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Abstract: The electric power industry is of great significance in promoting social and economic
development and improving people’s living standards. Power grid construction is a necessary part of
infrastructure construction, whose sustainability plays an important role in economic development,
environmental protection and social progress. In order to effectively evaluate the sustainability of
power grid construction projects, in this paper, we first identified 17 criteria from four dimensions
including economy, technology, society and environment to establish the evaluation criteria system.
After that, the grey incidence analysis was used to modify the traditional Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS), which made it possible to evaluate the
sustainability of electric power construction projects based on visual angle of similarity and nearness.
Then, in order to simplify the procedure of experts scoring and computation, on the basis of evaluation
results of the improved TOPSIS, the model using Modified Fly Optimization Algorithm (MFOA) to
optimize the Least Square Support Vector Machine (LSSVM) was established. Finally, a numerical
example was given to demonstrate the effectiveness of the proposed model.

Keywords: improved TOPSIS; MFOA; LS-SVM; sustainability evaluation; power grid construction
projects

1. Introduction

Sustainability refers to the health condition of a system that can last a long time. With the concept
of sustainable development getting more and more attention, many scholars have carried out a series
of research projects on sustainable development of different areas. The sustainability evaluation of
construction projects is to evaluate whether the objectives of projects can be achieved on schedule
or bring good benefits, whether the investors are willing and able to maintain the operation goals
and whether the projects have the characteristics such as continuity, repeatability and maintainability
in operation.

The power grid is composed of all kinds of substations, transmission and distribution equipment
in the power system. As an important carrier for connecting power supply and power users,
the sustainability of power grid is crucial for power system development and scale expansion. In recent
years, the power grid construction projects in China increased rapidly, making China at the forefront
of the world in terms of electric power scale. According to the China Electricity Council, as of
2016, the length of electric power transmission lines whose voltages are at least 220 kV in China has

Sustainability 2018, 10, 231; doi:10.3390/su10010231 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://dx.doi.org/10.3390/su10010231
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 231 2 of 19

reached 642,389 km, with a growth of 5.7% over the same period of 2015; the capacity transformer
equipment has risen to 3415.64 million kVA with an growth of 8.3%. In the field of super-high voltage
transmission, key technologies of High-Voltage Direct Current circuit breakers, research on large power
grid planning and operation control technology have made new progress. However, some problems
in power grid construction were exposed, such as the contradiction between power grid planning
and local government planning on water conservancy and land planning, the low power supply
reliability and the high line loss rate [1]. Therefore, it is of great necessity to introduce the concept of
sustainability into power grid construction projects, identify effective evaluation criteria, and establish
a comprehensive evaluation criteria system to guide the electric power construction and improve its
continuity, repeatability and maintainability.

According to existing literature, the research on sustainable can be divided into two main branches:
macroscopical research and microcosmic research. The research on the macro level mainly focuses
on sustainable development of the world environment, countries and industrial sectors, and criteria
systems were established mainly from four aspects of society, economy, environment and policy [2,3].
For the sustainability assessment of sectors, the industrial sector, transportation sector, product
manufacturing and electric power system [4–7] are often set as the research objects. The research on
the micro level mainly focuses on sustainable evaluation of enterprises and projects [8,9].

In particular, a great number of scholars have studied different dimensions and methods to
evaluate the power grid projects [10–15]. For reliability evaluation, Adefarati et al. [10] evaluated the
reliability and economic efficiency of a microgrid power system with the integration of renewable
energy resources. Huang et al. [11] analyzed the mechanism of incentive-based demand response
and its impact on power supply reliability, and then developed a model considering a customer’s
comprehensive assessment and the customer response. For stability evaluation, Song et al. [12]
established a distributed framework to evaluate and improve the small-disturbance stability of a
microgrid with inverter-based distributed generators. Luna et al. [13] contributed an evaluation
framework to quantitatively assess the enhancement attained by different online energy management
strategies. From these studies above, it can be concluded that they are related to only one
or two dimensions such as economic efficiency, stability and reliability evaluation instead of
comprehensive sustainability evaluation of power grid projects.

For comprehensive sustainability evaluation of power grid projects, economy, society and
environment are commonly used to identify criteria to analyze the sustainability of specific power
generation projects [16–18]. Rodríguez-Serrano et al. [19] conducted a sustainability impact assessment
of the supply chain of a solar thermal electricity project in Mexico, using the “Framework for Integrated
Sustainability Assessment”. Inoussah et al. [20] evaluated the performance and sustainability indicators
of various thermal power generation technologies in Cameroon using the exergy analysis tools.
However, these studies mainly set electric power generation projects as analysis objects, and there are
few studies that focus on power grid construction projects. According to characteristics of power grid
construction projects, Wu et al. [21] introduced the contents of smart grid construction and analyzed
the position of information technology and demand for smart grid construction. Feron et al. [22]
took into account four dimensions of sustainability including institutional, economic, environmental,
and socio-cultural to assess the sustainability of rural electrification programs based on off-grid
photovoltaic systems in Chile. Zhao et al. [23] proposed a novel hybrid framework to evaluate the
performance of a Strong Smart Grid from the perspective of electric power construction, operation and
sustainable development.

According to the research mentioned above, it can be noted that the current studies about
sustainability are mainly carried out from macro perspectives on world, countries and industrial
sectors. For evaluation methods, classical evaluation methods such as Analytic Hierarchy Process and
Fuzzy Comprehensive Evaluation Method are more commonly used.

In this paper, we regarded economy, technology, society and environment as four crucial factors
affecting the sustainability of power grid construction projects to construct the evaluation criteria
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system, and proposed to combine improved classical evaluation methods with heuristic methods.
Specifically, we used the improved Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) to evaluate and rank a number of power grid construction projects, and then the evaluation
results of the TOPSIS were used to train the Least Square Support Vector Machine (LSSVM) optimized
by the Modified Fly Optimization Algorithm (MFOA).

The remaining parts of this article are structured as follows: in Section 2, the sustainability
evaluation criteria system of the power grid construction projects is built; in Section 3, the methodology
of the improved TOPSIS and MFOA-LSSVM is introduced; a numerical example is given to verify
the validity and feasibility of the model in Section 4; at last, in Section 5, we summarize the research
results of this article.

The flow chart of this study is shown as Figure 1.
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2. Constructing an Evaluation Criteria System of Power Grid Construction Projects

2.1. Evaluation Criteria System Construction

In this paper, the construction of evaluation criteria system includes the following steps:
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2.1.1. Initially Determining Evaluation Criteria

Through analyzing existing literature, in this paper, four main dimensions of economy, technology,
society and environment are firstly taken into account to help in initially identifying 25 evaluation
criteria that contain both qualitative criteria and quantitative criteria.

2.1.2. Evaluation Criteria Selection

The evaluation criteria system is required in which it is better to use fewer and simpler criteria
under the constraints of time and cost in evaluation progress. Therefore, to use as few and simple
criteria as possible, an expert scoring method was used to select the appropriate amount of criteria
from the 25 criteria. In this research, five experts who mainly study on the electric power system were
invited to rate the importance of each criteria ranging from 0 to 100. The higher the score is, the more
important the criterion is. The steps of expert scoring method are as follows:

First, five experts rated the 25 criteria to get the scores of each criterion; after that, we compared
the scores of each criterion and fed back the analysis results to five experts and performed the second
round of scoring; then, we repeated the second step until the score of each criteria from each expert
would not be changed any more.

The principle to eliminate criteria from the evaluation criteria system is that if there is a criterion
j(j = 1, 2, . . . , 25) whose score given by an expert i(i = 1, 2, 3, 4, 5) is lower than a given value (in this
study, the value is set to be 40), we think the criterion j is relatively unimportant for sustainability
evaluation and eliminate it from the criteria system.

2.1.3. Criteria System Construction and Criteria Weights Calculation

According to the results of experts scoring, eight criteria were eliminated because of low scores.
We then constructed the criteria system using the left 17 criteria and calculated their weights based on
scores of each criterion. The steps are as follows:

Step 1: calculating the average score of each criteria

kj =
1
5

5

∑
i=1

kij, (1)

where kj is the average score of criterion j(j = 1, 2, . . . , 17), and kij is the score of criterion
j(j = 1, 2, . . . , 17) given by expert i(i = 1, 2, 3, 4, 5).

Step 2: calculating the weights of each criterion

k j = kj/
17

∑
j=1

kj, (2)

where k j is the weight of criterion j.
The criteria system for sustainability evaluation of power grid construction projects and the

weights of each criterion are shown in Figure 2. The criteria system is composed of four first-level
criteria, seven second-level criteria and 17 third-level criteria.
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2.2. Criteria Description

2.2.1. Economy

From the perspective of economy, the sustainability evaluation of power grid construction projects
mainly consists of two aspects, including financial performance, which is related to the investors and
national economic contribution, which is related to national economic benefits. The Internal Rate of
Return is the profitability of project investment, reflecting the efficiency of investment. The Investment
Recovery Period refers to the period of time to repay the original investment with the net proceeds
of project. The longer the investment recovery period is, the greater the risk borne by the investors.
The Profit Growth Rate reflects the profitability of power grid construction project. The criterion of
the Contribution Rate of Regional Economic Growth reflects the stimulating effect of the construction
project on the regional economy. Because it is difficult to be measured quantitatively, this criterion
is given to be scored by experts. The Number of Jobs Provided Directly reflects the role of power
grid construction projects in promoting regional employment. The Contribution Rate of Taxation is
expressed as the ratio of the income tax amount of the project to the enterprise income tax in the region
where the project is constructed.

2.2.2. Technology

From the perspective of technology, sustainability evaluation of power grid construction projects
mainly includes the evaluation of the impact on grid operation and the evaluation of the advanced
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technology used in the project. The Growth Rate of Power Supply Capacity is the ratio of the installed
capacity of the project to the existing capacity in the evaluated area, which reflects the project’s driving
effect on regional power development. The Reliability of Power Supply refers to the reliability of
continuous power supply to users when the grid equipment is out of service, which is a significant
symbol of power supply quality. The Power grid Loss is an important criteria to evaluate the efficiency
of power transmission. Per Capita Investment in Scientific Research Funds and the Proportion of
Highly Educated Personnel represent the progressiveness of power grid construction projects.

2.2.3. Society

From the perspective of society, the sustainability evaluation mainly involves the impact and
benefit of the constructed projects on local society. Therefore, to analyze the adaptability and
acceptability of the local residents and government, two criteria including Public Satisfaction and
Government Satisfaction are used.

2.2.4. Environment

From the perspective of environment, the impact of power grid construction projects on energy
consumption structure and ecological environment are taken into account to evaluate the sustainability.
The criterion of the Ratio of Electricity Consumption to Total Energy Consumption and the Standard
Coal Saving both reflect the importance of electric energy in regional total energy consumption. In other
words, they are adopted to reveal the impact of electric power construction projects in reducing primary
energy use and improving energy efficiency. The Emission Reduction of Major Pollutants reflects the
contribution of projects in energy saving and emission reduction. The Environmental Damage reflects
the impact of grid construction projects on noise and water and soil pollution.

3. Methodology

3.1. The TOPSIS Improved by the Grey Incidence Analysis

The TOPSIS technique, also known as the Double Base Points Method, was proposed by Hwang
and Yoon [24]. This technique works by setting the positive ideal solution (PIS) and the negative
ideal solution (NIS) of multi-criteria decision making problems, and considering the distances to PIS
and NIS of evaluated alternatives as the evaluation standard to rank all the alternatives. Therefore,
the traditional TOPSIS is a technique based on distance measure. The grey incidence analysis was
proposed by Professor Deng [25,26], the founder of grey system theory. On the basis of work of
previous scholars, Liu et al. [27,28] then proposed the grey incidence analysis, which works to
measure the similarity of two sequences. Therefore, the grey incidence analysis is a method based on
similarity measure.

When evaluating an object, sometimes we not only need to consider the distance closeness
between the evaluated object and the target object, but also the similarities between them. In other
words, we need to take into consideration whether all the aspects of the evaluated object develop in
balance and whether the structure is reasonable. Therefore, in this paper, we propose an improved
TOPSIS based on the grey incidence analysis, considering the nearness and similarity between the
evaluated objects and the target objects. The steps are as follows.

Step 1: vector normalization and criteria weighting.
Assuming that there are m objects to be evaluated and n evaluation criteria. The observation

value of object i is dij(i = 1, 2, . . . m; j = 1, 2, . . . , n), the observation value matrix D = (dij)m·n can be
expressed as

Dij =


D1

D2
...

Dm

 =


d11 d12 · · · d1n
d21 d22 · · · d2n

...
...

. . .
...

dm1 dm2 · · · dmn

,
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The vector normalization is carried out according to Equation (3):

x′ ij =
dij√
m
∑

i=1
d2

ij

, (3)

where x′ ij is the normalized result of dij.
The decision matrix Xij is obtained by weighting each criterion according to Equation (4):

xij = k jx′ ij (4)

Xij =


X1

X2
...

Xm

 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

,

where xij is the observation value of each criterion after weighting.
Step 2: determining the PIS and NIS

X+ = max
1<i<m

xi(j) = (x+(1), x+(2), · · · , x+(n)), (5)

X− = max
1<i<m

xi(j) = (x−(1), x−(2), · · · , x−(n)), (6)

where x+(j) and x−(j) are the positive ideal value and the negative ideal value of criteria j, X+ is the
PIS, and X− is the NIS.

Step 3: calculating the distance between the object i and the ideal solutions

D+
i =

√√√√ n

∑
j=1

(xi(j)− x+(j))2, (7)

where D+
i is the distance between the object i and the PIS.

D−i =

√√√√ n

∑
j=1

(xi(j)− x−(j))2, (8)

where D+
i is the distance between the object i and the NIS.

Step 4: calculating the similarity coefficient between the object i and the ideal solutions

R+
i =

Xi · X+

|Xi||X+| , (9)

R−i =
Xi · X−
|Xi||X−|

, (10)

where Xi = [xi1, xi2, . . . , xin](i = 1, 2, . . . , m), X+ = max
1<i<m

xi(j) = (x+(1), x+(2), · · · , x+(n)),

and X− = max
1<i<m

xi(j) = (x−(1), x−(2), · · · , x−(n)), R+
i is the similarity coefficient between the object

i and the PIS, R−i is the similarity coefficient between the object i and the NIS.
Step 5: defining the comprehensive relative closeness

Ci = γCDi + (1− γ)CRi = γ
D−i

D+
i + D−i

+ (1− γ)
R+

i
R+

i + R−i
, (11)
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where CDi is the relative closeness that reveals the nearness between the object i and the ideal solutions
(target objects), CRi is the relative closeness that reveals the similarity degree between the object i
and the ideal solutions (target objects), γ is the adjustment coefficient that reveals the preference
of decision makers on the similarity and nearness between the evaluated objects and target objects.
If γ = 0, the comprehensive relative closeness is equal to the similarity closeness, reflecting that the
decision makers emphasize the similarity between the evaluated object and the target objects; If γ = 1,
the comprehensive relative closeness is equal to the nearness closeness, reflecting that the decision
makers give priority to the distance nearness between the evaluated object and the target objects.

Step 6: ranking the preference order according to the comprehensive relative closeness.
A set of objects can be preference ranked according to the comprehensive relative closeness.

The higher the comprehensive relative closeness is, the better the evaluated object is.

3.2. The LSSVM Optimized by the MFOA

3.2.1. The LSSVM

The SVM was proposed by Vapnik [29] according to the principle of structural risk minimization
in statistical learning theory. It can effectively deal with problems such as few samples, nonlinear
problems and high-dimensional data. The LSSVM proposed by Suykens [30–32] is an upgraded
version of SVM, working by transforming the convex quadratic programming problem in the classical
SVM into linear equations, so as to accelerate the training speed and improve the convergence
precision. It is a class of kernel-based learning methods [33]. Now, the LSSVM has been widely
used in forecasting [34–36], data fitting [37,38], comprehensive evaluation [39,40] and pattern
recognition [41–43]. The steps are as follows.

Step 1: assuming that there is a training set {(xi, yi)|i = 1, 2, · · · , n} with n data points,
where xi ∈ Rd is input data and yi ∈ R is output data.

The optimization problem can be formulated as min
(

1
2‖ω‖

2 + 1
2 c

n
∑

i=1
ξ2

i

)
s.t. : yi = ωT ϕ(xi) + b + ξi

, (12)

where w is an adjustable weight vector, c is the regulation constant, ξi is the relaxation factor and b
is bias.

Step 2: the Lagrange function can be formulated as

L(ω, b, ξ, α, γ) =
1
2
‖ω‖2 +

1
2

c
n

∑
i=1

ξ2
i −

n

∑
i=1

αi

[
ωT · ϕ(xi) + b + ξi − yi

]
, (13)

where αi(i = 1, 2, · · · , n) is the Lagrange multipliers.
Step 3: according to the Karush–Kuhn–Tucker, Equation (14) can be obtained from

Equation (13) that 

∂L
∂ω = 0→ ω =

n
∑

i=1
αi ϕ(xi)

∂L
∂b = 0→

n
∑

i=1
αi = 0

∂L
∂ξ = 0→ αi = cξi

∂L
∂α = 0→ ωT ϕ(xi) + b + ξi − yi = 0,

(14)
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Step 4: from Equation (14), it can be obtained that
0 1 · · · 1
1 K(x1, x1) +

1
c · · · K(x1, xn)

· · · · · · · · · · · ·
n K(xn, x1) · · · K(xn, yn) +

1
c




b
a1

· · ·
an

 =


0
y1

· · ·
yn

, (15)

where K(xi, xj) = exp
(
−‖x−xi‖2

2σ2

)
, which is called the radial basis function (RBF) and σ is the width of

the RBF.
Step 5: after solving αi and b with the least square method, the final LSSVM can be written as

y =
n

∑
i=1

αiK(x, xi) + b (16)

3.2.2. The MFOA

The FOA, which derives from the behavior of fruit flies foraging, is a swarm intelligence algorithm
proposed by Pan [44]. The fruit fliers can forage through the sense of smell and fly in that direction,
they can also use their vision to find the position of companions and food, and then fly to them.
The smell concentration of the food is related to the relative distance of the flies from the food, and the
farther the distance is, the less the food smell concentration is.

Fruit flies explore the food several times, moving from a place where there is less scent to a place
where there is obvious scent until they forage successfully. The steps of MFOA are as follows.

Step 1: initializing the parameters.
The number of fruit flies is set as Size, and the initialized location of fruit fly is Xaxis and Yaxis.
Step 2: for each fruit fly, random values within a certain range are taken as the direction and

distance of the fruit fly, and the next location is obtained as Equations (17) and (18):

Xi = Xaxis + Rand(·), (17)

Yi = Yaxis + Rand(·), (18)

where Xi and Yi are the next location of the fruit fly i, and Rand(·) is the random number related to the
flying distance.

Step 3: the distance of the current foraging location to the origin Di and the smell concentration
judgment value Si are to be calculated:

Di =

√
Xi

2 + Yi
2, (19)

In classical FOA without improvement, the smell concentration judgment value equals to the
inverse of distance. However, because the distance is a random value within a large range, the smell
concentration judgment value may be much smaller, which leads to premature convergence and
local minimum in the next calculation procedure. In this paper, the relaxation factor is introduced to
optimize the smell concentration judgment value as Equation (20):

Si = 1/Di + α · Di, (20)

where α is a random value obeying uniform distribution. α · Di is used to expand the distribution of
smell concentration judgment value and avoid the algorithm falling into local minima.
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Step 4: according to the smell concentration judgment value Si and smell concentration judgment
function, the smell concentration Smell(i) of the individual i is to be calculated:

Smell(i) = Function(Si), (21)

Step 5: the max of smell concentration and the number of the individual with best smell
concentration can be obtained:

[BestSmell BestIndex] = max(Smell(i)), (22)

Step 6: setting the location of the individual with best smell concentration as the flight destination,
the fruit fly swarm will fly towards that location:

SmellBest = BestSmell, (23)

Xaxis = X(BestIndex)
Yaxis = Y(BestIndex)

, (24)

where SmellBest is the best smell concentration.
The procedures will be executed repeatedly from step 1 to 6 until the best location has been found.

3.2.3. The MFOA-LSSVM

Less parameters, easy adjustment, easy computation and high accuracy make the MFOA suitable
to be used to solve practical problems. The LSSVM is suitable for problems with small sample data.
The evaluation on power grid projects has the following characteristics: (1) due to the long construction
period and difficulty in construction of power grid construction projects, it is difficult to obtain a large
number of evaluation samples in a short period of time; (2) because many criteria are qualitative,
they need to be scored by an expert scoring method to be converted into quantitative criteria, leading
to cumbersome expert scoring processes. Therefore, it is crucial and necessary to solve the problem
of small samples and complex evaluation procedure. This is why we apply the MFOA-LSSVM to
sustainability evaluation of power grid construction projects.

For LSSVM, the regulation constant c and the width of the RBF σ can be changed flexibly,
which will have a significant impact on the results. Therefore, in this paper, we optimize these
two parameters with the MFOA:

ci
(j) = k1 × Si

(j)(1, 1)
σi
(j) = k2 × Si

(j)(1, 2)
, (25)

where k1 and k2 are two constants.
The smell concentration is defined as

Smelli
(j) = R2 − RMSE, (26)

where R2 is the correlation coefficient of σi
(j) and ci

(j), and RMSE is the standard error of the results.

4. Case Study

In this paper, 30 power grid construction projects in a region in north China are set as evaluated
objects to be analyzed. This sector is composed of two parts: in the first part, we rank the 30 projects
with improved TOPSIS according to the comprehensive relative closeness; in another part, based on
the evaluation results of the first part, 25 evaluated objects are used to train the MFOA-LSSVM,
and five objects are used to test the fitness goodness.
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4.1. Case Study for Improved TOPSIS

What should be noted is that three criteria, including Public Satisfaction, Government Satisfaction
and the Environment Damage are qualitative, which need to be converted into quantitative criteria by
experts scoring. Therefore, according to the performance of these projects, three experts who work in
the state grid are invited to give scores ranging from 0 to 100. Then, we set the average value of each
criterion as the final score in this case study.

1. Vector normalization and criteria weighting

The data set is normalized according to Equation (3). Then, we weight each criterion according to
Equation (4), and the results are listed in Appendix A Tables A1 and A2.

2. Determining the PIS and NIS

The PIS and NIS are obtained by Equations (5) and (6):

X+ =

(
0.0158, 0.0162, 0.0156, 0.0137, 0.0127, 0.0141, 0.0155, 0.0125,

0.0135, 0.0133, 0.0120, 0.0096, 0.0096, 0.0143, 0.0136, 0.0146, 0.0105

)
,

X− =

(
0.0107, 0.0086, 0.0083, 0.0061, 0.0047, 0.0036, 0.0082, 0.0124,

0.0048, 0.0068, 0.0094, 0.0068, 0.0069, 0.0090, 0.0084, 0.0092, 0.0055

)
.

3. Calculating the distance of each object to the ideal solutions:

D+
i =

(
0.0133, 0.0137, 0.0146, 0.0171, 0.0181, 0.0149, 0.0152, 0.0126, 0.0124, 0.0137, 0.0131, 0.0127, 0.0186, 0.0164, 0.0138,
0.0169, 0.0163, 0.0099, 0.0158, 0.0150, 0.0123, 0.0136, 0.0174, 0.0130, 0.0135, 0.0162, 0.0175, 0.0127, 0.0121, 0.0198

)
,

D−i =

(
0.0166, 0.0164, 0.0156, 0.0131, 0.0102, 0.0154, 0.0146, 0.0162, 0.0186, 0.0176, 0.0173, 0.0172, 0.0133, 0.0156, 0.0159,
0.0129, 0.0148, 0.0187, 0.0152, 0.0139, 0.0194, 0.0169, 0.0112, 0.0150, 0.0157, 0.0144, 0.0141, 0.0162, 0.0172, 0.0097

)
.

4. Calculating the similarity coefficient of each object and the ideal solutions:

R+
i =

(
0.1150, 0.1146, 0.1145, 0.1135, 0.1141, 0.1147, 0.1142, 0.1156, 0.1148, 0.1140, 0.1147, 0.1147, 0.1121, 0.1134, 0.1152,
0.1134, 0.1137, 0.1161, 0.1142, 0.1145, 0.1148, 0.1149, 0.1139, 0.1153, 0.1153, 0.1143, 0.1133, 0.1154, 0.1153, 0.1124

)
,

R−i =

(
0.0876, 0.0881, 0.0879, 0.0888, 0.0896, 0.0874, 0.0886, 0.0876, 0.0872, 0.0883, 0.0880, 0.0886, 0.0887, 0.0877, 0.0875,
0.0894, 0.0879, 0.0869, 0.0874, 0.0890, 0.0865, 0.0872, 0.0896, 0.0890, 0.0877, 0.0876, 0.0877, 0.0880, 0.0879, 0.0899

)
.

5. Calculating the comprehensive relative closeness

We set the adjustment coefficient γ respectively equal to 0, 0.3, 0.5, 0.7 and 1. When γ = 0,
it reflects that the decision makers only emphasize the similarity between the evaluated objects and
the target objects; if γ = 0.3, the decision makers give priority to the similarity; if γ = 0.5, the decision
makers think the similarity and nearness are equally important; if γ = 0.7, the decision makers give
priority to the nearness; if γ = 1, it reflects that the decision makers only pay attention to the nearness
between the evaluated objects and the target objects. Finally, we get the results corresponding to
different adjustment coefficients and rank them as Table 1.
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Table 1. The results of improved TOPSIS.

No.
γ = 0 γ = 0.3 γ = 0.5 γ = 0.7 γ = 1

Ci Rank Ci Rank Ci Rank Ci Rank Ci Rank

1 0.5705 2 0.5658 8 0.5627 9 0.5596 10 0.5625 7
2 0.5663 12 0.5599 13 0.5556 12 0.5513 12 0.5743 5
3 0.5684 5 0.5524 15 0.5418 16 0.5311 16 0.4328 26
4 0.5676 9 0.5277 25 0.5011 25 0.4745 25 0.5390 13
5 0.5652 16 0.5040 29 0.4633 29 0.4225 29 0.5876 4
6 0.5640 19 0.5470 17 0.5357 17 0.5243 17 0.4751 22
7 0.5640 18 0.5416 19 0.5267 19 0.5117 18 0.6536 1
8 0.5599 27 0.5605 11 0.5609 10 0.5613 9 0.6005 3
9 0.5674 10 0.5774 3 0.5840 3 0.5906 3 0.5151 16

10 0.5643 17 0.5638 9 0.5634 8 0.5630 8 0.5619 8
11 0.5679 7 0.5686 6 0.5691 6 0.5696 6 0.5073 17
12 0.5662 13 0.5686 5 0.5703 5 0.5719 5 0.3614 29
13 0.5611 25 0.5178 27 0.4889 27 0.4600 27 0.4470 24
14 0.5658 14 0.5425 18 0.5270 18 0.5115 19 0.4909 18
15 0.5591 28 0.5519 16 0.5472 15 0.5424 15 0.5353 15
16 0.5602 26 0.5220 26 0.4965 26 0.4710 26 0.4711 23
17 0.5684 6 0.5404 20 0.5217 22 0.5031 22 0.5539 11
18 0.5557 30 0.5850 1 0.6046 1 0.6242 1 0.5549 10
19 0.5582 29 0.5380 23 0.5245 20 0.5111 20 0.4808 21
20 0.5637 22 0.5388 22 0.5223 21 0.5057 21 0.6124 2
21 0.5673 11 0.5808 2 0.5899 2 0.5989 2 0.5448 12
22 0.5628 24 0.5601 12 0.5584 11 0.5566 11 0.5703 6
23 0.5657 15 0.5137 28 0.4790 28 0.4443 28 0.5611 9
24 0.5640 20 0.5557 14 0.5502 14 0.5447 14 0.4882 20
25 0.5721 1 0.5622 10 0.5556 13 0.5490 13 0.4167 27
26 0.5689 3 0.5396 21 0.5200 23 0.5004 23 0.3923 28
27 0.5631 23 0.5283 24 0.5051 24 0.4818 24 0.5364 14
28 0.5685 4 0.5663 7 0.5648 7 0.5634 7 0.4893 19
29 0.5637 21 0.5709 4 0.5756 4 0.5804 4 0.4346 25
30 0.5677 8 0.4961 30 0.4483 30 0.4006 30 0.3290 30

It can be concluded that the comprehensive relative closeness Ci of evaluated object i differs
because of the changing of the adjustment coefficient γ, leading to the ranking changing among all
the evaluated objects. Here, we take the object 7 and object 25 as examples to analyze the results.
For object 7, when γ = 1, that is, the decision makers only emphasize the nearness between the
evaluated object and the target objects, object 7 ranks in the first place among the 30 objects, reflecting
that it is highly close to the PIS from the perspective of distance; however, when γ = 0, in other
words, when the decision makers only emphasize the similarity between the evaluated object and the
target objects, object 7 ranks 18th among the 30 objects, reflecting that it is at the middle level, that is,
the balance of all the criteria of object 7 is at a general level. For object 25, when γ = 0, object 25 ranks
in the first place, reflecting that all the criteria of object 25 develop in balance; however, when γ = 1,
object 25 ranks 27th out of 30 objects, reflecting that it is far away from the PIS from the perspective
of distance.

4.2. Case Study for MFOA-LSSVM

The MFOA is used to optimize two parameters c and σ in this part. The Size equals 20, and the
maximum generation equals 100.

As is shown in Figure 3, in the iterative procedure, the convergence appears on the 12th generation
with Root Mean Square Error (RMSE) of 0.62%. The best regulation constant and width of the RBF are
45.51 and 0.01, respectively.
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The data in Appendix A are set as the input of the optimized LSSVM, and the comprehensive
relative closeness when γ = 0.5 calculated by improved TOPSIS are set as the output. To test the
rationality of the proposed model, we choose the single LSSVM without parameter optimization as
a contrast to get the training results, and the results are as shown in the following Figures 4 and 5,
and Tables 2 and 3.
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Table 2. The training results of MFOA-LSSVM and LSSVM.

No. Ci
MFOA-LSSVM LSSVM

Training Results Relative Error (%) Training Results Relative Error (%)

1 0.5627 0.5652 0.0044 0.5640 0.0023
2 0.5556 0.5478 0.0141 0.5486 0.0127
3 0.5418 0.5340 0.0145 0.5348 0.0130
4 0.5011 0.4957 0.0108 0.4940 0.0141
5 0.4633 0.4711 0.0169 0.4704 0.0152
6 0.5357 0.5416 0.0110 0.5362 0.0010
7 0.5267 0.5229 0.0073 0.5244 0.0044
8 0.5609 0.5531 0.0139 0.5538 0.0126
9 0.584 0.5762 0.0134 0.5769 0.0121

10 0.5634 0.5593 0.0073 0.5563 0.0126
11 0.5691 0.5626 0.0114 0.5620 0.0124
12 0.5703 0.5625 0.0137 0.5632 0.0124
13 0.4889 0.4962 0.0149 0.4959 0.0144
14 0.527 0.5348 0.0149 0.5341 0.0134
15 0.5472 0.5550 0.0142 0.5543 0.0130
16 0.4965 0.5043 0.0157 0.5036 0.0143
17 0.5217 0.5263 0.0088 0.5287 0.0134
18 0.6046 0.5968 0.0129 0.5975 0.0117
19 0.5245 0.5323 0.0149 0.5316 0.0135
20 0.5223 0.5301 0.0150 0.5294 0.0136
21 0.5899 0.5845 0.0092 0.5841 0.0099
22 0.5584 0.5516 0.0121 0.5513 0.0126
23 0.479 0.4868 0.0164 0.4860 0.0147
24 0.5502 0.5547 0.0083 0.5508 0.0011
25 0.5556 0.5478 0.0141 0.5485 0.0128

Table 3. The test results of MFOA-LSSVM and LSSVM.

No. Ci
MFOA-LSSVM LSSVM

Test Results Relative Error (%) Test Results Relative Error (%)

1 0.5200 0.5278 0.0151 0.5475 0.0528
2 0.5051 0.5080 0.0058 0.5437 0.0764
3 0.5648 0.5570 0.0139 0.5777 0.0229
4 0.5756 0.5761 0.0008 0.5848 0.0160
5 0.4483 0.4561 0.0174 0.4670 0.0418

From Figure 4 and Table 2, we can conclude that overall the relative error of the MFOA-LSSVM
almost equals that of the single LSSVM.

From Figure 5 and Table 3, though the gaps of training results between the MFOA-LSSVM and the
single LSSVM are not obvious, the test results of MFOA-LSSVM with a mean relative error of 1.0592%
are more accurate than that of single LSSVM with a mean relative error of 4.1997%, showing that the
MFOA-LSSVM is suitable for sustainability evaluation of electric power gird construction projects.

When carrying out comprehensive evaluation, if there are few evaluated samples, the improved
TOPSIS can be directly used. However, when the sample being evaluated increases, the improved
TOPSIS requires complex calculations procedures, which will increase the evaluation difficulty and
time cost. Hence, a part of the samples can be selected to carry out evaluation procedures with the
improved TOPSIS to get their comprehensive relative closeness. Then, the criteria data of these samples
can be used as input and the comprehensive relative closeness can be used as output to train the
MFOA-LSSVM. After that, the evaluation of remaining samples can be completed with the trained
MFOA-LSSVM to avoid complex computation.
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In addition to the sustainability evaluation of power grid construction projects,
other comprehensive evaluation problems can also adopt this method or idea proposed in
this paper. Here, we take the performance evaluation of carbon emission reduction in 30 cities in
North China as an example. First, after identifying the evaluation criteria and data processing, the
final ranking standard (if using the TOPSIS, the ranking standard refers to the comprehensive relative
closeness) of these cities can be obtained by the improved TOPSIS or other evaluation methods such
as Fuzzy Comprehensive Evaluation. By the performance ranking of carbon emission reduction in
these 30 cities, suggests and policies can be given to strengthen the management of the regions with
poor carbon emission reduction effect. However, when the evaluated region extends from 30 cities in
North China to more than 600 cities in whole country, the traditional ranking evaluation method is not
suitable to deal with a large number of calculation processes. Hence, data of 30 cities in North China
can be used to train the MFOA-LSSVM model. Then, we can evaluate the performance of all the cities
using the trained model, so as to reduce the calculation difficulty.

The main contribution of this method in paper is to combine classical evaluation methods with
heuristic methods. The classical evaluation method, which is responsible for evaluating objects and
getting the ranking standard, has a disadvantage that when there are a large number of evaluated
samples, the calculation is complicated and inconvenient to operate. Heuristic methods that can be
used for evaluation of a large number of samples are used to make up for the shortcoming of the
traditional evaluation methods. In addition to combining the improved TOPSIS and MFOA-LSSVM,
the application can be developed for other classical evaluation methods such as Fuzzy Comprehensive
Evaluation Method and the Grey Fixed Weight Clustering Method and other heuristic methods such
as Particle Swarm Optimization Algorithm and Artificial Neural Networks Algorithm.

5. Conclusions

To evaluate the sustainability of power grid construction projects, in this paper, we firstly
identified 17 criteria to establish the criteria system. After that, the TOPSIS improved by grey incidence
analysis was proposed to evaluate the sustainability on visual angle of similarity and nearness. Then,
the MFOA-LSSVM model was applied to the sustainability evaluation of power grid construction
projects. At last, a case was used to prove the rationality and feasibility of the improved TOPSIS
and MFOA-LSSVM.

The highlights of this article are as follows:

1. In this paper, we construct the criteria system of the sustainability evaluation of power grid
construction projects from four dimensions of economy, technology, environment and society.

2. The grey incidence analysis, which reveals the similarity between the evaluated objects and ideal
objects, is used to improve the traditional TOPSIS, which reveals the nearness of the evaluated
objects and ideal targets, so we can make it analyze the evaluated objects from the aspects of
similarity and nearness. By this method, we rank these objects according to their comprehensive
relative closeness scores.

3. We optimize two key parameters of the LSSVM using the MFOA. Based on the evaluation results
of improved TOPSIS, the MFOA-LSSVM model is used to evaluate the sustainability of power
grid construction projects, which simplifies the process of expert scoring and computation to help
in rapid and accurate evaluation of a large number of similar projects.

4. We proposed combining the classical evaluation methods with heuristic methods. This model we
have developed has wide applicability on evaluation problems.
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Appendix A

Table A1. Vector normalization and criteria weighting (A1–A8).

No. A1 A2 A3 A4 A5 A6 A7 A8

1 0.0126 0.0130 0.0116 0.0137 0.0075 0.0090 0.0087 0.0125
2 0.0151 0.0086 0.0156 0.0101 0.0068 0.0102 0.0148 0.0124
3 0.0151 0.0151 0.0100 0.0079 0.0101 0.0116 0.0124 0.0125
4 0.0128 0.0140 0.0130 0.0082 0.0121 0.0047 0.0089 0.0124
5 0.0148 0.0130 0.0086 0.0089 0.0074 0.0076 0.0100 0.0124
6 0.0136 0.0140 0.0099 0.0117 0.0113 0.0062 0.0105 0.0125
7 0.0141 0.0151 0.0110 0.0128 0.0089 0.0043 0.0138 0.0125
8 0.0114 0.0130 0.0129 0.0122 0.0102 0.0117 0.0131 0.0125
9 0.0137 0.0162 0.0145 0.0123 0.0113 0.0056 0.0146 0.0125
10 0.0117 0.0151 0.0085 0.0132 0.0100 0.0046 0.0141 0.0125
11 0.0138 0.0162 0.0100 0.0114 0.0063 0.0075 0.0154 0.0124
12 0.0152 0.0119 0.0098 0.0099 0.0122 0.0064 0.0152 0.0125
13 0.0109 0.0086 0.0144 0.0071 0.0085 0.0049 0.0152 0.0125
14 0.0120 0.0162 0.0089 0.0136 0.0118 0.0045 0.0114 0.0124
15 0.0138 0.0097 0.0146 0.0135 0.0080 0.0099 0.0105 0.0125
16 0.0116 0.0130 0.0130 0.0092 0.0090 0.0046 0.0130 0.0124
17 0.0112 0.0119 0.0099 0.0134 0.0047 0.0082 0.0155 0.0124
18 0.0130 0.0119 0.0126 0.0120 0.0113 0.0129 0.0120 0.0124
19 0.0109 0.0097 0.0111 0.0102 0.0127 0.0046 0.0141 0.0124
20 0.0158 0.0130 0.0102 0.0075 0.0063 0.0113 0.0114 0.0125
21 0.0107 0.0162 0.0138 0.0134 0.0124 0.0141 0.0100 0.0125
22 0.0111 0.0086 0.0089 0.0093 0.0104 0.0130 0.0128 0.0124
23 0.0124 0.0130 0.0083 0.0086 0.0065 0.0079 0.0116 0.0125
24 0.0154 0.0130 0.0130 0.0080 0.0068 0.0110 0.0102 0.0124
25 0.0152 0.0130 0.0135 0.0129 0.0072 0.0123 0.0090 0.0125
26 0.0118 0.0162 0.0128 0.0085 0.0047 0.0130 0.0097 0.0124
27 0.0135 0.0086 0.0115 0.0119 0.0118 0.0036 0.0082 0.0125
28 0.0130 0.0140 0.0120 0.0095 0.0060 0.0135 0.0111 0.0124
29 0.0122 0.0151 0.0126 0.0100 0.0050 0.0116 0.0135 0.0125
30 0.0133 0.0108 0.0110 0.0061 0.0067 0.0040 0.0082 0.0124

Table A2. Vector normalization and criteria weighting (A9–A17).

No. A9 A10 A11 A12 A13 A14 A15 A16 A17

1 0.0127 0.0131 0.0094 0.0081 0.0083 0.0139 0.0120 0.0112 0.0064
2 0.0089 0.0121 0.0115 0.0077 0.0071 0.0097 0.0133 0.0123 0.0075
3 0.0058 0.0107 0.0095 0.0080 0.0095 0.0094 0.0136 0.0096 0.0091
4 0.0072 0.0102 0.0120 0.0075 0.0085 0.0141 0.0091 0.0094 0.0075
5 0.0053 0.0106 0.0107 0.0074 0.0088 0.0096 0.0107 0.0094 0.0086
6 0.0127 0.0114 0.0109 0.0076 0.0069 0.0090 0.0097 0.0092 0.0099
7 0.0095 0.0103 0.0106 0.0080 0.0090 0.0091 0.0086 0.0121 0.0084
8 0.0085 0.0068 0.0106 0.0068 0.0088 0.0126 0.0111 0.0105 0.0105
9 0.0130 0.0114 0.0094 0.0081 0.0073 0.0133 0.0084 0.0102 0.0080

10 0.0104 0.0122 0.0116 0.0094 0.0090 0.0142 0.0132 0.0116 0.0102
11 0.0135 0.0091 0.0114 0.0077 0.0084 0.0124 0.0111 0.0110 0.0104
12 0.0121 0.0098 0.0117 0.0094 0.0092 0.0143 0.0122 0.0127 0.0065



Sustainability 2018, 10, 231 17 of 19

Table A2. Cont.

No. A9 A10 A11 A12 A13 A14 A15 A16 A17

13 0.0050 0.0074 0.0111 0.0078 0.0084 0.0127 0.0132 0.0128 0.0097
14 0.0094 0.0072 0.0100 0.0090 0.0073 0.0119 0.0092 0.0146 0.0072
15 0.0109 0.0128 0.0102 0.0089 0.0074 0.0097 0.0089 0.0106 0.0082
16 0.0048 0.0101 0.0106 0.0079 0.0076 0.0136 0.0119 0.0142 0.0058
17 0.0107 0.0077 0.0120 0.0085 0.0087 0.0099 0.0085 0.0143 0.0072
18 0.0130 0.0124 0.0105 0.0089 0.0088 0.0118 0.0117 0.0092 0.0088
19 0.0127 0.0113 0.0095 0.0080 0.0094 0.0125 0.0097 0.0102 0.0073
20 0.0090 0.0086 0.0105 0.0093 0.0088 0.0129 0.0128 0.0114 0.0055
21 0.0073 0.0088 0.0120 0.0096 0.0079 0.0104 0.0118 0.0138 0.0070
22 0.0096 0.0130 0.0105 0.0094 0.0091 0.0124 0.0108 0.0144 0.0094
23 0.0058 0.0115 0.0110 0.0084 0.0096 0.0094 0.0112 0.0137 0.0066
24 0.0094 0.0099 0.0113 0.0087 0.0071 0.0115 0.0132 0.0131 0.0093
25 0.0086 0.0114 0.0097 0.0075 0.0073 0.0109 0.0102 0.0121 0.0062
26 0.0073 0.0091 0.0109 0.0081 0.0070 0.0107 0.0092 0.0107 0.0091
27 0.0108 0.0121 0.0098 0.0071 0.0076 0.0093 0.0116 0.0122 0.0090
28 0.0087 0.0126 0.0117 0.0082 0.0077 0.0113 0.0122 0.0108 0.0097
29 0.0105 0.0133 0.0107 0.0088 0.0081 0.0138 0.0107 0.0105 0.0093
30 0.0071 0.0123 0.0117 0.0082 0.0092 0.0129 0.0088 0.0115 0.0073

References

1. Zhou, X.; Yi, J.; Song, R.; Yang, X.; Li, Y.; Tang, H. An overview of power transmission systems in China.
Energy 2010, 35, 4302–4312. [CrossRef]

2. Dzonzi-Undi, J.; Li, S. SWOT analysis of safety and environmental regulation for China and USA: Its effect
and influence on sustainable development of the coal industry. Environ. Earth Sci. 2015, 74, 6395–6406.
[CrossRef]

3. Xu, Z.; Cheng, G.; Chen, D.; Templet, P.H. Economic diversity, development capacity and sustainable
development of China. Ecol. Econ. 2002, 40, 369–378. [CrossRef]

4. Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. Design for sustainability in automotive industry:
A comprehensive review. Renew. Sustain. Eng. Rev. 2012, 16, 1845–1862. [CrossRef]

5. Shiau, T.A.; Liu, J.S. Developing an indicator system for local governments to evaluate transport sustainability
strategies. Ecol. Indic. 2013, 34, 361–371. [CrossRef]

6. Shin, D.; Curtis, M.; Huisingh, D.; Zwetsloot, G.I. Development of a sustainability policy model for promoting
cleaner production: A knowledge integration approach. J. Clean. Prod. 2008, 16, 1823–1837. [CrossRef]

7. Silalertruksa, T.; Gheewala, S.H. Environmental sustainability assessment of bio-ethanol production in
Thailand. Energy 2009, 34, 1933–1946. [CrossRef]

8. Chen, Y.H.; Niu, D.X.; Peng, Z. The comprehensive evaluation of sustainable development effect in regional
electricity enterprises. Adv. Mater. Res. 2012, 524, 482–484. [CrossRef]

9. Peruzzini, M.; Germani, M.; Marilungo, E. Product Lifecycle Management for Society; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 100–109.

10. Adefarati, T.; Bansal, R.C. Reliability and economic assessment of a microgrid power system with the
integration of renewable energy resources. Appl. Energy 2017, 206, 911–933. [CrossRef]

11. Huang, T.C.; Zhang, Y.J. Reliability evaluation of microgrid considering incentive-based demand response.
In Proceedings of the 2nd International Conference on Energy Materials and Applications (ICEMA),
Hiroshima, Japan, 10–12 May 2017.

12. Song, Y.; Hill, D.J.; Liu, T.; Zheng, Y. A distributed framework for stability evaluation and enhancement of
inverter-based microgrids. IEEE Trans. Smart Grid 2017, 8, 3020–3034. [CrossRef]

13. Luna, A.C.; Meng, L.X.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Online energy management
systems for microgrids: experimental validation and assessment framework. IEEE Trans. Power Electron.
2017, 33, 2201–2215. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2009.04.016
http://dx.doi.org/10.1007/s12665-015-4751-6
http://dx.doi.org/10.1016/S0921-8009(02)00005-8
http://dx.doi.org/10.1016/j.rser.2012.01.012
http://dx.doi.org/10.1016/j.ecolind.2013.06.001
http://dx.doi.org/10.1016/j.jclepro.2008.06.006
http://dx.doi.org/10.1016/j.energy.2009.08.002
http://dx.doi.org/10.4028/www.scientific.net/AMR.602-604.482
http://dx.doi.org/10.1016/j.apenergy.2017.08.228
http://dx.doi.org/10.1109/TSG.2017.2684426
http://dx.doi.org/10.1109/TPEL.2017.2700083


Sustainability 2018, 10, 231 18 of 19

14. Williams, N.J.; Jaramillo, P.; Taneja, J. An investment risk assessment of microgrid utilities for
rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda.
Energy Sustain. Dev. 2018, 42, 87–96. [CrossRef]

15. Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E.; Rahimi, S. Modeling and simulation of long term
stochastic assessment in industrial microgrids proficiency considering renewable resources and load growth.
Simul. Model. Pract. Theory 2017, 75, 77–95. [CrossRef]

16. Edinger, R.; Kaul, S. Humankind’s detour toward sustainability: Past, present, and future of renewable
energies and electric power generation. Renew. Sustain. Energy Rev. 2000, 4, 295–313. [CrossRef]

17. Farfan, J.; Breyer, C. Structural changes of global power generation capacity towards sustainability and
the risk of stranded investments supported by a sustainability indicator. J. Clean. Prod. 2017, 141, 370–384.
[CrossRef]

18. Katz, R.L.; Shirkhoda, A. Sustainability assessment of power generation in combination with lng evaporation:
A comparison of lca methods and exergy analysis. Technol. Policy Manag. 2013, 55, 1995–2000.

19. Rodríguez-Serrano, I.; Caldés, N.; Rúa, C.D.L.; Lechón, Y. Assessing the three sustainability pillars through
the Framework for Integrated Sustainability Assessment (FISA): Case study of a Solar Thermal Electricity
project in Mexico. J. Clean. Prod. 2017, 2, 179. [CrossRef]

20. Inoussah, M.; Adolphe, M.; Daniel, L. Assessment of sustainability indicators of thermoelectric power
generation in cameroon using exergetic analysis tools assessment of sustainability indicators of thermoelectric
power generation in cameroon using exergetic analysis tools. Energy Power Eng. 2017, 9, 22–39. [CrossRef]

21. Wu, Y.N.; Chen, J.; Liu, L.R. Construction of China’s smart grid information system analysis. Renew. Sustain.
Energy Rev. 2011, 15, 4236–4241. [CrossRef]

22. Feron, S.; Heinrichs, H.; Cordero, R.R. Sustainability of rural electrification programs based on off-grid
photovoltaic (PV) systems in Chile. Energy Sustain. Soc. 2016, 6, 32. [CrossRef]

23. Zhao, H.; Li, N. Performance evaluation for sustainability of strong smart grid by using stochastic AHP and
fuzzy TOPSIS methods. Sustainability 2016, 8, 129. [CrossRef]

24. Hwang, C.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981;
pp. 132–158, ISBN 9783540105589.

25. Deng, J.L. Introduction to Grey system theory. J. Grey Syst. 1989, 1, 1–24.
26. Deng, J. The Grey Control System, 2nd ed.; Huazhong University of Science & Technology Press: Wuhan,

China, 1993; pp. 10–135, ISBN 9787560906799.
27. Liu, S.F. Grey Information: Theory and Practical Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany,

2006; pp. 85–132, ISBN 1849969930.
28. Liu, S.F.; Xie, N.M.; Forrest, J. On new models of grey incidence analysis based on visual angle of similarity

and nearness. Syst. Eng.-Theory Pract. 2010, 30, 881–887.
29. Cherkassky, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995;

pp. 988–999, ISBN 9780387987804.
30. Suykens, J.A.; Lukas, L.; Van Dooren, P.; De Moor, B.; Vandewalle, J. Least squares support vector machine

classifiers: A large scale algorithm. In Proceedings of the European Conference on Circuit Theory and
Design, Stresa, Italy, 29 August–2 September 1999; 1999.

31. Suykens, J.A.; Brabanter, J.D.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines:
Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [CrossRef]

32. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,
293–300. [CrossRef]

33. Smola, A.; Scholkopf, B. On a Kernel based method for pattern recognition, regression, approximation and
operator inversion. Algorithmica 1998, 22, 211–231. [CrossRef]

34. Zhu, S.M.; Yang, M.; Han, X.S. Short-term generation forecast of wind farm using SVM-GARCH approach.
In Proceedings of the IEEE International Conference on Power System Technology, Auckland, New Zealand,
30 October–2 November 2012.

35. Wang, J.; Song, Z.; Ran, R. Short-term photovoltaic power generation rolling forecast based on optimized
SVM. Proc. CSU-EPSA 2016, 28, 9–13.

36. Malvoni, M.; Giorgi, M.G.D.; Congedo, P.M. Data on support vector machines (SVM) model to forecast
photovoltaic power. Data Brief 2016, 9, 13–16. [CrossRef] [PubMed]

37. Xian, G. Data fitting experiments of LS-WSVM. Comput. Eng. Appl. 2008, 44, 36–38.

http://dx.doi.org/10.1016/j.esd.2017.09.012
http://dx.doi.org/10.1016/j.simpat.2017.03.013
http://dx.doi.org/10.1016/S1364-0321(99)00017-9
http://dx.doi.org/10.1016/j.jclepro.2016.09.068
http://dx.doi.org/10.1016/j.jclepro.2017.02.179
http://dx.doi.org/10.4236/epe.2017.91003
http://dx.doi.org/10.1016/j.rser.2011.07.129
http://dx.doi.org/10.1186/s13705-016-0098-4
http://dx.doi.org/10.3390/su8020129
http://dx.doi.org/10.1016/S0925-2312(01)00644-0
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1007/PL00013831
http://dx.doi.org/10.1016/j.dib.2016.08.024
http://www.ncbi.nlm.nih.gov/pubmed/27622206


Sustainability 2018, 10, 231 19 of 19

38. Li, G.C.; You, J.C.; Liu, X.W. Support Vector Machine (SVM) based prestack AVO inversion and its
applications. J. Appl. Geophys. 2015, 120, 60–68. [CrossRef]

39. Zughrat, A.; Mahfouf, M.; Thornton, S. Performance evaluation of SVM and iterative FSVM classifiers
with bootstrapping-based over-sampling and under-sampling. In Proceedings of the IEEE International
Conference on Fuzzy Systems, Istanbul, Turkey, 2–5 August 2015.

40. Jiang, X.; Lu, W.X.; Zhao, H.Q.; Yang, Q.C.; Chen, M. Quantitative evaluation of mining geo-environmental
quality in Northeast China: Comprehensive index method and support vector machine models.
Environ. Earth Sci. 2015, 73, 7945–7955. [CrossRef]

41. Chen, G.Y.; Xie, W.F. Pattern recognition with SVM and dual-tree complex wavelets. Image Vis. Comput. 2007,
25, 960–966. [CrossRef]

42. Wu, Y.C.; Lee, Y.S.; Yang, J.C. Robust and efficient multiclass SVM models for phrase pattern recognition.
Pattern Recognit. 2008, 41, 2874–2889. [CrossRef]

43. Wang, A.; Yuan, W.; Liu, J.; Yu, Z.; Li, H. A novel pattern recognition algorithm: Combining ART network
with SVM to reconstruct a multi-class classifier. Comput. Math. Appl. 2009, 57, 1908–1914. [CrossRef]

44. Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example.
Knowl.-Based Syst. 2012, 26, 69–74. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jappgeo.2015.06.009
http://dx.doi.org/10.1007/s12665-014-3953-7
http://dx.doi.org/10.1016/j.imavis.2006.07.009
http://dx.doi.org/10.1016/j.patcog.2008.02.010
http://dx.doi.org/10.1016/j.camwa.2008.10.052
http://dx.doi.org/10.1016/j.knosys.2011.07.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Constructing an Evaluation Criteria System of Power Grid Construction Projects 
	Evaluation Criteria System Construction 
	Initially Determining Evaluation Criteria 
	Evaluation Criteria Selection 
	Criteria System Construction and Criteria Weights Calculation 

	Criteria Description 
	Economy 
	Technology 
	Society 
	Environment 


	Methodology 
	The TOPSIS Improved by the Grey Incidence Analysis 
	The LSSVM Optimized by the MFOA 
	The LSSVM 
	The MFOA 
	The MFOA-LSSVM 


	Case Study 
	Case Study for Improved TOPSIS 
	Case Study for MFOA-LSSVM 

	Conclusions 
	
	References

