
sustainability

Article

Lake Area Analysis Using Exponential Smoothing
Model and Long Time-Series Landsat Images
in Wuhan, China

Gonghao Duan 1,* ID and Ruiqing Niu 2

1 Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China
2 College of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China;

rqniu@163.com
* Correspondence: vipdgh@163.com

Received: 14 November 2017; Accepted: 8 January 2018; Published: 9 January 2018

Abstract: The loss of lake area significantly influences the climate change in a region, and this
loss represents a serious and unavoidable challenge to maintaining ecological sustainability under
the circumstances of lakes that are being filled. Therefore, mapping and forecasting changes in
the lake is critical for protecting the environment and mitigating ecological problems in the urban
district. We created an accessible map displaying area changes for 82 lakes in the Wuhan city using
remote sensing data in conjunction with visual interpretation by combining field data with Landsat
2/5/7/8 Thematic Mapper (TM) time-series images for the period 1987–2013. In addition, we applied
a quadratic exponential smoothing model to forecast lake area changes in Wuhan city. The map
provides, for the first time, estimates of lake development in Wuhan using data required for local-scale
studies. The model predicted a lake area reduction of 18.494 km2 in 2015. The average error reached
0.23 with a correlation coefficient of 0.98, indicating that the model is reliable. The paper provided
a numerical analysis and forecasting method to provide a better understanding of lake area changes.
The modeling and mapping results can help assess aquatic habitat suitability and property planning
for Wuhan lakes.
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1. Introduction

With the development of remote sensing technology, increasingly large data sets of imagery have
been used for water resource assessment [1,2]. The Hubei Province is known as “the province of
a thousand lakes” in China, as there are more than 80 shallow lakes densely distributed throughout the
Wuhan development area alone. The loss of lakes significantly influences the level of environmental
pollution as well as climate change in a region, and this loss represents a serious and unavoidable
challenge to maintaining ecological sustainability under the circumstances of lakes that are being filled.
Therefore, mapping changes in lake areas is critical for protecting the environment and mitigating
ecological problems in the Wuhan urban area.

Several mapping water studies have been conducted for different research fields. They noted the
importance of wetlands for urban landscape planning and delineated the relationship between human
health and urban wetland environmental ecosystems [3,4]. Researchers quantified the changes in both
lake areas and boundaries from multiple sets of remote sensing images [5,6]. Satellite remote sensing
plays a significant role in water resource surveying, hydrological monitoring, wetland protection,
and geological disaster warning systems because of the periodic repetition of data and the ability
to cover a large area [7–10]. Experts obtained the modified normalized difference water index
(MNDWI) by analyzing the differences in the amounts of radiation received from water bodies
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and non-water features [11]. Some experts made a comparative study of automated water classification
methods [12] and used moderate-resolution sensor imagery, such as that acquired from the Landsat
Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors,
to obtain the distributions of desired features among various study areas [13–15]. Many investigations
primarily utilized remote sensing images from the last 10 years to explore changes in lake areas or
other features to study developmental changing trends resulting from human interaction with the
environment [16–22]. The lakes in the Wuhan urban district are taken as research subjects herein to
apply a novel approach [23–25] to map lake changes over a nearly 30-year period. We utilize the
MNDWI and the relationships among various remote sensing bands to extract the spatial information
of lake surfaces between 1987 and 2013. Furthermore, we provide a valid exponential model to forecast
future changes. The set of measures used herein includes the degree of model fit, the robustness of
the model, and the prediction skill [26–29]. Finally, we map the changes in lake area throughout the
Wuhan urban development district (1987–2013), the results of which are readily explainable and may
possess practical applications.

2. Study Area

The city of Wuhan is located to the east of Jianghan Plain and is situated in the middle of China
with a total area of 8494.41 km2. The city is divided into three parts by two major rivers that cut
through the city centre: the Yangtze River, which is the third largest river in the world and the Hanjiang
River (the Yangtze River’s largest tributary). The collective water surface of the two rivers, covering
up to 2217.6 km2, accounts for nearly a quarter of the urban distinct, which is the highest among all of
China’s major cities (Figure 1a).
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Figure 1. (a) represents the newest Wuhan urban boundary shape file that we employ to cover the 
Landsat 8 remote sensing image (2013); (b) shows a relatively scattered distribution of lakes, which 
are mainly concentrated within central and southern Wuhan. The lakes are more likely to appear in 
low-lying areas with higher elevations, and many small lakes are developed around the main river. 
The two largest urban lakes (East Lake and Tangxun Lake) are located in the middle-west section of 
the study area. This lake distribution shows that there are abundant water resources in the urban 
area. 

As of 2015, there were approximately 166 lakes in Wuhan, which is known as the “city of the 
hundred lakes”. The lake surface area was 803.17 km2 at normal water level. Tangxun Lake (47.6 
km2) is the largest city-lake in China at present [30]. Many large lakes are situated on either side of 
the two main rivers, forming a network of lakes (Figure 1b). Our research team conducted a 
thorough study of the 82 main lakes in the Wuhan urban area by means of follow-up methods. 

Figure 1. (a) represents the newest Wuhan urban boundary shape file that we employ to cover the
Landsat 8 remote sensing image (2013); (b) shows a relatively scattered distribution of lakes, which are
mainly concentrated within central and southern Wuhan. The lakes are more likely to appear in
low-lying areas with higher elevations, and many small lakes are developed around the main river.
The two largest urban lakes (East Lake and Tangxun Lake) are located in the middle-west section of the
study area. This lake distribution shows that there are abundant water resources in the urban area.

As of 2015, there were approximately 166 lakes in Wuhan, which is known as the “city of the
hundred lakes”. The lake surface area was 803.17 km2 at normal water level. Tangxun Lake (47.6 km2)
is the largest city-lake in China at present [30]. Many large lakes are situated on either side of the two
main rivers, forming a network of lakes (Figure 1b). Our research team conducted a thorough study of
the 82 main lakes in the Wuhan urban area by means of follow-up methods.
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In our research, we focus on annual changes in the body of the main lakes (1987–2013).
The information of the lake boundaries is extracted from remote sensing data, including the
characteristics of the electromagnetic radiation from earth objects. As a result, we provide a priori
knowledge for the protection of water resource environments in Wuhan. In addition to techniques for
the extraction of lake areas using, for example, the MNDWI, we also conducted field trips to every
lake. Figure 2 shows the field conditions of the South Prince Lake. More details will be discussed in
the Results and Discussion sections.
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Figure 2. Field photographs depicting South Prince Lake in 2015 (a); Residential buildings and
communities are observed near the lake. The area was well retrieved in Landsat 8 imagery in 2013 (b)
and in Landsat 5 imagery in 2001 (c); The water area in 2013 (b) was slightly decreased due to real
estate projects in the southeastern corner, and some parts were filled for industrial use.

3. Materials and Methods

Lakes area change were a comprehensive result of many external factors, so our research did
not focus on any external factors affecting lake increase or loss, such as climate changes, and only
addresses the general lake changes in Wuhan. We organized the images taken during the period from
1987 to 2013 in consideration of the acquisition time, coverage, cloudage, and whether resolved stripes
were available. Then, we overlay the images over the Wuhan urban area so that the selected data
can fully cover the research area. We choose images such that their total cloudage was less than 10%.
This step is important because excessive cloud cover can obscure water bodies and induce difficulties
in subsequent extraction tasks.
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Based on the above considerations, we choose over 10 periods of images as a data set spanning
from 1987 to 2013 to study variations in the major lakes of the Wuhan urban area. The remote sensing
images used in this paper were all acquired from the Landsat satellites, and the data were obtained
from either a cloud-based database of geographic information from the Chinese Academy of Sciences
or the United States Geological Survey (USGS) website. Our research takes advantage of the above
data to study the linear and polygonal layers of lakes primarily through a water extraction method
in addition to visual interpretation within ArcGIS. The main image data are presented in Table 1,
and a sample well-processed image is shown in Figure 3.

Table 1. Image data set.

Satellite Sensor Resolution (m) Data Identification Date Cloudage (%)

Landsat 4 TM 30 m LT41230391989042XXX02 1989/02/11 None

Landsat 5 TM 30 m

LT51230391987253BJC00 1987/9/10 4.7%
LT51230391994272BJC00 1994/9/29 None
LT51230392001259BJC00 2001/9/16 6.7%
LT51230392005254BJC00 2005/9/11 9%
LT51230392009249BJC00 2009/9/6 None

Landsat 7 ETM+ 30/15 m
LE71230392003273EDC01 2003/9/30 6%
LE71230392007332EDC00 2007/11/28 None
LE71230392011343EDC00 2011/12/9 None

Landsat 8 OLI 30/15 m LC81230392013164 LGN00 2013/6/13 None
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Figure 3. Operational Land Imager (OLI) remote sensing image (Wuhan urban area, Landsat 8,
13 June 2013) that was processed using radiation correction, atmospheric calibration, area shape cutting
and strip repair work.

3.1. Water Extraction

The images used herein consist of two types of data organisation schemes. The range of grey
values of the TM and Enhanced TM Plus (ETM+) sensors is between 0 and 255 (pre-2013) and the
grey values of the Landsat 8 Operational Land Imager (OLI) sensor range from 0 to 65,535 (post-2013).
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With the same image resolution, the information in the Landsat-8 imagery is undoubtedly greater [31].
Therefore, we adopted two different methods for the water extraction under two separate conditions.

Image classification and feature extraction processes are complex and may be affected by many
factors [32]. The brightness value of water is different from those of shoals and shaded relief but
is similar to those of settlements or woodlands in bands 2 and 3 of TM and ETM+ images, and it is
less than those of other surface features in bands 4 and 5. With these reflection characteristics,
we can effectively distinguish between water and other surface features by choosing a specific band
combination. In addition, we can exclude the effects of interference from shaded relief and snow
by setting a threshold. In this paper, we select bands 3, 4, 5 and 6 to perform the band operations
because there is a broad range of image brightness values in OLI data. Moreover, the ratios of the
brightness values in bands 3 and 4 and in bands 5 and 6, which effectively represent water bodies,
will be amplified. The model we use in Landsat 8 can be written as follows:

(OLI3 + OLI4)/(OLI5 + OLI6) > 1, (1)

Normally, water bodies are characterized by (TM2 + TM3) > (TM4 + TM5) [33]. We calculate the
brightness of an image pixel by placing a strong reflection band in the numerator and a weak reflection
band in the denominator, following which their contrast will be further expanded. Accordingly,
the brightness of the studied feature in the resulting image will be the maximum and the other features
will be correspondingly suppressed, which will make the water surface easily differentiable from
background objects. The MNDWI [11] that we employ for the TM and ETM+ images (pre-2013) can be
written as follows:

(p(Green) − p(MIR))/(p(Green) + p(MIR)) > 0.44, (2)

3.2. The Quadratic Exponential Smoothing Model

The extraction of the water surface may reflect changes in the lake area at a given time, but future
changes in the lake area are often required for more thoughtful measures. An exponential smoothing
model, which is a special type of weighted average model, is sensitive to historical data that is
close to the forecasting period, and the weight of the model declines with increasing time [34,35].
The exponential smoothing model requires fewer training data and less modeling time, lake area
generally has a decreasing tendency and historical relevance year by year, so this model is therefore
more suitable for evaluating complex variations in lake surface areas than other models. In addition,
when the trend of the data is either rising or falling, the quadratic exponential smoothing method will
be more effective because the single exponential method may output large forecast deviations [36].
The quadratic exponential smoothing method applies exponential smoothing based on the single
exponential smoothing model by simultaneously considering the overall trend of the curve [37].
In most cases, we only require three sets of input training data and a parameter value that can be
utilized to establish the forecast model. As lake areas are essentially decreasing on an annual basis,
this algorithm is well adapted for predicting lake areas.

The linear quadratic exponential smoothing method is described using the following equation:

St
(1) = aYt−1 + (1 − a)St−1

(1), (3)

St
(2) = aSt

(1) + (1 − a)St−1
(2), (4)

In this paper, St and St−1 represent the smoothing values for the lake areas at times t and t − 1,
respectively, and a is the smoothing coefficient, namely, the damping coefficient [38]. Yt−1 is the actual
lake area at t − 1. The values of St

(1) and St
(2) are known, and the quadratic exponential smoothing

model can be written as follows:
Ft+T = dt + btT, (5)
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dt = 2 St
(1) − St

(2), (6)

bt = a(St
(1) − St

(2))/(1 − a), (7)

T denotes the predictive periods, Ft+T represents the predicted value of the lake area at the
time t + T, and both dt and bt are parameters of the data at the time T. It is not difficult to discern
from Formulaes (3)–(7) that the value of the smoothing parameter a plays a crucial role, as it reflects
the approximation of the predicted value with respect to the current data value [39]. In practical
applications, the smoothing parameter is a constant between 0 and 1. When a approaches 1,
the predicted values will be closer to the current value and far from the smoothness value of the
historical data, and the slope of the preceding curve will be changing faster prior to becoming
steep. When a approaches 0, the predicted value will be closer to the smoothness value of the
historical data, which means the curve will be smoother than before (Figure 4). In previous studies,
the smoothing coefficient was generally based on the principle of the minimum mean square deviation,
and experienced methods were often utilised to confirm the values of the smoothness parameters [40].
Our research considers the characteristics of lake areas affected by annual variations, and we have
determined that 0.9 is the optimal smoothness coefficient after conducting many tests.
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In addition, some experts used the mean absolute error (MAE) and correlation coefficient (R) to
represent the prediction accuracy of the quadratic exponential smoothing model [41], the formulae for
which are given as follows:

MAE =
1
n∑

∣∣∣∣Y(t)− ∧Y(t)∣∣∣∣, (8)

R =
∑ [(Ai −

−
A)(Bi −

−
B)]√

∑ (Ai −
−
A)2 ×

√
∑ (Bi −

−
B)2

, (9)
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Y(t) is the actual value while the other variable represents the predicted value of the model,
and n is the total number of data in Formula (8). In Formula (9), Ai and Bi represent the actual value
and the predicted value of the model, the other variable represents the mean of the two values. Smaller
MAE values indicate smaller model errors, while larger R values represent higher correlations between
the fitted data and actual values, thereby suggesting that the model has a better forecasting ability.
Considering the effect of overfitting in forecasting models for long period cases, our research only
predicted lake area in 2015 for a better accuracy and understanding.

3.3. Lake Area Change Index

The lake evolutionary history includes body changes, spatial transformations, and quality changes.
As areal deformations are first reflected within the imagery, we can initially understand the overall
developmental trends of the lakes. The changes in the lake areas and their rates of change may directly
reflect the evolution of the ecological environment. Therefore, we took the following equation to
describe the extent of the variability in the water bodies:

L1 = Ub − Ua, (10)

L2 = (Ub − Ua)/T, (11)

L1 represents the total range of the variability, L2 denotes the range of annual variations of the
lakes, Ua and Ub represent the lake areas at the beginning and end of a study period, and T is the
number of years between the starting and ending times. As a result, the area of a lake will increase
when L1 > 0 and decrease when L2 < 0.

However, for equivalent amplitudes of the total variation or annual variation amplitudes,
the actual situations reflected within many periods will be different. To obtain a better description of
the relative variations among different periods, we use a lake change intensity index to analyse the
relative intensity of area changes. The lake change intensity index can be written as follows:

C = 100 × ∆Aba/(Aa × ∆t), (12)

C is the area intensity index of the lake evolution, ∆Aba represents the areal changes within the
period from a to b, and Aa is the total area of the lakes during the year a.

4. Results and Discussion

4.1. Lake Area Change Analysis and Forecasting

First, we transform the projection according to the Beijing 54 coordinate system for the original
remote sensing imagery of the study area and then match the image with a standard geologic map.
Subsequently, we use the Wuhan urban development area as a mask to cut out the Landsat 8 remote
sensing image. Second, we utilize the MNDWI and the relationships among the sensor bands to
distinguish the water bodies from other surface features. We obtained the lake shape data for the study
region following binarization and vectorization. Then, after visual interpretation, the spatial location
and size of each lake were confirmed, after which we added the generated vector layer of the lake
areas as another attribute.

Finally, the lakes layer was converted into a raster layer to detect changes. We use the spatial and
statistical analysis functions of GIS to calculate the areas of the lakes. The results are shown in the
charts of Figure 5.

To better study the annual variations in the lake areas and to analyse the source of the variations
over the two-year periods, we use Formulas (10) and (11) to acquire the total range of variability and
the range of annual variations, respectively, for the changes among all of the lakes. The results are
shown in Figure 6.
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Figure 5. Total area of all of the lakes in the Wuhan urban area (1987–2013). The lake area statistics
from every two years are compared, revealing an overall annually decreasing trend. With a decline in
the total area from 370.97 km2 in 1987 to 264.73 km2 in 2013, a total decrease of 106.24 km2 occurred
over a period of twenty-six years.
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Figure 6. Total variations in the lake areas in the Wuhan urban area (1987–2013).

The data for the period between 1987 and 2001 show that the average annual rate of decrease of
the lakes in the urban development areas was approximately 2.33–2.83 km2 per year, which means
that lake conservation efforts were effective during that time. However, from 2001 to 2005, the annual
rate of decrease rapidly increased to 8.33 and 8.48 km2 per year, wherein more lakes needed to be
restored. Furthermore, between 2005 and 2013, the entire average lake area began to decrease annually.
As a result, the variations in the total lake area went through three stages: during 1987–2001, the water
area shrank slowly and in a stable manner, and the lakes of Wuhan city were healthy and in good
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condition; during 2001–2005, the lake surface area diminished at a relatively rapid rate because
increasing numbers of residential buildings and community projects were constructed near the lakes,
following which the ecological environments of the lakes further deteriorated; during 2005–2013,
people began to realize the importance of the lakes to the urban ecology, and the reduction in the lake
areas became less gradual. According to two main indictors shown in Figure 6, we then calculated the
lake change intensity index for Wuhan (Figure 7).
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The change intensity index of the lakes can reveal a clearer, more realistic meaning than the actual
change values for the lake areas in a time interval. In Figure 7, the lake change intensity shows that
the urban lake change intensity index maintained values less than −0.827 from 1987 to 2001, which,
compared with the whole observational period, is a relatively weak magnitude of variation. Between
2001 and 2007, the intensity index increased sharply to values ranging from −2.607 to −2.219, which are
3–4 times those between 1987 and 2001. The intensity index peaked at−2.607 in 2003–2005. The variability
of the lake areas was dramatic during the next 7 years. Between 2007 and 2013, the intensity index
dropped to values between −1.848 and −1.126 in 2011–2013, proving that the variation amplitude was
clear and that the changes in the lake areas were going to slow down year by year.

We studied the annual variation in the area of South Prince Lake as an example for the period
between 1987 and 2013. South Prince Lake is located in the middle-west of the Wuhan area (Figure 8)
and is adjacent to the Yangtze River. According to the water surface extracted from the remote sensing
imagery, we can see the evolution process as presented in Figures 9 and 10.

As shown in Figure 10, the data for each time period were negative among the three indicators,
indicating that the overall ecological environment of South Prince Lake was in a state of reduction.
The amplitude of variation and the yearly rangeability show that the lake was in an accelerated stage
of atrophy between 1987 and 2005 and in a deceleration phase between 2005 and 2013. During the
two periods of 1987–1994 and 2011–2013, the yearly rangeability reached −0.46 km2 and −0.31 km2,
which does not constitute a large difference. This was perhaps due to slow urban development in
1987–1994, during which time human engineering activity was not substantial. In addition, additional
laws and regulations for the preservation of the lake were published in 2011–2013, during which time
urban construction was in a phase of rapid development, and thus, the rate of reduction of the lake was
more stable. In addition, the intensity index can reflect the influences of human engineering activities
on lakes. We found that the peak of−3.883 in 2003–2005 belongs to a burgeoning period of engineering
activity in Wuhan. Meanwhile, the slow atrophy phase (2005–2013) exhibited a diminished rate of
areal reduction with two brief falls in the lake area, which may have been related to the improved
ecological environment.
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Figure 8. Distribution of selected large, key lakes throughout Wuhan. In 2015, We also conducted field
trips to every lake to improve the results of comparisons between the image interpretations and the
actual lake changes.
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Existing images have been able to fully describe the changes in the lakes, but we require the
support of data models to forecast future trends in their areal evolution. As mentioned in the previous
chapter, our study applies a quadratic exponential smoothing model to predict the changes over the
next 2 years in the Wuhan urban area. After repeated tests, we found that the average error will be
minimized when the smoothing parameter is set to 0.9. This is because both the water environment
and human factors, which are greatly responsible for changes in the lakes, will continue to affect the
lake areas, and the current rate of decrease in the lake area is closely associated with the ecological
environment of the previous year. Therefore, the smoothing parameter will undoubtedly be relatively
large. Taking Sand Lake, South Prince Lake, and South Lake as examples, the modeling results and the
actual values are compared in Figure 11.
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Figure 11. Areal changes of South Lake, Sand Lake, and South Prince Lake (1987–2013) and their
predicted values (2014–2015). The areas of the lakes all decreased with increasing time, and the fitted
values were closer to the actual values, indicating that the predicted values of more recent phases will
be more accurate.

By applying Formulas (8) and (9), the MAE and relative error of these three forecast models are 0.75
and 0.13, respectively. In consideration that the lake areas are usually relatively large, the prediction
accuracy of the test model is acceptable. Therefore, the modeling results prove that the exponential
smoothing model is suitable for the short-term forecasting of lake area changes. As mentioned earlier,
our group collected area data for 82 lakes for the period 1987–2013; consequently, we can obtain
predictions of the area of each lake for 2015 by applying the exponential smoothing model, the results
of which are compiled in Table 2, and we have completed field measurement work of all lakes area
in 2015.
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Table 2. Lake area prediction results in the Wuhan urban area.

Lake No. 2015 (km2) Predicted Lake No. 2015 (km2) Predicted

1 0.155 0.135 42 0.132 0.024
2 0.381 0.316 43 0.296 0.243
3 3.340 2.940 44 0.723 0.654
4 3.356 3.165 45 1.900 1.842
5 1.266 1.013 46 1.594 1.443
6 0.238 0.222 47 0.101 0.081
7 0.105 0.096 48 0.978 0.799
8 1.537 1.511 49 5.753 5.641
9 1.168 1.064 50 0.701 0.642
10 0.605 0.554 51 0.250 0.224
11 0.191 0.177 52 3.479 3.074
12 17.020 16.913 53 0.960 0.938
13 0.576 0.549 54 0.897 0.756
14 0.283 0.199 55 0.436 0.396
15 0.280 0.267 56 0.424 0.411
16 0.070 0.059 57 29.520 28.461
17 0.074 0.064 58 1.146 1.078
18 0.090 0.073 59 2.819 2.433
19 30.586 29.462 60 0.684 0.465
20 11.668 10.446 61 0.043 0.035
21 0.110 0.076 62 0.033 0.025
22 2.479 2.046 63 7.714 7.456
23 0.314 0.233 64 0.570 0.421
24 5.538 5.113 65 2.801 2.465
25 0.087 0.084 66 0.241 0.213
26 2.071 1.997 67 1.126 1.018
27 7.419 6.944 68 1.679 1.412
28 3.378 3.294 69 14.874 14.657
29 0.318 0.279 70 2.108 2.011
30 6.789 6.513 71 0.934 0.796
31 0.203 0.179 72 0.800 0.649
32 0.233 0.193 73 3.880 3.155
33 0.334 0.244 74 11.187 10.842
34 0.556 0.397 75 27.531 27.166
35 0.073 0.071 76 42.780 40.499
36 9.457 9.046 77 3.262 3.154
37 0.202 0.183 78 28.586 26.744
38 2.072 1.974 79 2.497 2.018
39 1.773 1.465 80 0.029 0.027
40 2.088 1.974 81 1.550 1.510
41 0.206 0.188 82 8.594 8.211

Table 2 shows that the average error was 0.23 and that the correlation coefficient between the two
data sets was 0.98. This indicates that the fitted data and the actual values have a high correlation,
and therefore, the model forecasting ability is reliable. The largest predicted error was 2.281 km2 for
lake 76, while lake 35 provided the smallest error of 0.002 km2. From Table 2, we can also conclude that
the model predicted a lake area reduction of 18.494 km2 in 2015. The average error reached 0.23 with
a correlation coefficient of 0.98, indicating that the model is reliable.

The modeling results also show that in the next two years of 2013, the lake area in the Wuhan
urban district will continue to slowly shrink, but the rate of decrease will have obviously slowed down
relative to the previous ten years. The ambition of current lake conservation measures is to stop the
shrinkage of the lakes by enhancing their supervision and enforcing current construction policies
created by the governmental departments. However, many more incentives to protect the lakes should
be introduced.
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4.2. Lake Change Mapping

The predicted model can only reflect quantifiable changes in the lake areas. Therefore, to qualify
the lake area changes, we rasterized the shapes of the lakes over every two years and applied a change
detection algorithm within ENVI using a classification method to obtain three different categories: lake
increase, lake decrease and no change. Finally, all of the layers were imported into ArcGIS, and we
generated a lake change mapping (Figure 12).
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From the relative spatial distribution of the mapped lake changes, many shrinking lakes appeared
in nearly every partition of the Wuhan development district, which indicates that an overall atrophy
of the lakes was a common phenomenon throughout the research area. Through an investigation
of the history of Wuhan development in recent years, the regions showing larger lake reductions
were located in areas with continuous urban engineering construction and rapid population growth,
and thus, there was a heavy influence of human activity on those lakes, and the transformations of the
lake ecological environments were tremendous.

We can conclude from the mapping and statistical results that the total lake area within the
urban development zone tended to decrease in 1987–2013. These changes took place within three
stages: the lake area shrank gradually during 1987–2001, reduced more quickly during 2001–2005,
and gradually decreased again during 2005–2015. According to relevant government historical data for
1987–2001, the primary reason for the reduction in the lake area was the transformation of many lakes
into ponds to acquire arable land [42]. Meanwhile, the lake area shrank more quickly in 2001–2005
as a consequence of the speed of urbanization, which led to more land for construction, and parts
of the lake areas were filled. Finally, in 2005–2015, the shrinkage gradually decreased because the
Wuhan government strengthened the legislation for protecting the lake environments; consequently,
the ecological health and stability of the major lakes have recovered.
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5. Conclusions

Our model was suitable for the prediction of water body variations, which could provide intuitive
references for further environmental protection and management practices for lakes in the Wuhan
area. Based on a long-term series of remote sensing imagery in conjunction with field survey data
in the Wuhan urban area, we conducted a comprehensive analysis of the developmental trends of
the Wuhan urban area and some key lakes. Then, we produced an easily understandable map of the
extent of lake area changes for Wuhan that is suitable for use at local scales. Only a few important
scenic spots exhibited significant growth or did not change (e.g., East Lake), our results showed
that the environment and ecology were maintained in a relatively steady state; but in the urban of
the Wuhan development area, big lakes (e.g., South Prince Lake) faced a danger of shrinking every
year, because many real estate projects had been carried on around lakes, and some parts were filled
directly for industrial use or fish farming; because of the excretion of water movement, we also found
a more evident atrophy and shrinkage of the lakes in closer proximity to the coast of the Yangtze River
(e.g., Sand Lake). Through an investigation of the history of Wuhan development in recent years,
the regions showing larger lake reductions were located in areas with continuous urban engineering
construction and rapid population growth, and thus, there was a heavy influence of human activity on
those lakes, and the transformations of the lake ecological environments were tremendous.

Furthermore, this research forecasted the areal changes in the lake surfaces by applying
an exponential smoothing method. Regarding additional data sources for further research, further
research will carry more comprehensive investigation and meaningful models on environmental and
ecological changes in lakes around Wuhan. Because other external factors that affect the shrinkage of
lakes must be observed and recorded so we can obtain a more robust and accurate model.
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