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Abstract: Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover
has been undergoing substantial changes in cities. Based on climate data, city statistical data,
nighttime light data and the Normalized Difference Vegetation Index (NDVI) dataset, we investigate
the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of
China during 1998–2012, and explore their correlations. A regression model between growing-season
NDVI (G-NDVI) and urban land proportion (PU) is built to quantify the impact of urbanization
on vegetation cover change. The results indicate that the spatiotemporal variations of temperature,
precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid
urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while
the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a
negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have
been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on
vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in
17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization.
Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in
urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments
of cities would persist and continue to impact on the environmental change and sustainability. We use
a 15-year window here as a case study, which implies the millennia of human effects on the natural
biotas and warns us to manage landscapes and preserve ecological environments properly.
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1. Introduction

Over a half of the world’s population lives in urban areas which suffer from environmental problems
(e.g., air pollution and ecosystem degradation) [1,2]. As one of the most important parts in the earth land
ecosystem, vegetation provides a wide range of social and environmental services to urban life, and
benefits the sustainability of urban ecosystems [2–4]. For example, urban vegetation can sequestrate
carbon [5], regulate microclimates [6], improve air quality [7], preserve biodiversity [8], conserve soil
and water and mitigate nature disasters [9]. However, palaeoecological and palaeoenvironmental
records show that vegetation and ecosystem have been obviously influenced by human disturbances
and climate change in long-term landscape evolution [10–12]. Remarkably, vegetation cover within
and around urban areas has experienced obvious transformation during the past decades, which has
significantly influenced the sustainability of urban ecosystems [1].
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Generally, studies on vegetation variations at macro scales (e.g., city scale and regional scale) are
conducted based on the remote sensing technique. Normalized difference vegetation index (NDVI) and
vegetation net primary productivity (NPP) derived from remote sensing datasets are main indicators of
vegetation activities [13]. NPP is the rate of atmospheric carbon uptake by vegetation, which is a useful
proxy of vegetation ecosystem services ability [14]. Based on MODIS-1 km NPP products, Fu et al. [15]
showed a total NPP loss of approximately 167 × 106 g·C from 2001 to 2006 in Guangzhou city, China,
while the spatiotemporal pattern of NPP showed obvious variations in local areas. A different approach
is to use NDVI to estimate fractional vegetation cover [16], or directly applied to investigate the changes
of vegetation cover [17,18]. Based on GIMMS NDVI datasets, Eastman et al. [19] indicated that the
changing trend of NDVI during 1982–2011 exhibited significant spatial differences over global land
surfaces. Differences in spatiotemporal variations of vegetation could be largely attributed to the
effects of climate factors [10], anthropogenic activities [20], and their interactions [15,21].

Precipitation and temperature has been demonstrated to be the key climate factors for plant
growth and vegetation development in the literatures [22,23]. Vegetation cover in humid regions
was generally higher than that in arid and semi-arid regions [10,24]. But the response of vegetation
to precipitation and temperature change were varied in temporal patterns [23,25,26]. For example,
Zhou et al. [27] demonstrated that temperature change was the leading cause of NDVI decreases,
while precipitation played a minor role in high-latitude areas. Sun et al. [28] suggested that increasing
precipitation led to an improvement in the vegetation cover, whereas temperature was not a limiting
factor in arid and semi-arid regions of China. In cities, anthropogenic activities could impact vegetation
cover in a positive or negative way [18,29]. On the one hand, large patches of fertile cropland and
forest were transformed to urban constructed lands during the process of urbanization [30,31]; on the
other hand, people have recognized the importance of vegetation in urban ecosystems, and have given
more and more attention to urban greening plans [8,32]. However, it is difficult to balance between
economic development and ecosystem protection, resulting in obvious constructed land growth and
green area reduction [33,34]. In addition, the rate of local climate warming would increase if large
scale vegetation was removed (e.g., urban heat island) during the process of urbanization [35], which
contrarily altered vegetation growing period [36], as well as water and carbon cycles within the urban
ecosystem [37]. Consequently, local climate change and urban land expansion are the two dominant
factors for vegetation variations, even acting as obstructions to reasoned urban planning [8,36,38].

In ancient China, intensive human activities such as deforestation and cultivation have already
evidently affected the vegetation and ecosystem [12]. In the context of global warming, China has been
experiencing a particularly rapid climate change [39–41]. The impacts of climate change on vegetation
cover variation have been frequently explored in previous studies [10,26,28,40], although they mainly
focus on the regional scale rather than the city scale. China has experienced remarkably dramatic
population growth and rapid urbanization in the past few decades, with the population size of near
1.4 billion in 2012 [29]. This implies that the environment (e.g., vegetation cover), particularly in large
cities, has been largely impacted by urbanization [42]. For example, Li et al. [43] indicated that the
rapid urbanization in 1988–2003 led to obvious vegetation cover degradation in the plain areas of
Shenzhen city, China. Moreover, urban area in Beijing city nearly doubled during 1997–2002, whereas
farmland decreased rapidly as a result of the rapid urbanization [44]. Although these studies indicated
that urban land expansion significantly influenced the local vegetation variation at individual large
cities, the quantitative impacts of urbanization were rarely estimated among different cities.

This study aims to explore the response of vegetation cover to environment change, and assess
the impacts of urbanization on vegetation cover change in large cities of China. In this study, we first
examine the spatiotemporal changes of climate factors, urban lands and vegetation cover in urban
and suburban areas, respectively. Then the correlation analysis among urban land proportion (PU),
growing-season NDVI (G-NDVI), temperature (G-T) and precipitation (G-P) is conducted to explain
the diversities of G-NDVI change in cities. Finally, the impacts of urbanization on G-NDVI changes
are quantified by a regression model. Generally, it would be better to analyse the long-term changes
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of vegetation in cities considering their histories, but we try to use recent observed data (1998–2012)
to conduct study in an important “moment” or “window” of human history. It could also reflect
long-term changes of the vegetation, landscape, and environment.

2. Materials and Methods

2.1. Data

City statistical data included urban built-up land area and population of municipal districts,
which were often used to represent the size of cities [39]. The city statistical data for 1998–2012 were
downloaded from China City Statistical Yearbook issued by the National Bureau of Statistics of China
(http://www.stats.gov.cn).

NSL dataset from Defense Meteorological Satellite Program (DMSP) Operational Linescan System
(OLS) was obtained from the NOAA’s National Geophysical Data Center (NGDC) (https://ngdc.noaa.
gov/eog/download.html). The spatial resolution and value range of NSL data were 1 km and 0 to 63,
respectively. The background noise of the light images was represented by 0. The NSL dataset has been
frequently used to extract urban lands with the empirical thresholding technique [30]. For example,
Liu et al. [45] demonstrated that the threshold for the year 2000 was 49 in Northern Coastal China
where many large cities showed prosperous economy (e.g., Beijing and Tianjin). In our study, The NSL
data of 1998 and 2012 was adopted to extract urban lands.

SPOT-VGT NDVI datasets for 1998–2012 were obtained from the Image Processing Centre in
Vlaamse Instelling voor Technologisch Onderzock (VITO) (Mol, Belgium) (http://www.vgt.vito.be).
These data were 10-day composites of atmospherically corrected maximal values with the actual values
ranging from −0.1 to 1. In order to eliminate the impact of large bare lands and water areas, grid cells
with NDVI value greater than 0.15 were used. Spatial and temporal resolutions of the NDVI dataset are
1 km and 10 day respectively. Monthly NDVI value was synthesized by the maximum value composite
(MVC) method based on the 10-day dataset. Given that the NDVI value is impacted by snow, we only
focused on the mean NDVI in growing season (G-NDVI). Annual G-NDVI was generated based on
the month mean NDVI for April to October in terms of Zhou et al. [27] and Piao et al. [26].

Surface climate data include monthly mean temperature and monthly total precipitation during
1998–2012, which were obtained from the China Meteorological Data Service Center (http://data.
cma.cn/site/index.html). Annual growing-season temperature (G-T) and annual growing-season
precipitation (G-P) were calculated based on the monthly climate data for April to October.

2.2. Methods

2.2.1. City Selection and Quantification of Urban Land Expansion

China has a vast territory with complicated geographical and climate conditions, as well as rich
diversities in ecosystems. However, the rapid urbanization has profoundly impacted and changed
the environmental, social and economic situations of China. In our study, the large cities of China
and nearby meteorological stations were selected based on the following two criteria: The urban
population in 1998 was larger than 0.5 million; the meteorological station close to city has a continuous
climate data record covering the period of 1998–2012. Seventy one cities were eventually selected
(Figure 1).

http://www.stats.gov.cn
https://ngdc.noaa.gov/eog/download.html
https://ngdc.noaa.gov/eog/download.html
http://www.vgt.vito.be
http://data.cma.cn/site/index.html
http://data.cma.cn/site/index.html
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Figure 1. Locations of the selected 71 large cities in China and the corresponding urban populations
in 1998.

In terms of Liu et al. [45], the different extraction thresholds were employed to extract urban lands
of selected large cities in China based on the NSL data of 1998 and 2012 (the specific information of
extraction thresholds was shown in Figure S1 of Supplementary Material). The geometric center of
urban land in 2012 was determined for each city by the Feature to Point Tool in ArcGIS software, which
was considered as the spatial city center. A radius was calculated based on the urban built-up land
area of 2012 for each city. By means of the Edit Tool in ArcGIS software and based on the city center
as well as the radius, a circle for each city was drawn centered on the city center and including the
main city area—this was defined as the inner zone. A buffer area with a width of 10 km was generated
outside this circle—this was defined as the outer zone. The inside and outside zones were named as
urban area (Z1) and suburban area (Z2), respectively (Figure 2).
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Figure 2. An example of the extracted urban lands of 1998 and 2012 in the urban area (Z1) and suburban
area (Z2) of Nanchang city.
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The areas of extracted urban lands in Z1 (AUZ1) and Z2 (AUZ2) for the 71 large cities were counted
by ArcGIS software. The proportion of urban lands in Z1 (PUZ1) and Z2 (PUZ2) were calculated by the
following formula:

PUZ1 =
AUZ1

AZ1
× 100% (1)

where PUZ1 indicated the proportion of urban lands in Z1 (%); AUZ1 indicated the area of extracted
urban lands in Z1 (km2); AZ1 indicated the total area of Z1 (km2). PUZ2 was calculated based on the
area of extracted urban lands in Z2 (AUZ2) and the total area of Z2 (AZ2). The change of PU between
1998 and 2012 in Z1 (Z2) of each city, namely ∆PUZ1 (∆PUZ2), was calculated to represent the rate of
urban land expansion during this period (Figure S1 of Supplementary Materials).

2.2.2. Analysis of Spatiotemporal Variations

The average G-NDVI values in Z1 (G-NDVIZ1) and Z2 (G-NDVIZ2) indicated the vegetation cover
in Z1 and Z2 respectively. Because Z1 and Z2 are in the same city, their climate background was
thought to be the same. The G-T and G-P were calculated using the meteorological data observed at a
nearby meteorological station to represent the climate in growing-season for a given city (including Z1
and Z2).

This study firstly investigated the spatiotemporal variations of G-T, G-P, PUZ1 and PUZ2 among
the selected 71 large cities between 1998 and 2012. Then, the spatiotemporal variations of G-NDVIZ1

and G-NDVIZ2 were also analysed with respect to G-T and G-P. The mean annual G-T, G-P and
G-NDVI were calculated based on the datasets during 1998–2012. Linear trends in G-T, G-P and
G-NDVI during 1998–2012 were examined using ordinary least-squares regression to analyze the
inter-annual variations of G-T, G-P and G-NDVI. The trend rates of G-NDVI were used to reflect the
directions of vegetation cover change [40].

2.2.3. Analyzing the Sensitivity of G-NDVI to Climate Change

Relationships between NDVI and other variables are generally examined via a correlation
analysis [17,20,22,34,40]. In this study, the linear regression analysis was undertaken between mean
annual G-NDVI and climate factors (G-P, G-T) to explain the spatial variabilities of G-NDVI. In order to
assess the sensitivity of G-NDVI to climate change, the correlations between the inter-annual variations
of G-NDVI and climate factors (1998–2012) and between the trends of G-NDVI and climate factors
were examined by Pearson’s correlation analysis.

2.2.4. Quantifying the Impact of Urbanization on G-NDVI Change

The differences of trend rates between G-NDVIZ1 and G-NDVIZ2 (trend rate of G-NDVIZ1-Z2)
were calculated. Because the climate changes in Z1 and Z2 are similar for a given city, the trend rate
of G-NDVIZ1-Z2 could be attributed to the different impacts of urban land expansion between Z1
and Z2. In addition, the differences between ∆PUZ1 and ∆PUZ2 (∆PUZ1-Z2) were calculated to show
the different rates of urban land expansion between Z1 and Z2. The correlations between the trend
rates of G-NDVIZ1 (G-NDVIZ2) and ∆PUZ1 (∆PUZ2) and between the trend rates of G-NDVIZ1-Z2 and
∆PUZ1-Z2 were detected to analyze the impact of urbanization on vegetation cover change.

All the correlation analyses in this study were the single-variant analysis and performed using
SPSS version 19.0. The significance of the correlation coefficients was estimated by t-tests at 0.1, 0.05
and 0.01 significance levels.
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3. Results

3.1. Spatiotemporal Variation Analyses

3.1.1. Climate Factors

The climate condition of 71 cities varied from humid-hot climate to dry-cool climate with the
latitude increasing (Figure 3a,b). Moreover, the inter-annual variations of G-T and G-P among the
selected 71 cities were greatly different (Figure 3c,d). The trend rate of G-T and G-P ranged from
−1.12 to 0.74 ◦C per decade and from −396 to 467 mm per decade respectively (Table 1). The G-T for
34 cities had ascending trends, which were mainly located in Middle Eastern and Middle Southern
China (Figure 3c). More than a half of the cities (42 cities) experienced a descending G-P (Figure 3d).
They are mainly located in Middle and Southern China.
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Figure 3. Spatial distribution of mean annual growing-season temperature (G-T) (a) and
growing-season precipitation (G-P) (b) and inter-annual variations of G-T (c) and G-P (d) during
1998–2012 for the selected 71 large cities.

Table 1. Descriptive statistics of growing-season normalized difference vegetation index (G-NDVI),
G-T, G-P and the change of urban land proportion (∆PU) for the selected 71 large cities.

Mean Annual Value Change Trend
∆PUZ1

5 ∆PUZ2
6

G-NDVIZ1
1 G-NDVIZ2

2 G-T 3 G-P 4 G-NDVIZ1 G-NDVIZ2 G-T G-P

Mean 0.34 0.48 22.1 827 −0.007 0.016 −0.10 −37 37 22

Standard
deviation 0.06 0.08 3.2 385 0.031 0.034 0.44 159 18 19

Range of
value 0.29 0.35 12.3 1936 0.166 0.174 1.86 863 76 78

Minimum 0.23 0.29 15.3 178 −0.099 −0.082 −1.12 −396 1 0
Maximum 0.52 0.64 27.6 2114 0.067 0.092 0.74 467 77 78

1 and 2 mean the growing-season NDVI of urban area and suburban area, respectively; 3 growing-season
temperature, in ◦C; 4 growing-season precipitation, in mm; The unit of change trend is ◦C per decade for G-T and
mm per decade for G-P; 5 and 6 the change of urban land proportion between 1998 and 2012 in urban and suburban
area respectively, in %.
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3.1.2. Urban Lands

PUZ1 and PUZ2 obviously increased from 1998 to 2012, indicating that the selected 71 cities have
experienced rapid urbanization (Figure 4). But the ∆PUZ1 and ∆PUZ2 show great difference among the
selected 71 cities. The ∆PUZ1 of nine cities is larger than 60%, while two cities have ∆PUZ2 of larger
than 60%. The ∆PUZ2 of cities located in northern region and coast areas of China are larger than in
southwestern China. Generally, the ∆PUZ1 of cities located in the inland of China were larger than
∆PUZ2 (i.e., ∆PUZ1-Z2 > 0), while the ∆PUZ1 of some cities located in the coastal areas were smaller
than ∆PUZ2 (i.e., ∆PUZ1-Z2 < 0). Overall, the mean values of ∆PUZ1 and ∆PUZ2 are 37% and 22%
respectively (Table 1), implying that urban areas of 71 cities have experienced faster urbanization than
suburban areas.
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3.1.3. G-NDVI

Spatial distributions of mean annual growing-season NDVI (including G-NDVIZ1 and G-NDVIZ2)
for the 71 cities were remarkably different (Figure 5a,b). G-NDVIZ1 and G-NDVIZ2 ranged from 0.23
to 0.52 and 0.29 to 0.64, with standard deviations of them being 0.06 and 0.08 respectively (Table 1).
The G-NDVIZ1 of 22 cities was lower than 0.3, while one cities had G-NDVIZ1 of greater than 0.5. Two
cities had G-NDVIZ2 of lower than 0.3, while 34 cities had G-NDVIZ2 of greater than 0.5. G-NDVIZ2

was lower in northern region and coast areas of China than in southern China. For a given city,
the mean annual G-NDVIZ1 was generally lower than G-NDVIZ2. The mean values of G-NDVIZ1

and G-NDVIZ2 were 0.34 and 0.48 respectively. Moreover, some adjacent cities with similar climate
conditions had different G-NDVI. For example, G-NDVIZ2 of Shanghai and Nantong were 0.36 and
0.51 respectively.

The inter-annual variations of G-NDVI during 1998–2012 also showed great difference among
the 71 selected large cities (Figure 5c,d). The G-NDVIZ1 for 40 cities experienced a decreasing trend
(Figure 5c). The trend rates of G-NDVIZ1 for 3 cities were greater than 0.05 per decade. Contrarily,
the G-NDVIZ2 for most of the cities (51 cities) experienced an increasing trend (Figure 5d). The trend
rates of G-NDVIZ2 for 13 cities were greater than 0.05 per decade. Cities with decreasing G-NDVI
(particularly decreasing G-NDVIZ2) were mainly located in the northern region and eastern coastal
areas, where rapid urbanization and economic development occurred during 1998–2012. The trend
rate of G-NDVIZ1 and G-NDVIZ2 ranged from −0.099 to 0.067 per decade and from −0.082 to 0.092
per decade, respectively (Table 1). Overall, the average trend rates of G-NDVIZ1 and G-NDVIZ2 were
−0.007 and 0.016 per decade, respectively.
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Figure 5. Spatial distribution of mean annual G-NDVIZ1 (a) and G-NDVIZ2 (b) and inter-annual
variations of G-NDVIZ1 (c) and G-NDVIZ2 (d) during 1998–2012 in the selected 71 large cities.

A great difference in the changing trend of G-NDVIZ1 and G-NDVIZ2 was found for a given city
(Figure 5c,d). For example, the trend rates of G-NDVIZ1 and G-NDVIZ2 for Beijing city were 0.026 and
−0.027 per decade, respectively. Moreover, some adjacent cities with similar climate change conditions
also showed great differences in the G-NDVI change. For instance, the trend rates of G-NDVIZ1 for
Shanghai and its adjacent city (Nantong) were 0.001 and −0.098 per decade respectively.

3.2. Sensitivity of G-NDVI to Climate Change

3.2.1. Relationship between Mean Annual G-NDVI and Climate

The G-NDVI was lower when the G-T was below 19 ◦C and the G-P was below 500 mm (Figure 6).
G-NDVI generally increased with G-T and G-P. However, the G-NDVI value was relatively low when
G-T exceeded 26 ◦C and G-P exceeded 1200 mm. High values of G-NDVIZ1 occurred when G-T
ranged between 23 and 24.5 ◦C and G-P ranged between 750 and 1000 mm (Figure 6a). High values
of G-NDVIZ2 occurred when G-T ranged between 23 and 25 ◦C and G-P ranged between 750 and
1200 mm (Figure 6b).
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The result of linear regression analysis showed that G-NDVI was positively correlated with
climate variables (i.e., G-T and G-P) (Figure 7). The correlation coefficients between G-NDVI and
climate variables were significant at the 0.01 significance level. Overall, the values of mean annual
G-NDVI are closely related to climate factors. The mean annual G-NDVI of the selected 71 cities
increased from areas with dry-cool climate to those with humid-hot climate.
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3.2.2. Relationship between G-NDVI Variations and Climate Change

For the G-T, the correlation for the inter-annual variation between G-T and G-NDVI was
insignificant for most of the selected cities (Figure 8a,c). For the G-P, cities with significantly positive
relationships between G-NDVI and G-P were mainly located in Northern China where the mean
annual precipitation was lower than 500 mm (Figure 8b,d). However, the correlation between the
inter-annual variations of G-P and G-NDVI was insignificant for most of the cities (Figure 8). Moreover,
the results of Pearson correlation test indicate that the correlations between the trend rates of G-NDVI
and G-T and between the trend rates of G-NDVI and G-P are insignificant (Table 2). Overall, the
inter-annual variations of G-NDVI were less sensitive to the changes of G-P and G-T.
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71 large cities during 1998–2012.

Table 2. The results of Pearson correlation test for the selected 71 large cities.

∆PUZ1
1 ∆PUZ2

2 Trend Rate of G-T 3 Trend Rate of G-P 4

Trend rate of G-NDVIZ1
5 −0.37 ** −0.21 −0.17 −0.20

Trend rate of G-NDVIZ2
6 0.04 −0.70 ** −0.10 −0.19

1 and 2 indicate the change of urban land proportion between 1998 and 2012 in urban and suburban area respectively;
3 and 4 growing-season temperature and precipitation respectively; 5 and 6 change trends of growing-season NDVI
in urban and suburban area respectively; ** means the correlation is significant at the 0.01 significance level.

3.3. Impact of Urbanization on G-NDVI Change

Table 2 shows that the negative correlations between ∆PUZ1 and the trend of G-NDVIZ1 and
between ∆PUZ2 and the trend of G-NDVIZ2 are significant (P < 0.01), indicating that urban land
expansion is closely associated with vegetation cover change in 71 large cities. In addition, the trends
of G-NDVIZ1-Z2 were negative for 54 cities mainly located in the inland of China, implying that the
trend of G-NDVI in urban area was generally lower than that in suburban area for a given inland
city (Figure 9). But the opposites were found in 17 cities mainly located in the coastal areas of China.
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The smallest trend of G-NDVIZ1-Z2 was found in Xinyang city with the rate being −0.093 per decade.
The largest trend of G-NDVIZ1-Z2 was found in Shanghai city with the rate being 0.083 per decade.
Overall, vegetation cover in suburban areas has been greatly influenced by urbanization for cities
located in the coastal area of China. But vegetation cover in urban areas has experienced more severe
urbanization impact than in suburban areas for most of the inland cities.
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Figure 10 shows that the trend of G-NDVIZ1-Z2 is negatively correlated with ∆PUZ1-Z2

(R2 = 0.3626, P < 0.01). The regression equation between the trend of G-NDVIZ1-Z2 and ∆PUZ1-Z2 is
y = −0.0007x − 0.0012. Through substituting the ∆PUZ1 and ∆PUZ2 of the 71 cities into this regression
equation respectively (the constant being zero), the trends of G-NDVI induced by urbanization were
calculated. We found that G-NDVI changes have been negatively impacted by urbanization in urban
and suburban areas for most of the selected cities (Figure S1 of Supplementary Materials). On average,
the impact of urbanization on G-NDVI change was estimated to be −0.026 per decade in Z1 and
−0.015 per decade in Z2 during 1998–2012.
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4. Discussion

4.1. Diversities in the Spatial Distribution of Mean Annual G-NDVI

The urbanization is an increasing active driving force of landscape change worldwide, and their
long-term impacts on environmental change and sustainability could be described through concrete
evidences within a relative short period. This study indicated that the mean annual G-NDVI were
remarkably different among the selected 71 cities of China. This may be because the difference of
NDVI values in China’s cities is related to not only the climate conditions but also the development
and management of cities (e.g., urbanization level) [34]. For larger cities, urban areas include a large
proportion of constructed lands and a high density of building [46], resulting in relative lower NDVI
in urban areas [34]. In addition, larger cities generally have more satellite towns and vaster intercity
highway network around cities, implying that vegetation cover in suburban areas of larger city would
be lower than that in smaller cities [47,48]. This is confirmed by the results presented in Figure 5, where
the values of G-NDVIZ2 in developed coast areas are generally lower than that in less developed inland
areas. Despite this, the result of linear regression analysis showed a positive correlation between mean
annual G-NDVI and climate variables (Figure 7). Consequently, the spatial difference of mean annual
G-NDVI among the selected 71 cities is closely related to climate variabilities, but city development
may play a certain role in local scales.

4.2. Driving Forces of the Temporal Variability of G-NDVI

The change of G-NDVI in the selected 71 cities was found to be less sensitive to climate change.
Only few cities located in Northern China with the mean annual G-P being lower than 500 mm
showed significant positive relationships between G-NDVI and G-P. Similar phenomenon was found
by previous studies [25,26]. For example, there was a strong sensitivity of vegetation to precipitation in
the regions where the annual rainfall ranged from 100 to 400 mm in Central Asia [23]. In general, the
weak responses of NDVI to temperature change were attributed to increased water evaporation [26] and
different vegetation types [10,24]. While the lower sensitivity of vegetation to precipitation in humid
regions were ascribed to the limited water-use capacity of vegetation [49], the lower temperature and
sunshine levels as precipitation increased [26], as well as the uncertainties of data adopted (e.g., cloud
effects in the NDVI time-series) [50].

In cities, urbanization may be the crucial driver of effects on vegetation cover change and can
be greater than climate factors [20,34] and hence mask the climate effects. For instance, urban land
expansion, driven by urbanization in cities, could directly transform a large amount of agricultural
lands to urban lands [43,44,47]. As a result, the effects of urban land expansion are able to disrupt
the coupling between vegetation and precipitation [38]. The difference of inter-annual variation of
G-NDVI between Z1 and Z2 for a given city also confirmed the impacts of urban land expansion in
this study (Figure 9). The trend rate of G-NDVI change in some adjacent cities also showed a great
difference. Climate conditions in a given city and among adjacent cities are similar, the difference was
deemed to result from urban land expansion rather than climate variations particularly given that the
selected 71 cities underwent rapid urbanization during the study period.

Our results indicated that for most of the selected cities changes in the G-NDVI were negatively
impacted by urban land expansion in urban and suburban areas. Similar results were reported by
previous studies based on different methods. For example, an analysis of NPP dynamics conducted
by Peng et al. [18] showed that urbanization resulted in a lasting and observable loss of NPP over
time and space. From the perspective of landscape patterns, Xia et al. [44] suggested that the urban
area in Beijing city nearly doubled during 1997–2002, and farmland decreased rapidly as a result
of urbanization. Using the correlation analysis, Sun et al. [34] found that NDVI change trends of
China metropolises were negatively related to the change trends of urban area, population and GDP.
While other studies qualitatively analyzed the impacts of urbanization on vegetation cover change, we
quantified it based on a regression model between G-NDVI and PU. This method has excluded the
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impact of climate change on G-NDVI through calculating the difference of G-NDVI trend rate between
Z1 and Z2 in a given city.

Certainly, the method presented here also has its limitations. One such example is that we have to
rely on the assumption that the trend rate of G-NDVIZ1-Z2 is mainly caused by urban land expansion
rather than other anthropogenic activities (i.e., agricultural activities and greening measures) [18].
Because our sample size is big enough relative to the influences of these minor factors, we feel that this
assumption is pretty reasonable. Another improvement based on the more specific land cover change
will be conducted in further studies.

5. Conclusions

In this study, the spatiotemporal variations of vegetation cover and its sensitivity to climate
change was investigated based on the growing-season NDVI, temperature and precipitation in 71 large
cities of China during 1998–2012. The impact of urban expansion on vegetation cover change in urban
and suburban areas was also quantitatively assessed. The main findings are as follows:

(1) The mean annual G-T, G-P and G-NDVI of the selected 71 cities are found to be greatly different.
The spatial difference of G-NDVI is closely related to diverse climate conditions. Overall, the
mean annual G-NDVI of 71 cities increases from dry-cool climate to humid-hot climate.

(2) The changes of G-T, G-P, PU and G-NDVI during 1998–2012 are different among the selected
71 cities. The mean values of ∆PUZ1 and ∆PUZ2 were 37% and 22% respectively, indicating that
the selected 71 cities have experienced rapid urbanization during 1998–2012. The trend rates of
G-NDVIZ1 and G-NDVIZ2 range from −0.099 to 0.067 per decade and −0.082 to 0.092 per decade
respectively. G-NDVI changes are less sensitive to climate change, while closely related to urban
land expansion. There is a negative correlation between G-NDVI trend and PU change, indicating
vegetation cover in cities has been negatively impacted by urbanization.

(3) For most of the inland cities, vegetation cover in urban areas has experienced more severe
urbanization impact than in suburban areas. But opposites occur in the 17 cities mainly located
in the coastal areas of China. The average impacts of urbanization on G-NDVI change were
estimated to be −0.026 per decade in Z1 and −0.015 per decade in Z2 during 1998–2012.

Cities generally have a long history and would keep on developing. However, many modern cities
have encountered obstacles to maintain urban ecosystem sustainability which caused by intensive
human activities (e.g., destroying vegetation). This study not only implies a significant long-term
impact of human activities on the landscape, but also provides us information about human effects
on the natural biotas. Therefore, we need to properly use these knowledges to plan the landscape
management and ecological environment conservation for the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/1/270/s1,
Figure S1: Information of the selected 71 large cities in China.
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