SVM parameters and kernel function, adding Gauss perturbation can
effectively improve the search vitality and range of CS algorithm. The optimal SVM parameters
are obtained, the calculation of kernel function is faster, and the computational efficiency and
prediction accuracy is improved in the model.

However, the research only analyzed the cost prediction of the 220 kV substation due to the
limited availability of data. Besides, there is no verification and analysis of more regions. Thus, more
types of data should be widely used to verify the ability of the modified model in the further study.
In future research, we will continue to apply the model to more prediction fields and explore more
scientific and accurate prediction methods.
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