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Abstract: Air pollution poses serious problems as global industrialization continues to thrive. Since air
pollution has grave impacts on human health, industry experts are starting to fathom how to integrate
particulate matter (PM) sensors into portable devices; however, traditional micro-electro-mechanical
systems (MEMS) gas sensors are too large. To overcome this challenge, experts from industry and
academia have recently begun to investigate replacing the traditional etching techniques used
on MEMS with semiconductor-based manufacturing processes and materials, such as gallium
nitride (GaN), gallium arsenide (GaAs), and silicon. However, studies showing how to systematically
evaluate and select suitable materials are rare in the literature. Therefore, this study aims to propose
an analytic framework based on multiple criteria decision making (MCDM) to evaluate and select
the most suitable materials for fabricating PM sensors. An empirical study based on recent research
was conducted to demonstrate the feasibility of our analytic framework. The results provide an
invaluable future reference for research institutes and providers.

Keywords: particulate matter (PM); PM2.5; sensors; micro electro mechanic systems (MEMS);
multiple criteria decision making (MCDM)

1. Introduction

As industrial development has spread around the world, industrial gaseous waste, coal-fired
power plants, and automobile exhaust emissions have caused severe air pollution, especially in the
form of particulate matter (PM). PM is a complicated combination of solid and liquid particles [1]
which include byproducts of burning, smoke, dust, etc. [2]. The sizes, shapes, and compositions of
PMs vary [1]. The particles of less than 2.5 µm in diameter are called PM2.5 [3]. Nowadays, PM2.5 is
recognized as one of the most important air pollution issues [4], one that can no longer be ignored.
In recent years, haze has increasingly affected large cities, especially in low- and middle-income
countries, all over the world [5] with PM comprising the main pollutants suspended in the air.
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As the PM problem becomes more serious, the detection of PM has become a more important
concern across the world, and people are increasingly concerned about the impact of this pollution on
their health. When PM2.5 levels are high, consumers tend to spend more on health-care goods and
services [6]. From this perspective, the so-called “haze economy” has been triggered. The phenomenon
is consistent with the analytic results by Yole [7], predicting that the shipment of gas sensors for
the worldwide consumer market will increase rapidly from 1.2 million units in 2014 to 350 million
units in 2021. Research and Markets [8] further forecasted that the global environmental gas sensors
market will surge from $361 million in 2017 to over $3 billion in 2027. PM will be one of the four
major pollutants to be monitored by these environmental gas sensors [9]. As people will soon invest
hundreds of billions of dollars on controlling air pollution, innumerable new market segments will
be created. Whether for home or commercial monitoring, sensing devices, air purification equipment,
home appliances, the Internet of Things (IoT), and cloud services will offer new market opportunities
and create new market demand [7,8].

Traditionally, air quality in general and PM in particular were mainly measured by governments
using expensive federal reference method (FRM)—or federal equivalent method (FEM)-based
monitors [10]. During the past decades, low-cost air quality sensors have been commercialized
and widely adopted due to severe air pollution and advances in miniaturization technology. Most of
the newly developed PM2.5 sensors are designed and fabricated by using the micro-electro-mechanical
systems (MEMS). Selecting an appropriate process–material pair to manufacture an MEMS device
or component in general, and for PM2.5 sensors in particular, considering the material, process,
geometric as well as economic attributes at the same time, is not easy. However, little or no work has
attempted to investigate what the most appropriate MEMS material is for designing and fabricating
future PM2.5 sensors. The evaluation and selection of an MEMS process–material pair is, by nature,
a multiple criteria decision making (MCDM) problem. Therefore, this work aims to define an analytic
framework based on MCDM methods. Appropriate materials will be evaluated and selected for
fabricating the MEMS for PM2.5 sensors.

First, literature related to technology assessment (TA), tools and methods, the process for TA,
as well as the factors related to the evaluation and selection of the MEMS materials for the PM2.5
sensors will be reviewed. The aspects and criteria being summarized based on the results of the
literature review will be used to develop the analytic framework to identify suitable materials.
Then, the Decision Making Trial and Evaluation Laboratory (DEMATEL), an analytic method to
define the influence of relationships between criteria, will be used to structure the decision problem.
The DEMATEL-based network process (DNP) will be introduced to derive the weights associated
with each aspect and criterion. Finally, the materials will be ranked based on the results derived
by the VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). The analytic framework
can be used to evaluate and select the most suitable MEMS material for PM2.5 sensors. Experts
from the leading Taiwanese research institute, the Industrial Technology Research Institute (ITRI),
universities, semiconductor companies, and design houses were invited to evaluate and select possible
MEMS materials for PM2.5 sensors. The feasibility of the proposed analytic framework can be verified
accordingly. Meanwhile, the well-verified analytic framework can be used to select MEMS materials in
the future.

The remainder of the paper is organized as follows. Section 2 provides a review of TA,
tools and methods for TA, the TA process, and factors related to MEMS material selections.
In Section 3, the research methods used to construct the Hybrid MCDM (HMCDM) framework,
namely, the DEMATEL, the DNP, and the VIKOR, will be introduced. An empirical study to select
the most appropriate MEMS material for PM2.5 sensors and to demonstrate the feasibility of the
proposed HMCDM analytic framework will be presented in Section 4. Discussions on the rationale
for evaluating the materials, prioritization of the dimensions, the influence between dimensions,
mutual influences between the most important criteria, the independent criteria, as well as limitations
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and future recommendations will be presented in Section 5. Section 6 will conclude with observations,
conclusions, and recommendations for future studies.

2. Literature Review

In the following Section, the literature on TA will be reviewed. The history, definitions, functions,
and approaches of TA will first be covered. Then, the literature on methods, tools, and processes of
TA will be further reviewed. Finally, the literature on material selection in MEMS will be reviewed.
Candidate aspects and criteria for material selection will then be defined accordingly. The literature
review will serve as the basis for the development of the analytic framework.

2.1. TA

TA emerged during hearings by the House Subcommittee on Science and Astronautics,
which were initiated in 1965 [11]. During the 1960s, it established a critical role in modern technology
society with unintended, and sometimes harmful, consequences [12]. Nowadays, the term “technology
assessment” is widely used to designate systematic approaches. It is a method(s) to assess and evaluate
the condition and the consequences of different technologies [13]. In addition, TA has been widely used
to support not only identifying different priorities, but also improving environmental sustainability
and cost-effectiveness [14]. As a result, TA has contributed to wider benefits in the technology policies
and innovation strategies of nation-states.

The history of TA is the history of a concept with a changing meaning and of the struggle towards
an institutionalization of the concept [15]. The definition of TA varies. According to Coates [16],
TA aims to study the widest possible impacts of a new technology on a society. The goal of TA is
to inform the policy process for an analyzed set of options, alternatives, and consequences for the
decision-maker [16]. Smits and Leyten [17] defined TA as the analysis and debate, on the basis on
these analyses, regarding the developments of technology and the consequences of those technological
developments. From this aspect, TA should provide information for strategy development and thus
define subjects for further TA analysis [18]. According to the UN Branch for Science and Technology
for Development [19], TA assesses the effects, consequences, and risks of a technology, as well as
forecasts opportunities and the development of skills; those opportunities and skill development
serve as the inputs for strategic planning. In this respect, TA also has a component both for
monitoring and scrutinizing information gathering. In general, TA is a policy and a consensus
building process. Recently, the European Parliamentary Technology Assessment [20] defined TA as
a scientific, interactive, and communicative process. The TA process aims to contribute to the formation
of public and political opinion on societal aspects of science and technology (S&T).

According to Smits and Leyten [17], TA is meant to fulfill eight functions: (1) fortifying the position
in decision making; (2) support for defining short-term and medium-term policies; (3) initiating and
developing long-term policy; (4) warning about potentially problematic and unwanted results of
technological development at the earliest possible point; (5) expanding knowledge and decision
making about technology by supporting societal groups with regards to the formulation of their
own strategy with respect to technological developments; (6) pursuing, formulating, and developing
anticipated and suitable technological applications for society; (7) encouraging the population to
accept technology; and (8) promoting scientists’ consciousness of their social responsibility.

Over the past four decades, various approaches and methodologies have been proposed to
conduct TA research in this field [21]. These approaches and methodologies emphasize forecasting,
impact assessment, and policy studies. Next, constructive TA (CTA) established more process-oriented
approaches to focus on motivating innovative technologies [18]. Baark [22] divided TA
into four schools: regulatory, promotional, constructive, and experimental/participative TAs.
Smits, Leyten, and Den Hertog [23] divided TA into awareness, strategic, and constructive TAs.
Van den Ende et al. [18] presented four general approaches to TAs: awareness, strategic,
constructive, and back casting. Later, Grin and Van der Graaf [24] highlighted interactive TA.
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Van den Ende et al. [18] further grouped TA approaches into five types: academic, industrial,
parliamentary, executive power, and laboratory TAs. In general, the most widely adopted TAs include
(1) expert TA; (2) academic; (3) industrial; (4) parliamentary; (5) executive power; (6) laboratory TA;
(7) awareness; (8) strategic; (9) constructive; (10) back casting; (11) disruptive TA; and (12) health TA.

The definitions of various TA approaches are summarized below based on the works by Van
Eijndhoven [25], van den Ende et al. [18], Brom [26], the WHO [27], and Ammenwerth [28]. (1) Classical
(expert) TA: the classical or expert TA identifies, analyzes, and evaluates the possible secondary results
(whether beneficial or harmful) of the focus technology from the aspects of influences on the systems
and processes or social, culture, politics, as well as environment [25]; (2) academic TA: academic
TA is TA implemented by academic researchers [18]; (3) industrial TA: industrial TA means TA
conducted by industries as a tool to assist strategic planning [18]; (4) parliamentary TA: parliamentary
TA is used to advise parliament members for S&T decisions (cf. budget decisions) and in decisions
which are dependent on scientific or technological developments (cf. CO2 taxes) [18]; (5) executive
power TA: executive power TA is utilized by governmental decision-makers to evaluate or support
government policies [18]; (6) laboratory TA: laboratory TA is used by researchers who utilize TA
and then guide the design of the technology developed by those researchers [18]; (7) awareness TA:
awareness TA forecasts the evolution of technology and the impacts so that unexpected results can
be alerted in advance [18]; (8) strategic TA: strategic TA supports the policy or strategy formulation
regarding the development of some technology by some actors [18]; (9) constructive TA: constructive
TA extends the decision process regarding the development of the focus technology and hence directs
the development of technology according to what society desires [18]; (10) back casting: back casting
TA develops scenarios of desirable futures and initiates innovation processes accordingly [18]; (11)
disruptive TA: disruptive TA deals with both broader impacts of S&T and the fundamental normative
question of why developing a specific technology is legitimate and desirable [26]; (12) health TA:
health TA evaluates the properties and effects and/or impacts of health technologies and interventions
systematically [27]. Health TA addresses the direct and intended effects on the health technology and
the indirect and unintended consequences. The major purpose of health TA is informing decisions
with regards to health technologies [28].

2.2. TA Methods, Tools, and Processes

A number of TA methods, tools, and processes have been widely studied. Different
analysis models (i.e., macrosystem dynamic, land use, medical, and energy to social
impact) are reviewed by Coates [16]. Roessner and Frey [29] classified the TA methods
into four categories: (1) systematic description methods; (2) predictive methods for the
impacts of a novel technology; (3) a variety of “aids to structured thought” as methods to
constitute tasks, pinpoint germane variables, and to fathom assumptions with respect to relationships
among variables; (4) methods to coordinate and process numerous expert activities from miscellaneous
disciplines and domains. More specifically, Henriksen [30] proposed the idea of 9-category
classification: (1) economic analysis; (2) decision analysis; (3) systems engineering/systems analysis;
(4) technological forecasting; (5) information monitoring; (6) technical performance assessment;
(7) risk assessment; (8) market analysis; and (9) externalities/impact analysis.

As summarized by Tran and Daim [21], TA methods can be classified into seven categories:
(1) Structural modeling (SM) and system dynamics (SMSD): The SMSD techniques have become
popular in TA research since the late 1970s. In SM, the patterns of the structure of a complex issue,
system, or field of study are defined using graphics and words [31]. The techniques include
Interpretive Structural Modeling (ISM), Electre, SPIN, IMPACT, KSIM, XIMP, and QSIM [21].
(2) Impact analysis: the World Bank [32] defined the evaluation of impacts as the counterfactual
analysis of the impact of an intervention on final welfare outcomes. Typical methods for analyzing
impacts include Delphi, cross-impact analysis, extrapolation, and decision and relevance trees [21].
In recent years, Palm and Hansson [33] discussed the novel Ethical TA (eTA) that aims to derive
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ethical implications of novel technologies. (3) Scenario analysis: A natural and potent tool for
precipitating important aspects in sustainability science with a close consistency to some observations
on future directions [34]. Unlike traditional TA approaches presuming that the future impacts of every
technology are independent, scenario-based TA methods allow for the existence of mutual impacts
among technologies belonging to the same portfolio [35]. (4) Risk assessment: Risk assessment aims
to analyze whether a specific technology will cause any risks to a firm, the potential risks and their
statistical characteristics, and how these risks can be mitigated [30]. A typical example of such TA
methods is the Internet-Accessible Technology Risk Assessment Computer System (ITRACS) proposed
by Wilhite and Lord [36]. The ITRACS can be used to access technologies by individual evaluators
at different locations. (5) Decision analysis: According to Henriksen [30], decision analysis in TA
exploits an established and systematic methodology to probe the attributes of a set of technology
options with respect to a defined criterion in a draconian manner. A typical example of decision
analysis in TA is the work by Ramanujam and Saaty [37] which intended to evaluate and select
appropriate technology for the less-developed economies by using the Analytic Hierarchy Process
(AHP). (6) Environmental concerns and integrated TA: The environment has become a major concern
in TA research nowadays [21]. The Life Cycle Analysis (LCA), proposed by Bohm and Walz [38] and
targeted to analyze the environmental influence on TA studies in the future, is a typical example.
(7) Emerging technologies: Fleischer et al. [39] argued that emerging technologies can only be accurately
evaluated when they approach maturity where societal implications turn pellucid. Therefore, emerging
technologies, such as nanotechnologies, requested a TA paradigm shift and were advised to use
roadmapping as a methodological solution [21].

Tran and Daim [40] proposed the TA process as shown in Figure 1. The first step is to identify
the problem; the main task is gap analysis. Gap analysis aims to identify technological gaps. The next
step is to identify the candidate technologies and to detail the criteria identified in the gap analysis,
followed by finalization of the TA model. The criteria and available data will determine what
methodologies are utilized to measure the performance of each technology solution. It is important
to distinguish between a technology ingredient and a solution. Solutions to technological problems
include several levels of technology, such as hardware, software, and protocol [40].
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2.3. Material Selection for PM2.5 MEMS Sensors

Since PM 2.5 monitoring needs to be greatly improved and the global environmental gas sensors
market is surging rapidly, new products for fulfilling personal and sub-regional requirements [41,42]
in air quality assessment can be developed. Table 1 shows the categories and applications of PM2.5
sensing components. In addition to the outdoor PM2.5 data provided by the government, our personal
spaces should also be monitored for PM2.5. Currently, the PM2.5 sensing machines can be classified
as either portable or micro. Portable equipment can be applied for industrial, interior commercial, or
environment use. Micro-sensing devices can be applied in smart living, air purification devices, etc.
Thus, this study aims to identify the most suitable material for PM2.5 sensing components, and the
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components’ development can match with existing relevant environmental sensors (e.g., humidity,
pressure, temperature, and odor) to expand the sample data.

Table 1. Applications of PM2.5 sensors.

Category Applications Characteristics Price ($)

Home Care System Home and Office Portable; integrated with IoT; can be located
anywhere at home. $50–$200

Industrial Monitor
Systems Factory and Clean Rooms Real-time monitoring of industrial environments

based on high-accuracy monitoring mechanisms. $200–$500

Air Pollution Monitor
Systems EPA and Laboratory Very strict requirements for measurement accuracy. $50–$300

Source: Summarized by this research.

Most of the newly developed PM2.5 sensing components are fabricated using the MEMS
process [43]. MEMS is a microminiaturized electromechanical device which can be fabricated
by using micro- and nanofabrication techniques [44]. MEMS can offer similar features as an
electromechanical system based on the techniques of miniaturization, mass production, and integration
with microelectronic circuits. At very small scales, MEMS combines mechanical and electrical
function in devices to provide the opportunity to exploit materials that are normally unavailable
for large-scale devices [45]. Further, MEMSs enable the research and development (R&D) of smart
devices by provisions of the essential interface(s) between the computational circuits and the operating
environment by using the features of sense, detection, and control belonging to micro-devices such
as sensors and actuators [46]. Such systems and devices are much smaller and lighter than their
counterparts. Usually, the speeds of such devices are faster and more precise [46].

MEMS yield and fracture strength are scale-dependent properties [45,47]. Therefore, the
characteristics of materials as well as fabrication processes should be considered in designing
any MEMS device [48]. Owing to the availability of fabrication processes being very limited,
the speed and form factors of the MEMS products are constrained [48]. Compared with the current
manufacturing processes with a traditional mechanical design, the achievable dimensions, tolerances,
and performances are limited in MEMS [48]. In microfabrication, most structures are limited in
the complexity of shapes by the projections of two-dimensional patterns in the through-thickness
direction due to a combination of deposition, lithographic patterning, and etching [48]. Thus, beam or
trench structures are two main classifications for most elements of MEMS structures. In addition,
a reasonable approach to evaluate and select a suitable material is required when the design of
an MEMS matures and migrates from a process-centric design to a performance-based design [49].
Currently, the availability of thin-film materials for the design and implementation of MEMS devices
is increasing, and the evaluation and selection of a specific material can seldom be decided based on
the variables or parameters that relate directly to the best performance of the device [49]. For example,
the size of a component, materials to be processed, and tolerance to dimensions are some of the factors
that need to be considered [50]. Pratap and Arunkumar [49] emphasized three basic requirements
for materials employed in MEMS construction: (1) compatibility with electronics micro-technologies;
(2) good electrical and mechanical properties; and (3) intrinsic properties to limit the internal high
stresses generated during material processing.

According to Zha and Du [51], evaluating and selecting a suitable material for fabricating
MEMS devices entails analyzing the alternatives versus criteria belonging to both economic- and
technology-related aspects. However, selecting an appropriate process–material pair for manufacturing
a MEMS device or component is not easy [50]. Nowadays, this kind of evaluation and selection process
is usually using heuristics based on the process capabilities in the fabrication of the MEMS vendor.
No systematic approaches to evaluate and select all possible materials and fabrication processes
are available [48]. Hence, a more systematic method to evaluate and select the material, as well
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as the process, is essential for avoiding the unnecessary costs that are required to change the
fabrication process and materials in the design procedure [48]. Since the evaluation and selection of the
fabrication process, as well as manufacturing material(s), is by nature an MCDM problem for deriving
a solution that can fulfill customer needs by satisfying design requirements, as well as meeting the
technical capabilities of some specific firm or organization [51]. A fusion of HMCDM methods and the
structural modeling belongs to the TA methods that adopt graphs and words in cautiously defined
patterns to illustrate the structure of a complicated problem [31] is very suitable for solving the material
selection problem for the PM2.5 MEMS sensors.

Based on the above requirements, the authors summarized the aspects and criteria required for
manufacturing the MEMS for PM2.5 sensors based on literature review results. The criteria can be
classified into material, geometric, process, and economic attributes. The criteria are defined in Table 2.
In the following Section, an analytic framework for industrial TA based on the DEMATEL-based
structural models will be introduced in order to derive the most suitable MEMS material for
PM2.5 sensors.

Table 2. Candidate aspects and criteria for material selection.

Aspects Criteria Definitions

Material Attributes
Suitability for main
structural material

The sensors must be capable of detecting the release of chemicals, gas,
biological substances, or radiation, and be able to send signals to central
monitoring locations [52]. It is worth noting which materials are the most
suitable for the above-mentioned sensors.

Suitability for
nonstructural purpose

Nonstructural purposes include metallization or insulation layers [48];
metallization is the final step in the wafer-processing sequence, and aims to
connect the individual devices in an integrated circuit (IC) [53]. As defined
by Jones [54], an insulator is a material that blocks the flow of electric
current.

Process and Geometric
Attributes

Surface attribute

The surface attribute includes the in-plane surface roughness of the beam
and the out of plane/wall roughness of the beam [48]. The roughness is
particularly important in the design of mirrors and in the avoidance of
stiction [48].

Maximum processing
temperature

Maximal allowable operating temperature for all fabrication steps. It is an
indirect cost indicator for process equipment and time, and also an
indicator for the compatibility of different process chains and materials [48].

Trench width
Trench refers to fully enclosed channels and can also define pillars or post
structures [48]. The trench width is a crucial parameter for the performance
of the MEMS device [55].

Trench depth
The depth of the trench structure. The depth of the trench can influence the
performance of specific sensors. Increasing the depth of the trench can
improve the sensitivity of those sensor in a certain extent [56].

Beam width
Beam width is the width of the beam dimension. The minimum feasible
width is very critical for deciding the compactness, sensitivity, operation
frequency, and thermal time constants of devices [48].

Beam height
Beam height is the height of the beam dimension. The minimum feasible
dimensions are critical for deciding the compactness, operation frequency,
sensitivity, and thermal time constants of devices [48].

Precision and Accuracy

A more precise sensor has a narrower distribution and a more accurate
sensor is closer to the actual value being defined in the sensor
specification [57]. The ± amplitude of tolerances to height and width are
important in the design of MEMS [48]. The ability to manufacture to
tolerances controls the precision and accuracy of the devices [48].

Technology readiness Technology Readiness Level (TRL) can evaluate the maturity of some
specific technology [58].

Yield The yield rate measures the number of good parts being fabricated [59].

Reliability
Reliability provides the theoretical and practical means whereby the
capability of devices performing their required functions for desired
periods of time without failure can be expressed [60].

Economic Attributes
Capability to be
mass-produced

The values of MEMS devices are always dependent on the feasibility of
commercialization; thus, large capital investments can be written off over
time [48].

Investment

When the technology has reached the mass production stage of the product
life cycle, investments in the equipment required for mass production are
essential. Equipment, manpower, and thus, mass production capacity will
be greatly improved.
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3. Analytic Framework and Methods for TA

Based on the literature review, the selection of a suitable manufacturing material for an MEMS
device is, by nature, an MCDM problem composed of various factors, including the technology,
economic, process, customer requirements, design specification, and the technology capability of a
specific company or research institute, etc. The structural model is a TA method which introduces
the graphics and words in carefully defined patterns to demonstrate the structure of a complex
real-world problem. Therefore, a DEMATEL-based HMCDM method that is based on graph theory
can structure the decision-making problem by considering the influence of relationships among all
the criteria, and will be very suitable for TA of the MEMS materials for PM2.5 sensors.

In recent years, HMCDM methods have been widely adopted in numerous real-world applications.
For example, Ou [61] proposed an HMCDM framework to evaluate the performance of listed
high-technology firms. Lu et al. [62] explored the user behavior of mobile banking services to
uncover the adoption intention by using a new hybrid MADM model. Chen [63] applied a
HMCDM model to derive the most important factors for the internal control of procurement
circulation. Shen and Tzeng [64] proposed a rough set theory-based HMCDM analytic framework
for improving the financial performance of banks. Lin [65] proposed an HMCDM framework to
determine the position of some specific product by considering the dependence and feedback between
aspects and criteria. Lin et al. [66] later defined an HMCDM framework for digital-music services.
Yang et al. [67] evaluated the disaster-recovery site for information systems of academic big data.
Chen et al. [68] configured the knowledge diffusion policy portfolio of higher education institutes
by MCDM methods. Huang et al. [69] developed a curriculum to enhance the imagination in the
technology commercialization process. Yang et al. [70] defined an HMCDM framework for deriving
key success factors of public–private partnerships.

Further, Zavadskas et al. [71] summarized the recent applications of HMCDM methods
in engineering. Zavadskas et al. [72] and Shen et al. [73] discussed it further with regards to the
applications of HMCDM methods in sustainability. Mardani et al. [74] summarized the applications of
VIKOR-based HMCDM methods; material selection is one of the major applications in these works.
The ANP-DEMATEL-VIKOR methods are widely adopted in HMCDM method-based works in
the related fields of sustainable development. For example, Lu et al. [75] developed sustainable
development strategies to enhance the competitive advantages of TFT-LCD firms. Kuo et al. [76]
developed a green supplier selection model by using the DANP with VIKOR.

To evaluate the appropriateness of MEMS material for making PM2.5 sensors, the analytical
process starts by collecting the related determinants by using the modified Delphi method. As any
determinant being derived by the modified Delphi method may impact all the other determinants,
the structure of the HMCDM problem needs to be constructed using the DEMATEL. The weights
associated with each criterion are derived using the DNP. Finally, the process takes advantage of
the VIKOR to obtain the compromise rankings of the alternative MEMS materials. In summary,
this analytic framework encompasses four main parts: (1) Find the related/interested determinants
through the modified Delphi method; (2) build the structure of the network relation map (NRM)
among the determinants via the DEMATEL; (3) calculate the priorities of each determinant by using
the DNP, with the aid of the NRM derived in (2); and (4) derive compromise rankings of the MEMS
materials for PM2.5 sensors via the VIKOR.

Various MCDMs can be considered while selecting appropriate methods for solving a
decision-making problem. However, assumptions, weaknesses, or limitations associated with
some methods limit their application in the evaluation and selection of the MEMS material(s) for
PM 2.5 sensors. Traditional methods for deriving weights associated with each aspect and criterion,
e.g., the Analytic Hierarchical Process (AHP), always assume independence between criteria,
which is against the nature of most decision problems in general, and the specific material selection
problem especially. As the aspects and criteria belonging to real-world decision-making problems
always influence one another, an analytic framework consisting of the DEMATEL and the DNP is
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very suitable [70]. DEMATEL can be used to structure the influence relationships between the criteria.
The structured model can also fulfill the nature of the structural modeling methodology in TA. Then,
based on the structural model as well as the total-influence matrix derived by using the DEMATEL, the
DNP can be introduced to derive the weights associated with the criteria. Finally, the VIKOR method,
based on the concept of a compromise solution proposed by Yu [77] and Zeleny [78], can determine
with confidence the best alternative. Therefore, the proposed DEMATEL-DNP-VIKOR-based HMCDM
method can be used to derive a structural model for TA and rank the alternatives. The proposed
method can overcome the research gap identified by Henriksen [30] as well as Zha and Du [51].
The multiple criteria belonging to the evaluation and selection of the MEMS materials for PM2.5
sensor design that are tradable can easily be solved by the proposed HMCDM method. Meanwhile,
the superior candidate can be defined based on the compromise ranking method. Thus, the proposed
DEMATEL-DNP-VIKOR-based HMCDM method is a suitable method for the research problem. In the
following sections, the modified Delphi, the DEMATEL, the ANP, the DNP, and the VIKOR methods
will be introduced, and will serve as the basis for the proposed HMCDM method.

3.1. Modified Delphi Method

The Delphi method was designed by Dalkey and Helmer [79] to collect and summarize the
opinions provided by experts on specific issues and problems. Murry and Hammons [80] modified
the traditional Delphi approach by replacing the conventionally adopted open style survey with
a set of carefully selected items. Those items can be derived from various sources, which include
the synthesized results of a literature review, opinions of experts, etc. The major advantages of the
modified Delphi method include (1) improving the low response rate of the traditional Delphi method;
(2) providing a solid basis for the items based on previous research results or the opinions of experts;
(3) reducing the possible biases which can be caused by group interaction; (4) ensuring anonymity in
surveys; and (5) providing controlled survey results to participants [81,82]. Furthermore, consensus
can easily be reached based on responses collected from very few respondents (e.g., three mailings
being identified by Brooks [83]).

3.2. DEMATEL Method

The DEMATEL method was developed by the Geneva Research Centre of the Battelle Memorial
Institute to turn complicated systems into a lucid causal structure that simplifies inter-relationships
among factors of interest [84]. The goal of the DEMATEL method is to use the power of matrix
computations to help scrutinize direct and indirect causation and to help recognize the influence
intensity among consideration factors. Different from the classical approach of structural equation
modeling (SEM) that requires an extremely large research sample size to acquire causal relationships
among variables, the “expert opinion”-oriented DEMATEL method demands only a relatively tiny
sample space [85] while still maintaining good research results, and can concurrently explore the
associated cause and effect relationships [86].

The DEMATEL technique has proven its power and efficacy in many situations.
Present demonstrations range from helping to discern critical successful factors in emergency
management [87] and risk control assessment [88], to assisting in the generation of risk factors of IT
outsourcing [89]. Because this study focuses on the MEMS for PM2.5 sensors, survey respondents
must be not only knowledgeable in MEMS, but also possess solid knowledge of PM2.5 sensors. Clearly,
the number of qualified experts is quite small, and hence the accessible respondent resource becomes
quite confined and limited. As a result, we resorted to the DEMATEL method to help clarify and gain
more insight into the causality intensity and the influence strengths between the factors of interest.
The method can be summarized as follows based on the earlier works by Liao et al. [90], Hwang, Huang,
and Wu [85], and Hwang, Huang, and Yang [86]. Refer to Appendix A for the detailed procedures.
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3.3. ANP Method

The ANP method, a multicriteria decision-making theory developed by Saaty [91], is designed
and used to tackle problems whose decision criteria, elements, or control hierarchies have
internal relationships. In the presence of complicated mutual influences among various determinants
within a network, ANP still provides a feasible and reliable framework to analyze decisions without fail.
On the contrary, the traditional MCDM methods [92], such as the AHP (Analytic Hierarchy Process),
TOPSIS, and ELECTRE, etc. [93], normally assume no dependence between criteria. For cases where
there is no or little dependence among criteria or determinants, this kind of assumption is close
enough to the fact and the analysis results can be regarded as trustworthy. However, most cases in
the real world, especially those of high research value and interest, often possess high complexity
in the determinant structure. This kind of intrinsic high complexity in real-world problems stymies
the use of the traditional MCDM methods and catalyzes the development of the ANP, a new
theory that extends AHP. By utilizing the supermatrix approach [92], ANP can take the effect of
dependence in feedback into consideration. In view of the ability to take the real-world dependence
complexity into account, ANP is a more reasonable and close-to-truth tool for dealing with complex
MCDM problems. In this section, concepts of the ANP are summarized based on Saaty’s earlier
works [91–93]. Refer to Appendix B for the detailed procedures.

3.4. The DNP Technique

The DNP is formed by amalgamating the DEMATEL technique with the ANP technique, as
proposed by Tzeng [94,95]. The core spirit of the DEMATEL technique was to develop a set of
pioneering and proper scientific research methodologies to help elucidate and comprehend certain
specific and influential relations and to help derive feasible solutions through a network structure.
DEMATEL has been successfully applied to solve many real-world problems and thus proven feasible.
Typical examples include the e-business model definitions [96,97], configurations of policy
portfolios [98], and the optimization of global manufacturing system optimization [99], etc. The main
purposes served by DEMATEL include utilizing the interactive map-model techniques [84] to analyze
complex real-world problems, and evaluating qualitative and factor-linked aspects of societal problems.
ANP represents a general form of the analytic hierarchy process (AHP) [100]. As a general form,
there are no constraints in terms of assuming no relationships between criteria, determinants,
or hierarchies, as is the case with AHP. Due to the release of the constraint of independence, the ANP
has been used to handle complex MCDM problems. The DNP, a combination of the DEMATEL
and the ANP methods, aims to derive the influence weights versus each aspect and criterion by
transposing the total-influence matrix derived by DEMATEL as the unweighted supermatrix of
the ANP. The advantages of the DNP include the reflection of the nature of a decision problem,
by avoiding the trimming of most influence relationships caused by assuming a threshold value,
and the simplification of survey processes by reducing the survey time required for traditional ANP
processes. The procedure of the DNP technique is summarized in Appendix C.

3.5. VIKOR

The VIKOR method is a feasible and reasonable ranking technique to implement within an MCDM
framework [101] when resolving a complicated decision-making problem. Based on the concept of
compromise solution proposed by Yu [77] and Zeleny [78], the best alternative can be determined with
confidence by VIKOR. The compromise solution is a feasible one which has the closest distance to the
ideal solution. The word “compromise” means that the solution is formed on a consensus reached
by mutual concessions [102]. For a decision-making problem with conflicting criteria, a compromise
solution can assist the decision-makers to derive a final decision [102]. Different from the TOPSIS,
one of the most renowned traditional compromise ranking methods that tries to derive a solution
closest to the ideal solution and farthest from the negative-ideal solution [103,104], VIKOR considers
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the relative importance of these two distances and derives the reasonable compromise solution based
on the maximum group utility of the majority (represented by min S) and a minimum of the maximum
individual regret of the opponent (represented by min Q). From the above, this paper employs
DEMATEL and ANP procedures in Sections 0 and 0 to obtain the weights of criteria with dependence
and feedback, followed by employing the VIKOR method to obtain the compromise solution.

Based on the works of Opricovic and Tzeng [102] and Tzeng and Huang [99], the procedure of
VIKOR is introduced to further elucidate the HMCDM framework adopted in this work. VIKOR
is applied here to derive the most suitable material for PM 2.5 gas sensor design and fabrication.
The process of VIKOR is presented in Appendix D.

4. Empirical Study

The IoT is a network of physical devices, vehicles, buildings, and other items embedded
with electronics, software, sensors, actuators, and network connectivity that together enable them
to collect and exchange data. The use of IoT and Big data can analyze large-scale environments of
interiors or exteriors (e.g., homes, buildings, and smart cities) in terms of air quality data (e.g., PM2.5),
for early warning, prevention, control, and even to derive innovative services. The combination of IoT
and Big data can make possible many new applications and innovative services, such as smart living
and self-driving cars. According to the McKinsey Global Institute forecast, the market value of IoT and
related services is expected to reach $11 trillion by 2025.

Traditionally, air quality inspection is conducted by professionals using specialized equipment in
a specific location or region. The places can be relatively large and require plenty of time, making it
less productive. Also, work negligence may result in inaccurate data. Hence, with the increasing
popularity of IoT sensors, air quality monitoring systems can be combined with big data to make air
quality monitors more productive.

PM2.5 sensors and modules may also be combined with air cleaners. One of the well-known
brands in China, Haier, has already introduced a smart air conditioner using IoT. First, it performs
autosensing and temperature control to maintain an indoor/outdoor temperature difference of 5
degrees (according to results gathered from the human experience optimum temperature). Second,
it automatically monitors air pollution (i.e., PM2.5 density), notifies users about changes in air quality,
and purifies air to maintain its quality. Lastly, it has self-monitoring capability, and can inspect itself
and provide recommendations regarding maintenance and other value-added innovative services.

The role of PM2.5 sensors is becoming more dominant every day; however, the issue
of determining the most suitable material for PM2.5 sensor fabrication is still worthy of
further investigation, as those fabricated from silicon may not operate correctly at high temperatures.
Thus, a more suitable material should be evaluated and selected. The next Section derives the
evaluation criteria via the Delphi method. Then, the most suitable material for the PM2.5 sensors is
evaluated by using DNP and VIKOR.

4.1. Criteria Derivations by Delphi

In order to derive the criteria to evaluate a suitable MEMS material for PM2.5 sensors, the modified
Delphi method was introduced. Thirteen experts (refer to Table 3) were invited, including sensor R&D,
material, process, and backend managers as well as scholars in charge of MEMS design and fabrication,
with over five years of work experience. The literature review revealed three possible aspects
and 14 criteria (refer to Table 2). The aspects include three attributes: material; process and
geometric; and economic. Material attributes include suitability of the main structural material
as well as for nonstructural purposes (e.g., metallization or insulation layers). The process and
geometric attributes include surface attribute, maximum processing temperature, minimum processing
temperature, trench width, trench depth, beam width, beam height, precision, technology readiness,
yield, and reliability. Finally, economic attributes include the capability to be mass-produced and
investment. According to the definition of the Modified Delphi method introduced in Section 0,
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agreement by 2/3 (67%) of participants was taken as a threshold value to accept a criterion. In Table 4,
twelve criteria were agreed upon by more than 67%, while the percentages of “Trench depth” and
“Beam width” were below 2/3, so these twelve criteria being agreed by at least 2/3 of experts was
deemed suitable to evaluate the MEMS materials for PM2.5 sensors. The criteria to evaluate and select
the MEMS material are shown in Table 4.

Table 3. Background of Experts for the Modified Delphi Process.

No. Title Education Firm/Institute Expertise Experiences

1 Manager Ph.D. ITRI Three dimensional IC (3DIC) and sensors 15 Years
2 Chief Tech. Officer Ph.D. Equipment Vendor Memory and 3D IC material/process 13 Years
3 Manager Ph.D. ITRI IC testing and packaging 18 Years
4 General Manager Master IC Design House IC design 18 Years
5 Manager Master MEMS Foundry IC packaging 22 Years
6 Professor Ph.D. University IC design and marketing 26 Years
7 Researcher Ph.D. University Material engineering 5 Years
8 Engineer Ph.D. ITRI Nanoelectronics 6 Years
9 Researcher Ph.D. University Material engineering 5 Years
10 Engineer Ph.D. ITRI Nanoelectronics 4 Years
11 Senior Engineer Ph.D. ITRI Nanoelectronics 11 Years
12 Associate Professor Ph.D. University Material engineering 5 Years
13 Assistant Professor Ph.D. University Material science and engineering 5 Years

Table 4. Candidate Aspects and Criteria for Process Selection.

Aspects Criteria
Experts’ Opinions Percentage

1 2 3 4 5 6 7 8 9 10 11 12 13

Material
Attributes (D1)

Suitability for main structural material (c11) Y Y Y Y Y Y Y Y Y Y Y N Y 92.308%
Suitability for nonstructural purpose (c12) Y Y N Y Y Y Y Y Y Y Y N Y 84.615%

Process and
Geometric
Attributes (D2)

Surface attribute (c21) Y Y Y N Y Y Y Y Y Y Y Y Y 92.308%
Maximum processing temperature (c22) Y N Y Y Y Y Y Y Y Y Y N Y 84.615%
Trench width (c23) Y Y N N Y N Y Y Y Y Y Y Y 76.923%
Trench depth (1) N N N N Y N Y N Y Y N Y Y 46.154%
Beam width (1) N N Y N Y N N Y Y Y Y Y Y 61.538%
Beam height (c24) Y Y Y N Y N Y Y Y Y N Y N 69.231%
Precision (c25) Y Y Y Y Y Y Y Y Y Y Y Y Y 92.308%
Technology readiness (c26) Y Y Y N Y Y Y Y Y Y Y Y Y 92.308%
Yield (c27) Y Y Y N Y Y Y Y Y Y Y Y Y 92.308%
Reliability (c28) Y Y Y N Y Y Y Y Y Y Y Y Y 92.308%

Economic
Attributes (D3)

Capability to be mass-produced (c31) Y Y Y Y Y Y Y Y Y Y Y Y Y 100.000%
Investment (c32) Y Y Y Y Y Y Y Y Y Y Y Y Y 100.000%

Remark: (1) No symbol was assigned because the criterion cannot be agreed by 2/3 or more experts.

4.2. Evaluating the Most Suitable Materials for PM 2.5 Sensors by DNP and VIKOR

At first, the DEMAETL is introduced to construct the influence relationships between the criteria
for evaluating and selecting materials. Then, the influence weights associated with each criterion can
be derived by using DNP. At first, experts’ opinions of the influence of one dimension/criteria on
another can be derived using the DEMATEL method (refer to Tables 5 and 6). Then, using Equations
(A1)–(A3), we derived the total-influence relations between the three dimensions (refer to Table 7)
defined in Table 4. The total relation matrix of criteria was also derived and is demonstrated in Table 8.
Using Equations (A4) and (A5), the causal diagram was constructed based on the ri and ci values
(refer to Tables 9 and 10). ri and ci were derived from the total relation matrix, where ri stands for the
total influences received from another criterion and ci stands for the total influences of the criteria
on another criterion. The causal diagrams are demonstrated in Figure 2. The threshold value was
set as the third quartiles in the total relationship matrices Tdimensions and Tfactors. Then, the most
influential relationships of the decision problem were defined based on the influence relationships
or the influence relation map (IRM) derived by using DEMATEL. The influence relationships of
dimensions D1 and D2 on D3 are also demonstrated by dotted lines with arrows. The rationale will
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be discussed later in Section 0. Finally, the casual relationships are drawn by matrices Tdimensions and
Tfactors, as shown below in Tables 7 and 8. The result of DEMATEL methods can be summarized as
in Figure 2. The axes represent the degree of influences of one dimension on another or those of one
criterion on another criterion, where the criteria belong to the same dimension. Based on the results
derived by DEMAETL, the influence weights versus each criterion for evaluating and selecting the
material for PM2.5 gas sensors can be derived by using DNP.

Table 5. Influence relation matrix Adimensions of criteria.

D1 0.000 6.333 3.667
Adimensions = D2 7.667 0.000 4.000

D3 1.333 4.000 0.000

Table 6. Influence relation matrix Acriteria of dimensions.

c11 0.000 4.667 8.000 8.667 5.333 3.667 8.667 8.000 8.333 9.333 8.667 8.000
c12 3.333 0.000 3.333 7.333 5.333 3.000 2.333 5.667 5.333 5.667 3.333 4.333
c21 8.000 3.667 0.000 7.000 4.667 2.333 7.333 8.000 8.333 7.333 7.333 6.667
c22 7.000 5.000 7.333 0.000 2.333 2.333 8.000 8.000 8.333 8.667 8.000 7.333
c23 8.000 4.333 6.667 4.333 0.000 3.000 8.333 8.000 7.000 5.667 8.667 8.000
c24 5.000 1.667 4.333 2.333 3.000 0.000 5.333 5.000 4.000 4.000 5.667 4.333

Acriteria = c25 8.667 4.333 5.667 8.000 6.667 3.000 0.000 8.000 7.000 7.667 8.667 7.333
c26 8.667 7.333 8.000 7.000 6.000 3.000 7.667 0.000 9.333 9.000 10.000 7.333
c27 9.333 8.000 7.333 8.000 6.000 3.000 8.333 8.667 0.000 7.667 10.000 7.333
c28 8.000 6.667 6.667 6.667 5.333 2.333 7.667 7.333 8.000 0.000 8.000 7.333
c31 8.667 7.333 7.333 8.000 6.000 3.667 8.333 9.333 9.333 8.333 0.000 8.000
c32 7.333 6.000 5.667 6.333 5.333 3.000 6.667 7.333 7.333 6.667 7.333 0.000

Table 7. Total relation matrix Tdimensions of dimensions.

D1 1.219 1.636 1.258
Tdimensions = D2 1.751 1.424 1.381

D3 0.854 1.018 0.617

Table 8. Total relation matrix Tcriteria of criteria.

c11 0.558 0.471 0.570 0.605 0.448 0.266 0.628 0.648 0.651 0.648 0.671 0.604
c12 0.378 0.256 0.333 0.390 0.295 0.171 0.354 0.405 0.401 0.396 0.391 0.364
c21 0.581 0.414 0.430 0.531 0.398 0.227 0.554 0.585 0.588 0.567 0.594 0.532
c22 0.579 0.434 0.515 0.463 0.380 0.230 0.568 0.593 0.596 0.588 0.608 0.546
c23 0.587 0.424 0.506 0.508 0.351 0.236 0.569 0.591 0.580 0.554 0.612 0.551
c24 0.372 0.257 0.322 0.317 0.255 0.128 0.362 0.374 0.363 0.356 0.390 0.342

Tcriteria = c25 0.612 0.439 0.514 0.563 0.435 0.244 0.499 0.610 0.600 0.594 0.632 0.562
c26 0.661 0.507 0.579 0.599 0.463 0.264 0.627 0.574 0.672 0.655 0.695 0.607
c27 0.668 0.514 0.573 0.610 0.464 0.264 0.635 0.667 0.575 0.643 0.696 0.608
c28 0.595 0.455 0.514 0.541 0.415 0.233 0.571 0.593 0.600 0.502 0.615 0.553
c31 0.665 0.509 0.576 0.612 0.466 0.272 0.638 0.677 0.676 0.653 0.595 0.618
c32 0.555 0.424 0.475 0.507 0.392 0.227 0.529 0.560 0.559 0.541 0.574 0.443

Table 9. ri + ci, ri − ci, Weight and ranking versus each dimension.

Dimensions Symbol ri ci ri + ci ri − ci Weight Ranking

Material Attributes D1 4.112 3.823 7.935 0.289 16.54% 3
Process and Geometric Attributes D2 4.556 4.077 8.633 0.478 64.80% 1
Economic Attributes D3 2.489 3.257 5.745 −0.768 18.60% 2
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Table 10. ri + ci, ri − ci, Weight and Ranking versus Each Criterion.

Dimensions Criteria Symbol ri ci ri + ci ri − ci Weight Ranking

Material
Attributes

Suitability for main structural material c11 6.811 6.768 13.5784 0.0432 9.455% 4
Suitability for nonstructural purpose c12 5.102 4.135 9.2364 0.9670 7.089% 10

Process and
Geometric
Attributes

Surface attribute c21 5.908 6.000 11.9076 −0.0923 8.205% 9
Maximum processing temperature c22 6.247 6.099 12.3462 0.1477 8.702% 8
Trench Width c23 4.761 6.068 10.8291 −1.3069 6.639% 11
Beam Height c24 2.762 3.839 6.6012 −1.0769 3.849% 12
Precision c25 6.533 6.305 12.8384 0.2284 9.060% 6
Technology Readiness c26 6.877 6.904 13.7817 −0.0273 9.556% 2
Yield c27 6.863 6.916 13.7781 −0.0531 9.542% 3
Reliability c28 6.697 6.187 12.8843 0.5094 9.307% 5

Economic
Attributes

Capability to be Mass-produced c31 7.073 6.957 14.0297 0.1164 9.814% 1
Investment c32 6.329 5.785 12.1144 0.5442 8.782% 7
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The normalized total-influence matrix TD can be transposed as the unweighted supermatrix W in
the format of Equations (A6) and (A7) by using Equations (A10)–(A13) in Appendix C. Thus, the total
influences from one criterion to others can be normalized by using Equations (A12) and (A13) and
then filled into the unweighted supermatrix. The weighted supermatrix can be derived accordingly.
Thereafter, the unlimited supermatrix can be derived by raising the power of the weighted supermatrix
to a sufficiently large one k, as in Equation (A15). The process can be terminated when the supermatrix
converges and becomes a long-term stable supermatrix. The weights versus each aspect and criterion
can be derived accordingly (see Tables 9 and 10).

After the derivations of weights for each criterion, three materials, gallium nitride (GaN), gallium
arsenide (GaAs), and silicon, are ranked. For each MEMS material for PM2.5 sensors, the performance
scores versus each criterion were graded by fifteen experts. The average score versus each criterion is
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demonstrated in Table 11. Then, by introducing the weights derived by using DNP, the compromise
ranking can be derived by using VIKOR. According to the analytic results, the GaN obtains the
highest value, 1.000. Therefore, GaN is the most appropriate material for designing and fabricating
the PM2.5 sensors. Table 11 demonstrates the compromise ranking of three laternatives by VIKOR.

Table 11. VIKOR Scores for each criterion.

Alternative c11 c12 c21 c22 c23 c24 c25 c26 c27 c28 c31 c32 VIKOR Rank

Silicon 0.015 0.000 0.009 0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3
GaAs 0.000 0.061 0.000 0.085 0.039 0.013 0.000 0.028 0.021 0.000 0.013 0.086 0.456 2
GaN 0.092 0.069 0.080 0.000 0.065 0.038 0.000 0.094 0.094 0.091 0.117 0.029 1.000 1

5. Discussion

In this research, suitable materials for the fabrication of PM2.5 gas sensors were evaluated.
While GaN was selected as the most suitable material, the rationale for evaluating Si, GaAs, and GaN
will be discussed in the following subsection. In Section 5.2, the most important aspects and factors
will be reviewed for selecting GaN. In Section 5.3, Mutual Influences between the most important
criteria will be discussed. The independent criteria in the IRM will be discussed in Section 5.4. Finally,
research limitations and directions for future research will be presented at the end of this section.

5.1. Rationale for Evaluating the Materials Si, GaAs, and GaN

Renewed emphasis has been placed on the development of robust solid-state sensors capable
of undergoing uncooled operation in harsh environments [52]. The sensors must not only detect the
existence of chemicals, gas, biological substances, or radiation, but also return the corresponding
detected signals back to the central monitoring locations [52]. Although GaN was already evaluated
as the most suitable material, it is still worthwhile to discuss the selection process for determining
the best-suited material PM2.5 gas sensors. The following discussion shows the detailed rationale for
culling the optimal parameters among the three candidate materials: Si, GaAs, and GaN.

The basic building block of MEMS devices is the substrate, which is an object with a macroscopic
surface finish [105]. In semiconductor electronics, the substrate is a slice of single crystal silicon,
commonly known as a ‘wafer’ [105]. Wafers are also made of other crystalline materials, such as quartz,
aluminum, or GaAs [105]. Although these wafers must be made from as high-quality a material
as possible, they must be inexpensive enough to fabricate [105]. Among all types of substrate materials,
the most preeminent advantage of choosing a semiconductor (e.g., Si, Ge, or GaAs) as a substrate
material lies in its duality of electrical performance. That is, depending on their application in the
microelectronic industry [105], semiconductor substrates can act both as a medium of reasonably
low resistance, i.e., a semiconductor, and as a medium of high resistance, i.e., an insulator.

Silicon substrates were among the first to be used in the semiconductor industry. The adoption
of silicon substrates in semiconductor processes dates back to the era of 2-inch wafers. Since then,
silicon substrates have been widely adopted from the previous 4-, 6-, and 8-inch, to the current
12-inch processes. In general, silicon substrates are the most widely adopted semiconductor technique
by major semiconductor firms and research institutes. According to Roy and Sarkar [105], silicon
has already replaced other materials as a popular semiconductor for several reasons: (1) Silicon is
mechanically stable and its implementation in the advanced micro fabrication technology has been
practiced for a long time; (2) silicon weighs less than aluminum but possesses higher hardness
than steel. The Young’s modulus of silicon is tantamount to that of steel (~2 × 105 MPa) and
the density of silicon is about 2.3 g/cm3; (3) silicon can be readily used to implement miniature
mechanical devices with high precision, a merit that makes it a nearly perfect structural material;
(4) the melting point of silicon is as high as 1400 degrees Celsius, almost twice that of aluminum.
This high melting temperature makes silicon difficult to reshape even at high temperature and hence
endows silicon with a fine dimensional stability temperature-wise; (5) compared to the thermal
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expansion coefficients of steel and aluminum, silicon has a thermal expansion coefficient that is about
8 and 10 times smaller, respectively. This significantly smaller thermal expansion coefficient makes
silicon more immune to shape change due to temperature variations; (6) there is almost no mechanical
hysteresis in silicon. Thanks to this characteristic, silicon is considered an ideal material for building
sensors and actuators; (7) the extra-thin film layers serving as the integral structural parts of silicon
perform the exact desired electromechanical functions; (8) compared with substrates made from
other materials, silicon substrates are more lithe and higher flexibility; and (9) existing for such a
long time, the silicon processing steps are already well-defined and the related technological details
are already carefully researched and concretely standardized. Applications of silicon substrates range
widely from logic products, semiconductor memory and sensors, to micro-electromechanical chips and
high-frequency communications products. In general, silicon substrates have the broadest application.

According to Jakovenko [106], contemporary industrial gas sensors adopting the metal-oxide
fabrication process normally apply the screen printing skills to small ceramic substrates. This kind
of implementation would typically result in a power consumption level between 1 and 2 watts
and a response time on the scale of seconds. Unfortunately, this level of performance does not
usually meet the demands required by diagnosis systems feeding on batteries. In other words,
to better compensate the limitation of electricity provided by externally-connected batteries, the power
consumption of the whole sensor system needs to be low and the response time needs to be short.
In addition to these concerns, other factors, such as low cost, small size, user-friendly operational
interface, high detection sensitivity, stability, and accuracy are all important facets that need to be
carefully pondered over when trying to build an optimal gas sensor. The demand for less rated
operational power dissipation and increased system complexity on gas sensors can be satisfied
through employment of semiconductor free-standing MEMS micro-hotplates. Typical designs of
micro-hotplates are based on membranes made of silicon nitride and silicon oxide. The silicon
technology is favored for its inexpensiveness and maturity, but it also suffers from a vital shortcoming.
In general, to enhance the sensitivity, selectivity, and response time of a gas sensor adopting
the metal-oxide fabrication process, the gas absorption layer is preferred to have high operating
temperature. However, the maximum operating temperature of the micro-hotplates fabricated by the
silicon technology is approximately 300 to 500 degrees Celsius, a deficiency that harms the candidacy of
the silicon technology. In addition to silicon carbide (SiC), an excellent candidate for these applications,
the group of III-nitrides can also meet these requirements. In fact, MEMS hotplates based on GaAs
and GaN can be very attractive for the design of gas sensor micro-hotplates. Hence, except for the
advantages of Si-based sensor techniques being low-cost and widely-commercialized applications in
the world, the GaAs and GaN could be better alternatives for PM2.5 gas sensors.

Although Si-based sensors offer the advantages of being low-cost and highly-matured techniques,
GaAs-based devices can be a better alternative when higher detection sensitivity and shorter response
time are required [107]. The micro-machined thermal converters (MTCs) designed and fabricated
with GaAs can be a possible alternative for the thermally-based MEMS sensor devices in the future.
The MTC generally integrates GaAs devices on GaAs thermally-isolated micromechanical structures
such as membranes, cantilevers, and bridges. Most of the MTC devices fabricated with GaAs serve as
RF/microwave power and infrared thermal sensors [108]. To fully facilitate the chemical reactions
between the molecules of the gas to be detected and the exterior of the sensing material, metal-oxide gas
sensors are normally requested to operate at high-temperature [108]. To keep operating temperatures
between 200 and 500 degrees Celsius, low power consumption is required [108]. Besides, the active
sensing area is requested to have uniform temperature distribution so as to ensure that the sensing
properties are leveled over the entire sensing surface [108]. The mechanical stability, integrity,
and prompt thermal response are very important figures of merit that one must ruminate during
designing process [108]. All of the above requirements can be fulfilled by the structure of MEMS.
The sensing layer is located on the top of a suspended thin dielectric membrane fabricated by using the
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micromachining process. Meanwhile, every design rule for metal-oxide gas sensors mentioned above
can be realized by means of the micro-machined concept of the thermal converter based on GaAs.

In recent years, GaN has also emerged as one of the possible alternatives for the construction
materials for MEMS. According to Rais-Zadeh, Gokhale [109], one interesting direction for
GaN research, which is largely unexplored, is GaN-based MEMS devices. The integration of GaN
and gas sensors is one possible approach to fully unlock the potential of GaN and realize new
advanced all-GaN integrated circuits [109]. The emergence of the GaN was mainly because of the
large bandgap (∼3.5 eV), piezoelectric characteristics, as well as the compatibility with 6H-SiC and
(111) Si substrates [110]. Over the past decade, the GaN-based materials have successfully penetrated
into various applications, which include light emitting diodes, the semiconductor ultraviolet (UV)
light sources, power electronic devices for microwave communications [53], and highly accurate
electrochemical sensors [111]. As the development of GaN is just beginning, data pertaining to its
mechanical properties are sparse [110]. The GaN materials system is drawing a great deal of attention
for its commercial applications [112] since GaN provides a new approach to improve the performance
of gas sensors in terms of the operating temperature and response time [113]. Owing to the wide
bandgap of the material, it is very thermally stable and its electronic devices can operate at up to
500 degrees Celsius [112]. Moreover, the material is also chemically stable. The only known wet
etchant of it is molten NaOH or KOH. Having only two kinds of effective wet etchants perfectly
enables this material to work in chemically severe environments or under strong exposure to radiation
fluxes [112]. Due to the high electron sustainability of the nitride-based HEMTs, the operation
frequencies of devices being fabricated by using the GaN range from the very high frequency
(VHF) to the X-band frequencies. Furthermore, in comparison to the Si or GaAs based devices,
the breakdown voltages, thermal conductivity, and the transmission bandwidth of the GaN based
devices have better characteristics [112]. Therefore, the GaN is also an appropriate material for making
gas sensors, such as PM2.5 sensors. Because the HEMTs have great potential to become the primordial
GaN electronic device that is likely to be commercialized in next-generation radars and wireless
communication systems, the gas sensors fabricated by building the metal-oxide semiconductor (MOS)
diodes on AlGaN–GaN HEMT layer structures are attracting a lot of attention [52]. Different from the
Schottky diodes built on a GaN layer, these structures enjoy better performance due to their much
higher sensitivity resulting from the gains of intrinsic transistors [52]. In addition, when it comes to
thermal stability, the MOS-gate version of the HEMT is significantly superior to the structure of metal
gate, and is thus well-suited to perform gas sensing [52]. When the ambient changes, it causes variations
on the sensing surface potential, and the potential difference will bring about a huge alteration on the
channel current [52]. All of the favorable reasons stated above make GaN an appropriate material
to implement in gas sensing. Therefore, Köck et al. [114] predicted that gas sensors will be the next
industrial sensor to be commercialized after pressure sensors.

5.2. Prioritization of the Dimensions and the Influence between Dimensions

According to the analytical results (Table 9) derived by the DNP, the process and geometric
attributes (D2) were ranked as the most important dimension. The influence weighs 0.648. The other
two dimensions were less important than the process and geometric attributes. Meanwhile, based on
the IRM of dimensions demonstrated in the upper right of Figure 2, the material dimension (D1) and
the process and geometric dimension (D2) influence each other. The two dimensions influence the
economic dimension (D3). This finding is consistent with earlier works. Tadigadapa and Najafi [115]
argued that at the MEMS scale, at which the thickness of materials is typically a few microns,
changes in fabrication processes (D2) significantly influence their material (D1) and mechanical
properties. According to Gaura and Newman [116], it is a must to carefully concurrently ponder
over the materials (D1) employed in the fabrication of a particular device and the process flow (D2),
and this coherent planning will form part of the material selection process. It is not rare to find that the
‘best’ material to use based on the quantitative material selection often turns out to be impracticable as
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a result of processing incompatibility. When faced with such a predicament, a compromise should be
ready to come into play as a substitute [116]. As stated by Tadigadapa and Najafi [115], the choice of
the fabrication process (D2) is very important in that it defines the overall performance and cost (D3)
of the micromachined part. Burger et al. [117] also mentioned that technology development teams in
MEMS companies work on new concepts to reduce costs (D3) through miniaturization and a decrease
of material consumption (D1) [117–119]. Next, the most influential criteria for each dimension will
be discussed.

For the first dimension, namely, the Material Attributes (D1), the criterion for evaluating the
most suitable material for the PM2.5 sensor fabrication was evaluated and selected. Based on the
analytical results, suitability for the main structural material (c11) is critical from the aspect of material
selection and is ranked fourth. The weight associated with the criterion is 9.455%. As the PM2.5 sensor
device is directly connected with the substrate, the device material and the structural material for the
substrate are closely related. Thus, the fabrication and reliability of the PM2.5 sensor device will be
influenced by the main structural material. For the other criteria in this dimension, i.e., suitability for
nonstructural purposes (c12), the importance to the criterion is comparatively lower, 7.089%, and it is
ranked 10th. Applications of materials for nonstructural purposes usually include processes such as
metallization and insulation layers [48]. According to Bali [53], metallization is the final step in the
wafer-processing sequence, and aims to connect the individual devices to form an integrated circuit.
As defined by Jones [54], an insulator is a material that blocks the flow of electric current. As the
metallization layer aims to provide connections between devices, and the insulation layer aims to
block currents inside the sensor device, the materials are generally independent of the bulk material.
That is, no matter which material is selected (e.g., Si, GaAs, or GaN), these metallization and insulation
layers are still used. Therefore, independence between the suitability for the main structural material
(c11) and the suitability for nonstructural purposes (c12) is reasonable.

For the second dimension, namely, the Process and Geometric Attributes (D2), technology
readiness (c26) and yield (c27) are the most influential criteria. Based on the analytical results, technology
readiness (c26) and yield (c27) are critical for the PM2.5 MEMS process and are ranked second
and third, respectively. The weights associated with the criteria are 9.556% and 9.542%, respectively.
While evaluating the technology readiness (c26) of a novel sensor technology, the key decision factor
is whether the material can be fabricated using the widely adopted low-cost photolithography and
etching equipment. Therefore, the technology’s readiness (c26) was assigned a rank of second place
(see Table 10). Whether the device can be successfully commercialized or is technology-ready (c26)
will further be determined based on three factors: (1) whether the characteristics of the PM2.5 sensors
fabricated in the initial stage of the product life cycle are compatible with product specifications;
(2) whether the yield (c27) will be sufficiently high to achieve economy of scale; and (3) whether the
reliability (c28) of the sensor meets the requirement of the specification when the sensor is applied
under various environments over the long term. The above characteristics for evaluating technology
readiness are compatible with the influence relationships demonstrated.

The yield (c27) is of course one of the most important factors in evaluating and selecting the
materials. Based on the yield of the PM2.5 sensor, a decision can be made as to whether the materials
(c11) should be adjusted. Meanwhile, based on the device structure being finished, whether the
precision (c25) of the photolithography alignment is influenced can be further analyzed. Whether the
process design can be changed so as to enhance the yield should be considered. If the yield (c27) cannot
be improved, then better equipment to enhance the precision (c25) of the photolithography alignment
should be adopted.

Good yield (c27) does not imply high reliability (c28). Reliability depends not only on the
characteristics of the device, but also on its operating environment. If a poor operating environment can
damage the PM2.5 sensors, then we must consider changing the structure and material of the device to
achieve better reliability. Therefore, the yield and reliability are closely interrelated, and neither one
can be considered independently. Hence, in the inchoate stages of the product life cycle, before the new
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PM2.5 sensor products have been commercialized, these two criteria need to be carefully considered
and evaluated.

In the third dimension (D3), the capability of the sensor to be mass-produced (c31) will
influence future investments (c32). Based on the analytical results, the capability of the sensor to be
mass-produced (c31) is critical from the economic aspect and is ranked first in this research. The weight
associated with the criterion is 9.814%. When the technology has reached the mass production stage
of the product life cycle, investments in the equipment required for mass production are essential.
Equipment, manpower, and thus mass production capacity will be greatly improved. When a new
sensor product technology has been proven to be mature and stable after the pilot run of product testing,
the mass production process can be initiated. Numerous problems can arise at the mass production
stage. Such problems should be overcome although problems will keep emerging. The initiation of
mass production may be delayed. Investments in automatic production and measuring equipment
and related production analysis management tools can facilitate mass production. Hence, the mass
production capability and thus competitive advantages can be improved.

5.3. Mutual Influences between the Most Important Criteria

The mutual influences between the suitability of the main structural material (c11), technology
readiness (c26), yield (c27), and capability to be mass-produced (c31) are interesting and worthy of
further discussion. As introduced in Section 5.1, MEMS wafers need to be made from as high
quality a material as possible; yet, they should be inexpensive to manufacture [105]. Meanwhile,
according to Uttamchandani [120], high yield (c27) of MEMS structures comes from a highly stable
and firmly reproducible fabrication process, which is formidable and hard to realize in real-world
implementations, and consequently, has remained a grave challenge as well as one of the bottlenecks in
MEMS commercialization (c31) [120]. Furthermore, according to the definitions of technology readiness
levels (TRLs) (c26), the highest level of technology readiness, or the TRL9, can be defined as an actual
system proven through successful mission operations [121]. Based on the report of the Next-generation
Low-Cost Multifunctional Web Enabled Ocean Sensor Systems (NeXOS) project [122], granted by the
European Commission, TRL 9 means full commercial application, or that the technology is available
for the consumer. Apparently, yield (c27) can influence the MEMS commercialization capabilities (c31)
and thus, the technology readiness level (c26).

According to Quinn et al. [48], the value of MEMS devices often depends on whether or not
their mass production is achieved (c31). If the MEMS devices have already reached their mass
production stage, large capital investments (c32) can be paid off over time. The influence relation is
consistent with recent works. According to Jiang et al. [111], the GaN can be produced on a large
scale with a mature preparation process. The work by Jiang et al. [111] is consistent with a recent
report mentioning the significant capital and engineering investment in GaN manufacturing capability
by TSMC, the industry leader of semiconductor foundries [123].

As mentioned in Section 5.2, once the technology has reached the mass production stage (c31)
of the product life cycle, investments in the equipment required for mass production are essential.
Equipment, manpower, and thus mass production capacity will be greatly improved. This is consistent
with the work by Bhala [124], mentioning that businesses prefer not to invest in physical capital
equipment for a new product until its features are settled, the exact market identified, and the best way
to automate production determined. When a new sensor product technology has been proven to be
mature and stable after the pilot run of product testing, the mass production process can be initiated.
Numerous problems can arise in the mass production stage. Investments in automatic production,
measuring equipment, and related production analysis management tools can resolve these problems,
and thus increase the yield (c27), technology readiness (c26), and facilitate production (c31).

Based on the same rationale, the capability to be mass-produced (c31) can influence the investment
in automatic production, measuring equipment, and related production analysis management tools.
Thus, the precision of the MEMS, and thus reliability in terms of the consistency of the MEMS sensor
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with the specification, can be enhanced. Thus, precision (c25) and reliability (c28) can be influenced
directly by the capability to be mass-produced (c31). The capability to be mass-produced (c31) can
further influence precision (c25) and reliability (c28) through the material, yield (c27), and technology
readiness (c26). This finding is consistent with the argument by Burkacky et al. [125] and the
yield-learning procedure mentioned by Weber [126]. Recently, Burkacky et al. [125] found that
the problems do not stop after chips enter the market (c31): customers may encounter unexpected
performance issues (c25 and c28) and ask semiconductor companies to help resolve them. In many cases,
problems arise because important tasks still require frequent manual intervention, despite having
some degree of automation. To improve the process, many technology companies are now creating
analytical tools that could help fabs replace guesswork and human intuition with fact-based knowledge,
pattern recognition, and structured learning [125]. According to Weber [126], in order to achieve yields
(c27) near 100%, i.e., technology readiness (c26), a semiconductor manufacturer needs to master a
procedure called yield learning, which essentially consists of eliminating one source of faults (c25) after
another until an overwhelming portion of manufactured units function according to specification (c31).
By using advanced data analytics, companies can correct errors in physical designs and improve yield
(c27) and reliability (c28) without running a single wafer or making a mask [125].

5.4. The Independent Criteria

Another criteria belonging to the dimension, the suitability for nonstructural purposes (c12), has
comparatively lower importance (7.089%), and ranked in 10th place. The applications of materials
for nonstructural purposes usually include processes such as metallization or insulation layers [48].
According to Bali [53], metallization is the final step in the wafer-processing sequence which aims
to connect the individual devices in an integrated circuit. As defined by Jones [54], an insulator is
a material that blocks the flow of electric current. As the metallization layer provides connections
between devices and the insulation layer aims to block currents inside the sensor device, the materials
are generally independent from the bulk material. That is, no matter which material(s) from the
Si, GaAs, or GaN is selected, these metallization or insulation layers are still used. Therefore,
the independence between the suitability for main structural material (c11) and the suitability for
nonstructural purposes (c12) is reasonable.

The surface attribute includes the in-plane surface roughness of the beam as well as its
out-of-plane/wall roughness [48]. For the design of mirrors and the reduction of stiction, the
roughness is of particular importance [48]. Besides, the Minimum achievable beam height (c24)
dimensions play an essential role to help ascertain the compactness, natural frequency, and thermal
time constants of the devices. These dimensions also assist in finding the sensitivity limits of the sensors
and actuators [48]. Although the minimum achievable beam height (c24) dimensions possess such
advantages, they are not applicable in PM2.5 sensor designs. The form factors of PM2.5 sensors are not
critical. Meanwhile, the operating frequency is usually only highly critical for communications devices,
and is not critical for sensors. Most of the time, PM2.5 sensors operate at ordinary temperatures. Thus,
the independence of the surface attribute (c12) from other criteria is reasonable.

5.5. Contributions, Limitations, and Future Recommendations

PM2.5 is recognized as one of the most important air pollution issues. Meanwhile, the demand
for PM2.5 sensors is surging rapidly in recent years. Most of the newly developed PM2.5 sensors are
designed and fabricated by using the MEMS. Selecting an appropriate material for manufacturing an
MEMS device or component in general, and for PM2.5 sensors in particular, by considering the material,
process, geometric as well as the economic attributes at the same time is not easy. However, very few or
no works have tried to investigate what the most appropriate MEMS material is for designing and
fabricating future PM2.5 sensors. The evaluation and selection of an MEMS material is, by nature,
an MCDM problem. In this work, a HMCDM framework was proposed. Further, the derived
influence relationships have been proven to be consistent with prior works. Therefore, we have not
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only demonstrated the feasibility of the proposed analytic framework but also selected the most
suitable MEMS material, GaN, for PM2.5 sensors. The analytic framework and results selected by
experts from industry, academic and research institutes are very reasonable and suitable for future
applications. In this subsection, we would like to discuss the major contributions, limitations, as well
as future recommendations.

5.5.1. Contributions

Firstly, the major contributions will be discussed from three aspects: (1) MEMS material selection;
(2) successful integration of TA concepts with MCDM models and successful verification of the models;
and (3) the research in sustainability, especially the most up-to-date PM2.5 issue.

From the aspect of MEMS materials selection in general, and the evaluation and selection of MEMS
materials for PM2.5 gas sensors in particular, though Za and Du [51] proposed the concept of evaluating
and selecting the manufacturing process and material concurrently, based on the authors’ knowledge
and experience of the subject, very limited or no prior works model the concurrent evaluation and
selection of MEMS materials. Thus, development and verification of the MCDM-based concurrent
evaluation and selection of the MEMS materials will be one of the major research contributions.

The successful integration of TA and advanced MCDM models and the successful verification
of models by engineering research results also contribute to the management of technology research
and decision analysis. Although the concept of TA emerged in the 1960s [11], only recently have
scholars started to introduce the concept of influence relations between criteria as well as feedbacks.
However, very few works have focused on engineering practices, not to mention verification of the
influence relationships and analytic results by using engineering analysis results. This study fully
verifies the influence relationships between aspects and criteria as well as the alternatives (GaN)
selected by engineering research results in this Section. The comparison results are summarized in
Table 12. Such verifications demonstrate the feasibility of the DNP-based HMCDM models based on
experts’ opinions.

The selected alternative is consistent with recently published academic works.
Rais-Zadeh et al. [109] argued that GaN-based MEMS is becoming popular. In comparison
with other alternatives, such as Si and GaAs, in this work, the comparison results are consistent with
the most up-to-date research works. According to Lidow [127], for the first time in 60 years, a new
higher-performance technology is less expensive to produce than its silicon counterpart. According to
Tsao et al. [128], GaN-based transistors had a significant power advantage over GaAs-based transistors;
led by GaN-on-Silicon, it is competing to be the next viable alternative to silicon, even as silicon itself
continues to evolve towards higher performance (with advances in superjunction MOSFETs, IGBTs,
and other devices). Thus, beginning in the 2000s and accelerating in the 2010s, U.S. government
investment in GaN electronics research increased within the Department of Defense, especially by
DARPA [128]. Nowadays, the GaN can be produced on a large scale with a mature preparation
process [111]. Meanwhile, according to Reddeppa et al. [113], GaN provides a new approach to
improve the performance of gas sensors in terms of the operating temperature and response time [113].
Apparently, the GaN will be one of the most suitable materials for future MEMS design.

For the influence relationships between the analytic results and engineering research results,
we also verified the consistency between the analytic results derived by the HMCDM methods
and those derived by engineering research and published in well-known journals (refer to Table 12).
Based on the authors’ knowledge and experiences, the results derived by MCDM-based analytic models
were seldom verified by engineering research results. The consistency between the results derived by
both methods further demonstrates the feasibility and the trustworthiness of the expert-opinion based
MCDM models.

In terms of the contributions of this research to sustainability, PM2.5 is apparently a very significant
problem which is now threatening the sustainable development of human beings. The successful
selection of MEMS materials can enable vendors to provide low-cost and high-precision sensors
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and thus, accelerate the diffusion of PM2.5 gas sensors. The wide distribution of PM2.5 gas sensors,
or even connecting these sensors to the Internet and disclosing this air pollution information,
can further enhance public awareness and involvement in environmental sustainability [129].
These sensor technologies enable the capture of environmental data by involving public authorities
and the general public, and by making real-time information on environmental conditions available to
the wider public [129].

Table 12. Verifications of influence relationships by engineering research results.

Influence
Relationships

Engineering
Research Results Section Influence

Relationships
Engineering

Research Results Section

D1 → D2
Gaura and
Newman [116] Section 5.2 c27 → c31 → c26 Sauser et al. [121],

Uttamchandani [120],
Dutreuil et al. [122],
Roy and Sarkar [105]

Section 5.3

D2 → D1
Tadigadapa and
Najafi [115] Section 5.2 c31 → c32 Quinn et al. [48],

Semiconductor
Today [123], Jiang et
al. [111]

Section 5.3

D2 → D2 Weber [126],
Thakur et al. [130]

c31 → c26
c31 → c27
c31 → c31

Weber [126],
Burkacky et al. [125]

Section 5.3

D2 → D3 Tadigadapa and
Najafi [115]

Section 5.2

c31 → c25
c31 → c28
c31 → c26 ↔ c27 → c25
c31 → c26 ↔ c27 → c28

Weber [126],
Burkacky et al. [125]

Section 5.3

D1 → D3 Vigna [118], Burger
and Staake [119],
Burger et al. [117]

Section 5.2

5.5.2. Limitations

In terms of limitations, in this research, the experts were invited to help determine the aspects,
criteria, influence relationships, and the influence weights. Unfortunately, the number of qualified
experts is very limited in Taiwan due to the limited number of PM2.5 IC vendors. Therefore, the experts
are mainly from research and academic institutes, and the results may seem controversial. To provide
results with a wider possibility of interpretation, future research may include studies based on the
opinions from foreign institutes and firms.

5.5.3. Future Research Possibilities

In terms of future research possibilities, in the past, the silicon substrate was regarded as
the most suitable material for sensor technology; however, by considering the daily complicated
operation conditions for future PM2.5 sensors (e.g., smart factories, unmanned aerial vehicles,
and unmanned cars), which will operate at higher temperatures, a GaN-on-silicon substrate should be
considered. GaN-on-silicon means implementing one epitaxial layer of GaN on the silicon substrate.
Such a GaN-on-silicon substrate can be fabricated on 8-inch wafers. The PM2.5 sensors fabricated
by GaN substrates can operate at high temperature, whereas the PM2.5 sensors fabricated by other
materials cannot fulfill this condition. The environmental impacts on the PM2.5 sensors by GaN will
be less. The fabrication cost of the GaN-on-silicon substrate will keep reducing, because various sensor
materials can be introduced. Thus, PM 2.5 sensors can also be integrated with other gas sensors that
detect such species as carbon monoxide (CO), organic solvents, and sulfides. The functionalities and
thus utilities of such integrated sensors can be greatly improved, and thereby also the product values.
For system designers, such sensor products can be better leveraged.
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Furthermore, because the MCDM methods and HMCDM-based approaches have developed
rapidly in recent years, recently developed MCDM methods, such as complex proportional
assessment (COPRAS), fuzzy additive ratio assessment method (ARAS-F), multi-objective optimization
on the basis of ratio analysis (MOORA), multiple objective optimization on the basis of ratio
analysis plus full multiplicative form (MULTIMOORA), step-wise weight assessment ratio analysis
(SWARA), and weighted aggregated sum product assessment (WASPAS) [131], a combination of the
dominance-based rough set approach (DRSA) decision-rules with formal concept analysis (FCA) based
DANP [132], etc., can be applied in the future to evaluate suitable materials for sensors or other
products in general, and materials for PM gas sensors in particular.

6. Concluding Remarks

PM2.5 is already a possible indicator for the sustainability of human life. Therefore, PM2.5 gas
sensors are being developed to help detect air pollution problems in real-time. The evaluation and
selection of a suitable MEMS material for fabricating such PM2.5 sensors has become the current
focus of firms engaged in new product development as well as the semiconductor foundries aiming to
provide wafer fabrication services for PM2.5 sensor providers. In this research, an analytic framework
consisting of the DEMATEL, the DNP, as well as the VIKOR was proposed. Possible aspects and
criteria that were derived based on the results of the literature review were summarized by the
modified Delphi method based on thirteen MEMS experts mainly from Taiwanese research institutes,
universities, and semiconductor foundries. Then, the structure of the decision-making problem was
configured by using the DEMATEL based on the opinions of experts. The aspects and criteria were
then prioritized by using the DNP. The compromise ranking of the MEMS materials for PM2.5 sensors,
which include the Si, GaAs, and GaN, was derived by VIKOR.

Based on the empirical results, the important criteria include the mass-production capability,
suitability for serving as the main structural material, the choice of material, precision,
technology readiness, yield, and reliability. The GaN was selected as the most appropriate MEMS
material for fabricating PM2.5 gas sensors. The well-verified analytic framework could be used to
select the most suitable materials for PM2.5 sensors as well as for other sensors. Fabless design houses,
MEMS foundries, and research institutes could define the technology roadmaps and new product
development plans accordingly. Governments could also encourage research projects for PM2.5 sensors
and the PM2.5 sensor-based air quality monitors through direct support of firms’ R&D and innovation
as well as grants to leading research universities and institutes for advanced study. Furthermore,
the wide adoption of PM2.5 sensor-based low-cost monitors by governments could improve
environmental monitoring and thus, help protect local air quality and avoid pollution. In the future,
other MCDM methods could be introduced into the material selection problems. Comparisons
of the analytic research results may provide further insights, from the aspects of decision science,
TA, material engineering, and sustainability. Since PM2.5 gas sensors are standalone devices,
the applicability of the well-verified analytic framework on complex systems (e.g., the systems-on-chip)
also represents an area of future research.
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Appendix A. DEMATEL

The basic DEMATEL formulas, by Tzeng and Huang [99] and Yang et al. [67], are explained in the
following five steps.
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Step 1: Form the initial direct-relation matrix

For each arbitrary pair of criteria among all the criteria being evaluated, experts are requested to
choose one of the five levels that best represents the level of impact that one criterion has over another.
For example, when measuring the influence of factor i on factor j, denoted as aij, experts will assign a
value to it and put it in the ith row and the jth column in the initial direct-relation matrix. Hence, if there
are n criteria being evaluated in total, an n-by-n initial direct-relation matrix can be formed at the end
of experts’ evaluation process. The initial direct-relation matrix A is defined in Equation (A1), where aij
is the degree of influence that the ith objective has on the jth objective.

A =



a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann


(A1)

Step 2: Normalize the direct-relation matrix

To guarantee the convergence of matrix multiplication that will be performed in step 3,
the direct-relation matrix obtained in step 1 needs to be first normalized through Equation (A2).

N = yA , y = min

{
1/max

i

n

∑
j=1

aij, 1/max
j

n

∑
i=1

aij

}
, i, j ∈ {1, 2, . . . , n}. (A2)

Step 3: Calculate the total relation matrix T.

The total-relation matrix T is calculated by summing up the normalized direct-relation
matrix obtained in step 2, its square, cube, and all other higher orders when the highest order
approaches infinity. If the normalization is done properly in step 2, the addition of matrices will
converge to the result dictated by Equation (A3):

T = N+N2+N3+ . . . + Nε

= N
(
I + N + N2+ . . . + Nε−1)(I – N)(I – N)−1

= N(I – Nε)(I – N)−1

= N(I – N)−1, when ε→ ∞, Nε = [0]n× n

(A3)

where ε→ ∞, I is the identity matrix.

Step 4: Derive the influence strength of the factors

By summing up the values of each row and column of the total relation matrix T obtained in
step 3, we can have r values and c values as depicted in Equations (A4) and (A5). The r value (take ri
for example) represents the sum of the influences that factor i has on all factors. The c value (take cj for
example) represents the sum of the influences that all factors have on the jth factor.

T =
[
tij
]
, i, j ∈ {1, 2, . . . n}

r = [ri]nx1 =

(
n

∑
j=1

tij

)
nx1

(A4)

c =
[
cj
]

nx1 =

(
n

∑
i=1

tij

)′
1xn (A5)
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Step 5: Construct the causal diagram

A causal diagram can be constructed by using the r values and c values obtained in step 4.
More specifically, it is constructed by using the (r + c) values as the x-axis values and by using the
(r − c) values as the y-axis values. In fact, the value of ri + ci represents the summation of strengths
that factor i gives and receives. A higher value of ri + ci means that factor i is more prone to affect
and/or be affected by other factors. On the contrary, the value of ri − ci helps discern whether factor i
acts more like a dominator (a factor that has great influence over other factors) or an acceptor (a factor
that is good at being influenced by other factors). In other words, if ri − ci is positive, factor i is good
at influencing and thus can be seen as a “cause factor”. If ri − ci is negative, factor i is good at being
influenced and thus can be regarded as an “effect factor” [84].

Step 6: Set a threshold value and obtain the Network Relation Map (NRM)

If the total-relation matrix T in step 3 contains too much trivial information to comprehend
the whole picture accurately, it is wise and necessary to set a threshold value α to filter out minor
or irrelevant relationships between factors. That is to say, if a value in matrix T is higher than the
threshold value, it stays in the matrix. On the other hand, if a value in matrix T is lower than the
threshold value, it will be replaced with zero. The threshold value can come from the consensus of
the experts. After the threshold value is decided and the filtering is executed, step 5 can be performed
again and the NRM can be drawn accordingly.

Appendix B. Analytic Network Process (ANP)

The following are explanations of the ANP formulas based on Saaty [93] and Yang et al. [132].

Step 7: Construct an unweighted supermatrix based on pairwise comparison matrices of elements.

The original supermatrix W of column eigenvectors can be derived from pairwise comparison
matrices of elements (refer Equation (A6)). Cn denotes the nth cluster and enm denotes the mth criterion
in the nth cluster. W ij (refer to Equation (A7)) in the supermatrix W is a principal eigenvector of the
influence of the elements in the ith component of the network on an element in the jth component.
Moreover, if the jth cluster has no influence on the ith cluster, then W ij = [0].

W =

C1 C2 · · · Cm

e11 · · · e1n1 e21 · · · e2n2 · · · em1 · · · emnm

e11

e12

C1
...

e1n1

e21

e22

C2
...

e2n2
...

...
em1

em2

Cm
...

emnm



W11 W12 · · · W1m

W21 W22 · · · W2m

. . .
...

...
...

Wm1 Wm2 · · · Wmm



(A6)
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W ij =


wi1 j1 wi1 j2 · · · wi1 jnj

wi2 j1 wi2 j2 · · · wi2 jn
...

...
. . .

...
wini j1 wini j2 · · · wini jnj

 (A7)

Step 8: Derive the weighted supermatrix by multiplying the normalized matrix.

After forming the supermatrix, the weighted supermatrix can be derived by transforming the
sum of all columns to unity exactly. The weighted supermatrix is raised to limiting powers, such as
Equation (A8) to obtain the global priority vector or called weights.

lim
θ→∞

Wθ (A8)

Moreover, if the supermatrix has the effect of cyclicity, the limiting supermatrix is not the only one.
There are two or more limiting supermatrices in this situation. Thus, the Cesaro sum, formulated by
using the following Equation (A9), will be required to derive the weights versus each criterion.

lim
ψ→∞

(
1
ν
)

ν

∑
j=1

Wψ
j (A9)

The average of the limiting supermatrix will be used to calculate the average priority weights,
where W j denotes the jth limiting supermatrix.

Appendix C. The DNP

Based on the total relation matrix T being derived in Appendix A, the influence weights versus
each criterion can be derived by using the DNP introduced in this Section. According to Saaty
and Vargas [133], the influence of elements in the network on other elements in that network can
be represented in the supermatrix. Each column of W ij is a principal eigenvector of the influence
(or importance) of the elements in the ith column of the network on an element in the jth row. Since any
element tij in the total-influence matrix T derived by DEMATEL denotes the influence of a factor
in the ith row on a factor in the jth column, the total-influence matrix is transposed to fit into the
definition of the supermatrix defined in Equation (A6). Let TC be equal to the transposed matrix of
the total-influence matrix T =

[
tij
]

nxn, i.e., TC = Tt. The total relationship matrix can be divided into
submatrices according to the criterion belonging to the aspects. The submatrices can be denoted as
Tc ij =

[
tiµ jν

]
, where 1 ≤ iµ ≤ ini and 1 ≤ jv ≤ inj . Here, ni and nj are the numbers of criteria which

belong to the ith dimension, Di, and the jth dimension, Dj, respectively.

Tc =

D1 · · · Dj · · · Dm

D1
...

Di
...

Dm



Tc11 · · · Tc1j · · · Tc1m
...

. . .
...

. . .
...

Tc i1 · · · Tc ij · · · Tc im
...

. . .
...

. . .
...

Tcm1 · · · Tcmj · · · Tcmm


,

(A10)
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where

Tc ij =



ti1 j1 · · · ti1 jν · · · ti1 jnj
...

. . .
...

. . .
...

tiµ j1 · · · tiµ jν · · · tiµ jnj
...

. . .
...

. . .
...

tini j1 · · · tini jν · · · tini jnj


. (A11)

Each column of Equation (A11) can be further normalized by using the following Equation (A12):

djnj
=

ini

∑
i=i1

tini jnj
, jnj = 1, · · · , ini . (A12)

Then, the total-influence matrix can be normalized by using the following Equation (A13):

T(N)
cij

=



ti1 j1
dj1

· · · ti1 jν
djv

· · ·
ti1 jnj
djnj

...
. . .

...
. . .

...
tiµ j1
dj1

· · · tiu jν
djν

· · ·
tiµ jnj
djnj

...
. . .

...
. . .

...
tini j1
dj1

· · ·
tini jν
djν

· · ·
tini jnj
djnj


. (A13)

Step 9: The normalized total-influence matrix, T(N)
c , can serve as the unweighted supermatrix W as

defined in Equation (A6). To derive the weighted super matrix, the values of the elements
belonging to each submatrix, Tc ij , belonging to the matrix TC, can be added up and filled into
a matrix TD as the following Equation (14):

TD =

D1 · · · Dj · · · Dm

D1
...

Di
...

Dm



tc11 · · · tc1j · · · tc1m
...

. . .
...

. . .
...

tc i1 · · · tc ij · · · tc im
...

. . .
...

. . .
...

tcm1 · · · tcmj · · · tcmm


,

(A14)

where tc ij is the sum of all the elements belonging to the submatrix Tc ij . Then, the matrix TD

can be normalized by normalizing each column to unity as follows, where dj =
m
∑

i=1
tcij .

T(N)
D =

D1 · · · Dj · · · Dm

D1
...

Di
...

Dm



tc11
d1

· · ·
tc1j
dj

· · · tc1m
dm

...
. . .

...
. . .

...
tci1
d1

· · ·
tcij
dj

· · · tcim
dm

...
. . .

...
. . .

...
tcm1
d1

· · ·
tcmj
dj

· · · tcmm
dm


,
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Step 10: The weighted supermatrix Π can be derived by multiplying the transposed T(N)
D with W, i.e.,

Π = T(N)
D

tW. Then, Equation (A8) can be introduced to derive the weighted supermatrix
as follows.

lim
θ→∞

Πθ . (A15)

The global priority vectors can be derived accordingly.

Appendix D. The VIKOR

The VIKOR method aims to derive a compromise solution with the shortest distance to the
ideal solution [134]. At first, we denote the alternatives using the notations A1, A2, . . . , Al , . . . , Am.
The performance score of the jth criterion is denoted by fl j for alternative Al . The weight versus the
jth criterion is denoted by wj, where j = 1, 2, . . . , n. n is the number of criteria. The VIKOR process is
initiated by deriving the Lp-metric at first:

Lp
l = {

n

∑
j=1

[wj(| f ∗j − fl j|)/(| f ∗j − f−j |)]
p

}1/p (A16)

where 1 ≤ p ≤ ∞; l = 1, 2, . . . , m; the weight versus the jth criterion, wj can be derived by using the

DNP method which has already been introduced in the former Appendix C. The Lp=1
l (as Sl) and Lp=∞

l
(as Ql) are also introduced to formulate the measures for ranking as follows [101,135]:

Sl = Lp=1
l =

n

∑
j=1

[wj(| f ∗j − fl j|)/(| f
∗
j − f−j |)], (A17)

Ql = Lp=∞
l = max

j
{wj(| f ∗j − fl j|)/(| f ∗j − f−j |)|j = 1, 2, · · · , n} (A18)

The min
l

Lp
l will be selected as the compromise solution due to the minimum value or closest

distance to the aspiration level. Furthermore, when p is small, the group utility is emphasized (such as
p = 1). As p approaches infinity (i.e., p→ ∞ ), the individual maximal regrets and gaps obtain higher
importance, as shown by Yu [77,135]. Hence, the min

l
Sl emphasizes the maximum group utility while

the min
l

Ql emphasizes choosing the minimum of the maximum individual regrets.

Based on the concepts mentioned above, the ranking algorithm of VIKOR can be defined
as follows.

Step 11: Normalize the original rating matrix. The aspiration level of some specific function f , i.e.,
f ∗j = max

l
fl j, and the minimum tolerable level of the function, i.e., f−j = min

l
fl j, can be

determined. Here, f ∗j and f−j are the best and worst values of all criteria, respectively;
j = 1, 2, . . . , n. can be determined in this step. Furthermore, the original rating matrix is
normalized as a weight-rating matrix by using the following equation.

rl j = (| f ∗j − fl j|)/(| f ∗j − f−j |). (A19)

Step 12: Derive the mean of the group utility and the maximal regret. The mean of the group

utility Sl , and the maximal regret, Ql , can be derived by using Sl =
n
∑

j=1
wjrl j and

Ql = max
j
{rl j|j = 1, 2, . . . , n}, where l = 1, 2, · · · , m. Traditionally, Ql was formulated

as max
j
{wjrl j|j = 1, 2, . . . , n}. That is, the importance of the group utility is higher than the

maximal regret. However, in the real cases, the maximal regret is always regarded as critical
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and is always considered as an aspect to be improved. Hence, to balance the importance of
both Sl and Ql ,

Ql = max
j
{rl j|j = 1, 2, . . . , n} (A20)

is introduced instead of the traditional VIKOR Ql .
Step 13: Derive the index values. The index values, Rl , l = 1, 2, · · · , m, can be formulated as

Rl =v(Sl − S∗)/(S− − S∗) + (1− v)(Ql −Q∗)/(Q− −Q∗), where S∗ = min
l

Sl , S− = max
l

Sl ,

Q∗ = min
l

Ql , and Q− = max
l

Ql . Here, the best value can also be defined as 0 while the worst

value can be defined as 1. The weight versus the alternative of the maximum group utility
can be denoted as v, where 0 ≤ v ≤ 1. The weight versus the alternative of the individual
regret can be defined as 1− v accordingly.

Step 14: Rank the alternatives. The alternatives can be ranked by sorting the value of Sl and Ql as
well as Rl , in decreasing order, where l = 1, 2, . . . , m. An alternative can be proposed as a
compromise solution if both the advantage and stability conditions can be fulfilled. Based on
this principle, the alternative (A(1)) can be proposed as a compromise solution which is
the best ranked by the measure min{Rl |l = 1, 2, . . . , m} in the case that the two criteria can
be fulfilled: C1. Acceptable advantage: R(A(2)) − R(A(1)) ≥ DR, where the alternative
A(2) is ranked second based on the value of R and m is the number of alternatives while
DR = 1/(m− 1). C2 Acceptable stability in decision making: A(1) must be ranked as the
best alternative based on Sl and/or Ql , where l = 1, 2, . . . , m. Further, in the case that any one
of the following criteria cannot be fulfilled, a set of compromise solutions will be proposed:
(1) The set consists of both A(1) and A(2) in the case that the first condition C1 is fulfilled,
whereas the second condition C2 cannot be fulfilled. (2) The set consists of M alternatives,
A(1), A(2), . . . , A(M), in the case that the first condition C1 cannot be satisfied. A(M) can be
determined by R(A(M))− R(A(1)) < DR, for the maximum M, where the positions of these
alternatives are close.
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