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Abstract: The holistic approach of “One Health” includes the consideration of possible links between
animals, humans, and the environment. In this review, an effort was made to highlight knowledge
gaps and various factors that contribute to the transmission of antibiotic-resistant bacteria between
these three reservoirs. Due to the broad scope of this topic, we focused on pig production and selected
“indicator bacteria”. In this context, the role of the bacteria livestock-associated methicillin-resistant
Staphylococcus aureus (LA-MRSA) and extended spectrum beta-lactamases carrying Escherichia coli
(ESBL-E) along the pig production was particularly addressed. Hotspots of their prevalence and
transmission are, for example, pig stable air for MRSA, or wastewater and manure for ESBL-E,
or even humans as vectors in close contact to pigs (farmers and veterinarians). Thus, this review
focuses on the biotope “stable environment” where humans and animals are both affected, but
also where the end of the food chain is not neglected. We provide basic background information
about antibiotics in livestock, MRSA, and ESBL-bacteria. We further present studies (predominantly
European studies) in tabular form regarding the risk potentials for the transmission of resistant
bacteria for humans, animals, and meat differentiated according to biotopes. However, we cannot
guarantee completeness as this was only intended to give a broad superficial overview. We point
out sustainable biotope approaches to try to contribute to policy management as critical assessment
points in pig housing conditions, environmental care, animal health, and food product safety and
quality as well as consumer acceptance have already been defined.
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1. Introduction

The use of antibiotics in human and veterinary medicine and their dissemination in the
environment have favored the emergence and spread of antibiotic-resistant microorganisms [1–5].
For example, both extended-spectrum betalactamase-producing Escherichia coli (ESBL-E) [6,7]
and livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) have already been
separately isolated at different stages of the pork production chain [8–11]. Hence, there has been
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an ongoing debate regarding the potential sources, transmission routes, and risk factors of the
continuous spread of MRSA and ESBL-E between animals, humans, and the environment [12–16].
Thus, they are also perceived as a potential threat to public health [17–23]. Therefore, in this review,
methicillin-resistant Staphylococcus aureus (MRSA) and ESBL-E have been used as “indicator” bacteria
with possible zoonotic potential and occurrence in both the stable biotopes and healthcare sector
and community [24]. Consequently, farmers have been confronted with several consequences of this
problem: The potential danger of animal colonization with drug-resistant bacteria for (i) humans living
on or in the vicinity of farms [25–27], and (ii) for consumers of animal products [3,28–31]. The intended
audience of this review is farmers of intensive pig production systems worldwide as well as healthcare
workers, as humans living and working in close contact with pigs and patients in rural areas have
been found to be colonized with LA-MRSA [25,32–38]. On the other hand, in the food chain, meat
products can serve as potential transmission factors of ESBL-E from animals to humans [29,39–41].

Furthermore, the global spread of multidrug-resistant Enterobacteriaceae may be linked to
wastewater from hotspots like hospitals and/or intensive livestock production settings in Germany and
worldwide [15,16]. Consequently, the stable environment (air, wastewater, etc.) needs to be considered
as a reservoir and source of the dissemination of multidrug-resistant bacteria. Notably, bacteria not only
persists on/in the living animal, but also on surfaces that are in contact with the animals (compartment
walls and equipment) [42]. In correlation with this, LA-MRSA bacteria were detected by Friese et al. [43]
in dust samples from the investigated breeding farms in Germany and in the stable air of a fattening
farm, while ESBL-Escherichia coli isolates have been isolated from pig livestock production sites [44].
Furthermore, in the farm environment, both commensal and environmental bacteria serve as reservoirs
for the transfer of antimicrobial resistance genes to pathogenic bacteria [45,46]. Pietsch et al. [47] found
isolates of distinct E. coli clonal lineages in all three reservoirs: Human, animal, and food in Germany.
Thus, it is assumed that the contribution of the animal biotope in terms of antimicrobial resistance in
humans is not negligible [48].

Therefore, a holistic approach in the sense of “One Health” needs to be integrated into
interdisciplinary research at the interface between humans and animals and their common
environment [49–52]. In the framework of sustainable biotope infection control measures in pig
housing conditions, hygienic stable environment, animal health, and food product safety to reduce the
prevalence of resistant bacteria remains challenging in pig production [53].

2. Background Information

2.1. Antibiotic Use in Livestock Production

The first cases of antimicrobial resistance occurred in the late 1930’s [54]. From that point until
now, the production of food animals has been associated with large farms, a high density of animals,
and in this respect, an improvement in disease management [2].

In a report on antibiotic consumption and resistance in Germany in 2015 (GERMAP), tetracycline,
sulfonamide, and betalactam antibiotics (penicillin, first to fourth generation cephalosporin, and the
betalactamase inhibitors) [55] were found to be the most commonly used antibiotics in veterinary
medicine [56]. The total consumption of around 1706 tons of antibiotics used in the veterinary field
in 2011 decreased to 733 tons in 2017 [57,58]. It can be assumed that the reduction was not only
based on the EU ban, but on the basis of governmental and private antibiotic monitoring programs.
However, the causal relationship between the decrease in resistance rates and the decrease in antibiotic
use, observed on behalf of the patient on the basis of the quantities administered and/or the frequency
of treatment, cannot be examined on the basis of the available data. Metaphylactic therapy (in
which high doses of antibiotics are usually given for a short period) is still preferred in the standard
management of some highly organized and efficient management systems due to the optimized disease
prevention rates [59,60]. The adaptation of bacterial metabolism to antimicrobial agents can be forced
by under-dosing and the non-achievement of required blood and tissue levels over several days.
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To avoid the selection of drug-resistant bacteria, it is necessary to relate the dosage of antibiotics to
body mass and perform several repeat applications [61]. Further data has shown a correlation between
the frequency of treatment and the occurrence of multidrug-resistant bacteria. The higher the treatment
frequency (the average number of days each animal in the herd is treated with antibiotics), the higher
the rate of resistance identified in isolates from animals and animal products [62,63]. Fundamentally,
animal protection laws demand that animals with infections have the right to (medical) treatment [64].
Furthermore, the use of antibiotics is indicated for the maintenance of a balanced pig’s health and its
physical condition [65,66].

2.2. Characteristics of Multidrug-Resistant Bacteria (MRSA and ESBL-E)

2.2.1. MRSA

S. aureus is a Gram-positive, coagulase-positive bacterium. S. aureus demonstrates a high
robustness of months for desiccation, heat, UV radiation, and various disinfectants [67]. S. aureus
can transiently or persistently colonize the skin and mucous membranes of the respiratory tract
of humans and animals [68]. Colonization alone does not cause symptoms, but can lead to an
increased risk for secondary infections: superficial skin lesions and soft tissue infections, invasive
life-threatening bloodstream infections, and sepsis [67]. Methicillin-resistant Staphylococcus aureus
(MRSA) strains acquire their resistance by transferring the mobile genetic element, SCCmec [69].
The resistance is based on the mecA gene on the SCCmec coding for the 78 kDa alternative penicillin
binding protein (PBP2a) [70]. The PBP2a has a very low binding affinity for all betalactam
antibiotics. This allows the PBP2a to synthesize the cross-links of the peptidoglycan of the bacterial
cell wall without being inhibited by methicillin and any traditional beta-lactam antibiotics [71].
However, new “5th generation” cephalosporins (ceftaroline and ceftobiprole) have a high affinity
for this PBP, resulting in enhanced activity against methicillin-resistant S. aureus [72–74]. MRSA
in humans was first isolated in the United Kingdom and Denmark after penicillinase-stable
betalactam methicillin was introduced in 1959 [75,76]. In animals, MRSA was identified in 1972 [77].
Three different MRSA types linked with human infection can be classified based on their occurrence
and distribution patterns: hospital-associated MRSA (HA-MRSA), health care-associated community
MRSA (HCA-MRSA), and community-associated MRSA (CA-MRSA) [78,79]. The fourth category is
called livestock-associated MRSA (LA-MRSA) and is associated with livestock as well as the humans
who are in close contact with the livestock [78]. LA-MRSA has retained a pathogenic potency for
humans [80,81] although some virulence factors have been lost [78]. This underlines the potential of
“bidirectional zoonotic exchange”, which adds risks to public health [78]. Most LA-MRSA strains are
classified as clonal lineage CC398 [79,82]. Price et al. [78] assumed that clonal lineages of LA-MRSA
CC398 originated from human methicillin-sensitive Staphylococcus aureus (MSSA), which has adapted
to livestock animals [78,83].

2.2.2. ESBL and Resistance Genes

Extended-spectrum betalactamases (ESBLs) and the less common AmpC enzyme are able
to hydrolyze a broader spectrum of betalactam antibiotics than the original betalactamases from
which they are derived. ESBLs inactivate betalactam antibiotics with an oxyimino group such
as oxyimino-cephalosporin (e.g., ceftazidime and cefotaxime) and the oxyimino-monobactam
aztreonam [84,85]. ESBL and AmpC enzymes can combine to expand the resistance profile to
include betalactamase inhibitors and even carbapenems [86]. Paterson et al. [87] also described
ciprofloxacin resistance as being highly associated with ESBL-producing strains [87]. A further
increase in resistance is provided by carbapenemases (e.g., VIM [Verona integron-encoded
metallo-betalactamase], NDM [New Delhi metallo-betalactamase], OXA-48 [oxacillin resistant]) [88],
which are betalactamases that are able to hydrolyze the carbapenem reserve antibiotics (imipenem,
meropenem, and ertapenem) [89,90]. The most common types of ESBL enzymes detected in
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Enterobacteriaceae are the following: Temoneira (TEM)-type betalactamase, cefotaximase-Munich
(CTX-M)-type betalactamase, sulfhydryl variable (SHV)-type betalactamase, and oxacillin resistant
(OXA)-type betalactamase [91]. Currently, the most common worldwide CTX-M-type enzymes can
be classified into five main groups depending on their amino acid sequence: CTX-M-1, CTX-M-2,
CTX-M-8, CTX-M-9, and CTX-M-25 [13,92–94]. There are more than 40 different CTX-M types
assigned to the five main groups [95]. The enzyme that is most widely distributed between
human Enterobacteriaceae is CTX-M-15, which has also been detected in E. coli from pigs and
poultry [96,97]. The genes for ESBL (blaCTX-M genes) [98,99] are transferred by both vertical and
horizontal transfer [100]. Therefore, apart from direct transmission in Enterobacteriaceae, it is of
particular interest that resistance genes can be transferred with the help of plasmids to other pathogenic
and apathogenic microorganisms. They encode a variety of resistance genes [101]. MGEs appear in a
huge variety: Transposons, phages, plasmids, chromosomal resistance cassettes, and others, which can
be taken up by bacteria in different biotopes [102]. However, the role of antibiotic resistance genes
and their exchange of resistance genes between the human and animal microflora and between the
environment is not completely known [103].

2.3. Bioavailability and Transmission Potential of Antibiotic-Resistant Bacteria

The following aspects can be discussed to influence the spread and bioavailability of drug-resistant
bacteria in different reservoirs in Table S1 in the Supplementary Material.

3. Reservoirs and Transmission Pathways of LA-MRSA and ESBL-E

3.1. Transmission Pathways

The epidemiology and mechanisms of emergence and spread of antimicrobial resistance and
antibiotic-resistant bacteria are diverse and several possible pathways in different systems exist for
their transmission. Valentin et al. [104] indicated that the same subtypes of isolates were detected
in isolates from human and livestock and companion animal populations, suggesting a possible
exchange of bacteria or bacterial genes. Figure 1 presents some possible transmission pathways of
antibiotic-resistant bacteria between human and animal vectors and between reservoirs (air, dust, water,
manure, food, etc.) as well as exposure routes in their biotopes (stable, abattoir, etc.). Here, the term
“biotope” is defined according to Nehring and Albrecht [105] and Lötzli [106] as the living space of a
community of species.

Nevertheless, many transmission routes are still unclear. Therefore, in the following passages,
a selection of possible transmission pathways in different biotopes and reservoirs will be demonstrated
using the selected bacteria MRSA and ESBL-E. We used both MRSA and ESBL-producing E. coli
(ESBL-E) as indicators to evaluate the movement of antibiotic-resistant bacteria in the environment [24]
as Staphylococcus aureus occurs in both the mucous membrane of humans and animals and is
very resistant to the environment. The MRSA strain CC398 is known to be transferred via direct
contact between animals [107] and humans [25,108–110], as well as through the environment [111],
particularly airborne transmission [43,112]. On the other hand, Escherichia coli is frequently used
as indicator bacteria in the animal sector and in environmental hygiene. Additionally, due to its
association with swine and pork, we decided to use the resistant variant ESBL-E [113,114]. In the
following sections, the different sources and reservoirs, especially within the stable environment,
are presented and discussed in more detail regarding the different transmission potentials.
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Figure 1. Some possible routes of exposure and transmission pathways of antibiotic-resistant bacteria
and antimicrobial resistance between different reservoirs and biotopes.

3.2. LA-MRSA and ESBL-E in Humans in the Stable Biotope

The administration of antibiotics in humans and animals selects resistant strains within the
microflora and enables colonization of the mucosa with new isolates. Animal strains may be able to
transiently colonize human indigenous microflora (and vice versa) and transfer resistance genes [115].
Thus, the human respiratory and gastrointestinal tract can be reservoirs for bacteria with antibiotic
resistance [116] (Table S2). Humans working in the stable environment make contact with different
resistant strains which can act as vectors in different biotopes [117]: Farmers and veterinarians
belong to the stable’s biotope [118]. Pig farmers and veterinarians belong to this defined risk
group [119]. Table S2 gives an overview over the occurrence of MRSA and ESBL-E rates in farmers
and veterinarians in Europe and possible transmission pathways. Nevertheless, the importance of
drug-resistant Staphylococcus aureus and/or E. coli strains isolated from the animal biotope has not yet
been quantified or evaluated. However, it is assumed that the contribution of the animal biotope in
terms of antimicrobial resistance in humans is not negligible [48]. Kraemer et al. [120] even showed
associations between antibiotic use and resistant bacteria carriage.

3.3. LA-MRSA and ESBL-E in Pigs

Possible sources for the transmission of drug-resistant bacteria and/or antimicrobial resistances
include direct contact between animals on the farm and within compartments [121,122] or via pig
trading [9,10] in livestock vehicles [123] within or between regions, and the introduction of new
animals in herds [124,125]. Pigs can also be colonized during transportation between pig production
steps or on their way to the abattoir [8,126]. Until now, the LA-MRSA CC398 strain has been found
in all stages of the food chain, varying between European countries (Table S3). Other risk factors are
reported to be associated with the occurrence of multidrug-resistant bacteria are for antimicrobial use,
purchase of gilts, and hygiene measures [127,128]. Generally, the effectiveness of the cleaning and
disinfection methods used on commercial pig farms needs to be evaluated in more detail [129,130].

Table S3 gives an overview of several studies describing the different possibilities of the
transmission of antibiotic-resistant bacteria (MRSA and ESBL-E) between pigs.
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3.4. Reservoir Stable Environment

Studies on the agricultural environment and the food chain have revealed that pathogen
reservoirs also exist in the environment outside their animal host [129,131–134]. In farm environments,
commensal, and environmental bacteria may be reservoirs for the transfer of antimicrobial resistance
genes to pathogenic bacteria [97,135–138].

3.4.1. LA-MRSA and ESBL-E in Air and Dust

Dynamic processes influencing the spread of bacteria in the biotope of the animal stable are
presented in Figure 2.
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Figure 2. Dynamic processes of bacteria in the biotope of the animal stable (modified according to
Müller et al. [139]). Bacteria can spread from their source via different dynamic processes:

• Turbulence: Spread of bacteria due to air turbulence;
• Mechanical contact: Transmission of bacteria by direct contact (passive via stable equipment or

active via persons/animals);
• Sedimentation: Reduction of circulation from the airborne state and subsequent deposit;
• Re-suspension: Bacteria not primarily and actively transported by air flow; and
• Re-entrainment: Re-return of already sedimented bacteria to the air [139].

In the pig stable, about 80% of airborne bacteria are staphylococci (Gram positive) [140] and
0.5% [141] or even 5% [142] are coliform bacteria such as E. coli (Gram negative). The imbalance between
Gram-positive and Gram-negative bacteria is attributed to the lower survival time of Gram-negative
bacteria in their airborne condition [141]. S. aureus can disperse in the air as directly suspendable
airborne particles. However, they are most often attached to and carried by dust particles [141].
Once the microorganisms get into the air, they prefer to merge into larger clusters or adhere to larger
dust particles. Airborne bacteria return via air turbulence or by sedimentation to their reservoirs on
stable surfaces or are acquired by animals or humans [126,128,143]. In contrast, coliform bacteria,
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which are excreted in feces, are mechanically bound to stable surfaces and/or litter and feed [144].
Only after the animal feces have dried out, and due to air turbulence by animal activities, does the
whirling dust and dirt particles raise them in the stable air. The level of contamination of stable air by
both airborne and coliform bacteria depends on both the animal and stable environment including the
density, age, and activity of animals, the ventilation system, the quantity of dust [145], the humidity
of the surfaces, and air as well as air turbulence. Survival of intestinal bacteria depends on the
environmental conditions outside the animal organism. Survival rates of coliforms are best in the
immediate vicinity of the animal and, therefore, in feces and fecal contaminated surfaces, whereas the
detection rate in air immediately decreases [146–148]. The bacterial concentration in the air is based
on physical processes (e.g., air flow and sedimentation) and on the organisms’ biological viability.
Influencing factors are temperature, humidity, UV radiation, air change rate, noxious gas concentration,
and the organisms’ aerodynamic shape [63,149].

Environmental contamination with MRSA was identified in the study by Weese et al. [150].
Friese et al. [43] determined that 85.2% of pig stables in Germany were LA-MRSA positive in the air.
They also identified dust as an important factor for the occurrence of MRSA in the air. Drug-resistant
S. aureus could be identified inside and outside the pig stables and originated from contaminated
dust [151]. The dissemination of MRSA between pigs within a farm by air was based on a positive
association of samples from pigs and the environment [43]. Agersø et al. [112] indicated a high
sensitivity of air samples equal to the within-herd prevalence. Therefore, they recommended air
sampling for initial testing or even screening of herds. Bos et al. [152] and Gilbert et al. [111] even
confirmed a strong association between nasal ST398 MRSA carriage in people working on the farms
for >20 h per week and MRSA air levels. In people working in the barns <20 h per week, there was
a strong association between nasal carriage and the number of working hours. This study showed
that working in the lairage area or scalding and dehairing area were the major risk factors for MRSA
carriage in pig slaughterhouse workers, while the overall prevalence of MRSA carriage was low.
Occupational exposure to MRSA decreased along the slaughter line, and the risk of carriage showed a
parallel decrease. Heinemann et al. [153] showed that a working time of three-to-six hours could be
enough for positive findings of nasal colonization with MRSA. However, it is unknown whether the
presence of LA-MRSA is a result of the carriage or retention of MRSA-contaminated dust. Nevertheless,
the persistence of LA-MRSA CC398 in humans depends on the intensity of animal contact [109]. Several
studies have investigated dust and air samples from pig farms. An overview of some of these studies
and their data is given in Table S4.

The main message of all the presented studies (in Table S4) is that exposure to the stable
environment and air in pig farms is often contaminated with LA-MRSA, and can act as a transmission
source for humans, which is an important determinant for nasal carriage, especially in this highly
exposed group of farmers. This is next to the duration of the contact with animals. Intervention
measures should therefore also target the reduction of ST398 MRSA air levels including the
improvement of environmental and operating parameters of air quality and pig performance [154,155].
In contrast, only a few studies have been performed on the spread of ESBL-E in the stable environment
such as by dust and air in pig settings [126,156–158]. Laube et al. [159] assumed dust to be a major
source for the transmission and spread of ESBL-E within stables and during the release of animals
(especially poultry) from stables. They found a high prevalence of ESBL-E in the pooled feces and dust
samples obtained on broiler chicken farms [159]. Von Salviati et al. [157] identified the transmission
potential between ESBL-E between pig farmers and their surroundings (surfaces, barn, and ambient air).
However, the detection of ESBL/AmpC–E. coli in stable air and ambient environment was low and also
found ESBL/AmpC–E. coli on surfaces in the vicinity (see details in Table S4). Furthermore, they proved
emission via slurry and transmission via flies. Hoffmann [160] hypothesized a possible transmission
of CTX-M-1 subtypes to humans via the inhalation of contaminated dust particles during exposure
in the stable environment. This assumption was confirmed by the study of Dohmen et al. [158],
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who found that CTX-M-1 carriage in pig farmers and the presence of CTX-M-1 in dust were associated,
indicating that air transmission of CTX-M 1 might be possible on pig farms.

In summary, the transmission pathway of ESBL-Enterobacteriaceae via air and/or dust spread
via the airborne route or via different vectors seems possible [127]. Otherwise, it is not possible to
distinguish between the two transmission pathways of direct contact between humans and animals
and the indirect airborne transmission pathway [160]. Contaminated manure presented the major
emission source for ESBL/AmpC-producing E. coli on pig farms [157].

3.4.2. LA-MRSA and ESBL-E in Water, Wastewater and Manure

Water contaminated with antibiotic-resistant bacteria is an important reservoir for the emergence
and spread of resistance mechanisms and mobile genetic elements [161,162]. Ingestion and dealing
with contaminated water can result in the colonization of the gastrointestinal tract of humans and
animals [163]. Thus, water constitutes not only a way for the dissemination of antibiotic-resistant
organisms among human and animal populations as drinking water is produced from surface water,
but also a major route by which resistance genes are introduced to natural bacterial ecosystems. In such
systems, nonpathogenic bacteria can serve as a reservoir of resistance genes [162]. Lupo et al. [161]
and Schwartz et al. [164] highlighted horizontal gene transfer by transduction as the main mechanism
conferring drug resistance in drinking water, surface water, and wastewater. Several other studies have
reported the presence of drug-resistant bacteria and resistance genes in fresh drinking water, rivers,
and sewage in Europe and all over the world [16,44,165–171]. Nevertheless, to date, more and more
information about the risks of contamination of livestock drinking water with antibiotic-resistant
bacteria have been provided [128,172,173]. Pletinckx et al. [174] did not find any evidence of
MRSA-positive isolates in animal drinking water on pig and poultry farms, while environmental
samples (dust, animal feed, and manure) and samples from pigs and farmers were contaminated
with MRSA. However, MRSA has been found in contaminated feed and trough water [130,172].
Thus, water sources might facilitate the transmission of MRSA between different animals [175].
Feed and troughs also represent possible sources of exposure to foodborne coliform bacteria like
E. coli [176]. Animals potentially face daily exposure to bacterial contamination from these sources.
Nevertheless, LeJeune et al. [172] indicated that the degree of bacterial contamination was associated
with potentially controllable management factors. Water systems in stables represent a complex
ecosystem that is affected by multiple factors. These factors influence the persistence and the effects of
bacteria in drinking water (pipelines and troughs) [172,177]. The multiple factors are diverse: entry
of biomass into the system promotes biofilm growth as a medium for microorganisms, installation
defects, backward spread of bacteria, high temperature, etc. Therefore, it is essential to control the
quality of the animals’ drinking water at regular intervals (at least once a year) [178]. Hartung and
Kamphues [179] determined basic practical and species-specific aspects in housing conditions including
the water collection and distribution system as basic requirements for sustainable livestock and housing
management [178,179]. Heinemann et al. [130] found high bacterial loads in animal drinkers after
cleaning and disinfection, which could lead to a vertical transfer of pathogens to newly arriving
pigs. In this context, Heinemann et al. [130] indicated that decontamination strategies such as
intensive cleaning and disinfection were effective at reducing the levels of Enterobacteriaceae on stable
floors. Nevertheless, residual contamination remains in the environment and on the surfaces of
troughs and drinkers [129,130]. The findings of Jutkina et al. [180] therefore indicate that exposure
to sub-lethal concentrations of certain antimicrobials may contribute to the emerging problem of
antibiotic resistance not only through selection of certain resistance phenotypes, but also by means of
stimulating transfer of antimicrobial resistance traits directly. Schwartz et al. [164] assumed a possible
transfer from wastewater and surface water to drinking water distribution systems. Hölzel et al. [181]
expected that antibiotic-resistant bacteria could also reach the food chain via human and animal
manure applications. Thus, the possible risk for the transmission of antibiotic-resistant bacteria,
resistance genes, and antibiotics from human wastewater or animal manure to the environment,



Sustainability 2018, 10, 3967 9 of 26

including drinking waters and the food chain, cannot be neglected. Some studies have reported
multidrug-resistant pathogens in the soil and water of farm environments. The ESBL-variants detected
corresponded to those previously found in animals or humans living in a farm environment [182,183]
(Table S5). To date, several non-European studies have reported multidrug-resistant pathogens in
the vegetables, soil, and water of farm environments. The ESBL-variants detected corresponded to
those previously found in animals or humans living in a farm environment [182,183]. Vital et al. [184]
proved that multidrug-resistant isolates were observed in irrigation water, soil, and vegetables in
urban farms, indicating that water serves as a possible route for a wide distribution across all types
of borders. All of the presented studies commonly demonstrate (molecular) homology analysis of
CTX-M-producing E. coli isolates collected from water and/or swine, and/or human, implying that
multidrug-resistant pathogens in the aquatic environment might derive from both humans and
animals [44,185]. However, contaminated slurry was presented as the major emission source for
ESBL/AmpC-producing E. coli in pig fattening farms [158]. Several other studies identified ESBL
strains in manure samples from pig farms (Table S5). However, a possible link between the prevalence
of ESBL-E in hospitals and other sources such as local food, water, or animal sources has not been
identified [186].

3.5. LA-MRSA and ESBL-E in the Food Chain: Abattoir Biotope

Abattoirs can be possible sources of drug-resistant bacteria [187]: Carry-over of resistant
bacteria at the time of slaughter, the hygiene related to the slaughter processes, meat processing
hygiene, and retail handling [188,189] (Table S6). Pietsch et al. [47] found isolates of distinct
E. coli clonal lineages in all three reservoirs of human, animal, and food in Germany. However,
a direct clonal relationship of isolates from food animals and humans was only noticeable for
a few cases. All foodborne outbreaks have been caused by enteropathogens. The role of the
ESBL-producing Enterobacteriaceae in these persons was considered as commensal flora. Thus, in
comparison to the general population, humans involved in food processing need to be considered
as very important intermediate reservoirs and vectors for ESBL genes remaining in food retailers
contaminated with ESBL-producing bacteria [190]. Normanno et al. [191] clearly demonstrated the
need for improved hygiene standards to reduce the risk of occupational and foodborne infection
linked to the handling/consumption of raw pork containing resistant bacteria like MRSA and
ESBL-Enterobacteriaceae.

4. Sustainable Biotope Approaches

4.1. Animal Health in the Livestock Biotope

The origin of many health problems in pig production is very complex in nature [192]. Diseases
that occur in a multi-factor system such as pig production are not only defined by one factor, but by
the interplay of a variety of processes that take place in the animate and inanimate environments of
the animal and within the animal [192]. Künneken [143] described the interaction between several
factors in the stable environment in his model (Figure 3).

In modern intensive livestock, the following infection-promoting and infection-inhibiting factors
can influence the balance of the stable biotope:

1. A high number of passages of host pathogens with potentially increased virulence within herds;
2. Higher rates of the adhesion of pathogens;
3. The rapid spread of pathogens via direct host contact, food, water, air, and living vectors;
4. The use of high-performance animals that are more sensitive to environmental stressors;
5. The neglect of hygiene principles, e.g., sufficient drying times during cleaning and

disinfection; and
6. The reduced possibility of individual health control and animal observation [143].
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These infection-promoting and infection-inhibiting factors are involved in constantly changing
processes in the stable biotope. If there is a summation of many infection-promoting factors in one
or all of the three systems, a chain of events is initiated with the possible outcome of an infectious
disease [192]. Walker et al. [193] identified three aspects in the problem of increasing the resistance
of bacteria in, for example, a pig producing system: Pigs have difficulties developing and stabilizing
their individual natural barrier and immune response (stable-specific immunity) against the increase
and spread of pathogens caused by a high pig density or when pigs are introduced into a new stable
with a foreign pig population. These and other actions can trigger chronic stress responses with the
pigs becoming more susceptible to infections that are caused by potentially infectious commensal
bacteria [194]. Thus, closed systems show lower colonization rates with multidrug-resistant bacteria
than those farms with a high rate of incoming pigs (maybe even from one or even more than two
different suppliers), which interferes with stable immunity [10,195]. Thielen et al. [196] referred to
animal health in livestock as a balance between infection pressure and the animals’ immune systems.

4.2. Preventive Health Management: Part of Quality Management

At the beginning of the last century, animals were only treated when they were clearly suffering
from a disease or if their lives were acutely threatened. Whereas in recent decades, the concept
of “integrated veterinary herd health care” has been established, focusing on the combination of
systematic animal health management of the entire animal population for the prevention and early
detection of diseases. Today, the focus is on the implementation to react to any deviation from the
normal state as fast as possible given that diseases, even if they occur without visible symptoms,
impair the well-being of the animals, and thus have effects on eating and drinking behavior [197].

From the perspective of protecting consumer health, it is important to prevent the entry of
pathogens from animal origins that are likely to cause human zoonosis [198]. Strategies for the
maintenance of animal health afford a direct contribution towards optimizing consumer health
protection [199]. In recent years, research projects have focused on the implementation and
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organization of intra and inter-farm health management systems in meat-production chains [200–210].
The main task of health management is the maintenance of animal health at all stages of animal
production. Animal health not only has special significance for the production of healthy food,
but also for the economical optimization of the various production stages, namely farrowing, nursery,
and finishing [201,204,205]. According to Berns [200] and Welz [208], diseases are considered as process
errors and quality-reducing effects in terms of quality management. Therefore, preventive quality
management focuses on health precautions on livestock farms [211].

Similar to human medicine, animal health management can be divided into three levels
(Table 1) [212].

Table 1. Definition of the three levels of prevention (according to Schulze Althoff, [212]).

Level Definition

Primary prevention
Structural, group-based and individual measures to prevent the
occurrence of disturbances

Secondary prevention
Preventive measures initiated once the pathogen has been identified in
order to prevent progression of the disturbance

Tertiary prevention Measures to prevent aggravation of the disturbance and mitigate the
effects of the disturbance

According to Berns [200], the main priorities of preventive animal health management are the
following:

• Detect diseases while still in the subclinical stage;
• Prevent infections from progressing to a clinical stage and stop the spread from a single animal to

the whole herd; and
• Identify and promptly eliminate stressors and risks to animal health from the environment.

Consequently, to ensure food safety and quality, the traditional quality control at the end of
the production process needs to be supplemented by control inspections at an incoming and at
an intermediate level—when selling and purchasing piglets, finishing pigs, and at slaughter [204].
To assure food safety and consumer protection, only healthy pigs that originate from farms
with a certified health status should be slaughtered [212]. Health and quality assurance in pork
production encompasses:

• Pig supplying farms;
• Networks of primary producers; and
• Slaughtering, processing, and distribution [205,213].

Thus, animal health management is deemed to be an integral part of quality management in
a food supply chain, all the way to grocery retail stores [198,214]. Coordinating these measures
with several enterprises along the value-added pork chain defines the inter-farm chain-oriented
quality management [215]. The concept of a quality management system is defined as systematic
planning, implementation, and documentation with an influence on the quality of a product [206,209].
The driving force is each participating enterprise’s awareness that by improving its own quality
management, it can make the quality management efforts of other enterprises in the value chain
more efficient. This enables the maximization of the profits of the enterprises that compose the value
chain [216,217].

4.3. “One Health” Crossing Biotopes

The interdisciplinary cooperation in solving complex health problems is intended to create
incentives for system innovation [50]. The resistance problem is one of many examples that can be
perfectly addressed within the “One Health” approach [218–221]. In the case of pork production,
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this means considering humans and animals in the “livestock” biotope, as well as the “food processing
and transport” and “health care system” biotopes, are all interconnected via the environment.

Every pig production farm that produces animals for sale constitutes a separate biotope. Pigs,
throughout their life, are often moved from one biotope to another. The production of pigs usually
includes four transfers and changes of stables. Each farm involved constitutes a geographical and
organizational unit within the chain [209]. Nevertheless, it should not be underestimated that on
finishing farms, the source of the colonization of pigs, whether acquired at the current stage or
during farrowing or nursery stages, often cannot be determined [222]. De Neeling et al. [222]
and other authors [223,224] have reported that pigs, colonized at the farrowing or nursery farm,
carry their microbial load over to the finishing stage. In this context, the livestock biotope greatly
benefits from inter-farm measures that detect and promptly reduce the risk of infections spreading
from one stage of production to the next [201,214]. The establishment of monitoring systems and
the certification of farms according to their health status use this approach. Hereby, single and
intra and inter-farm audits as well as monitoring for specific pathogens (e.g., for LA-MRSA and
ESBL-E) have been implemented [201,204,205]. With the renewal of the German Drug Act (16th
AMG-Novelle) in 2014, antibiotic consumption in farm animal production is monitored to reduce its
usage. Exceeding the farm-specific biannual therapeutic frequency beyond the 75% quantile obligates
livestock owners to submit a written plan of measures to the public veterinary authority. Four years
after its implementation, an in-depth scientific evaluation of the antibiotic monitoring is still due [225].
Epidemiological trends within a value-added chain can, according to Schulze-Geisthövel et al.
(2015), be recognized, and farm comparisons such as industry marketing can be made by the
common use of investigation data. Salmonella monitoring, for instance, is regularly included in
the coordinated investigations between supplier farms and abattoirs [226,227]. Schulze Althoff [209]
and Düsseldorf [201] stressed that it would make sense along the pig production chain for a receiving
inspection to be referred to the supplier, an intermediate checkup referred to the farm, and a final
inspection referred to the customer. This is because the carcass can be contaminated through the
slaughtering process as well as by the intestinal contents of the slaughtered animals [7]. Therefore,
all E.U. member states are obligated by guideline 2003/99/EG to monitor for zoonosis and zoonotic
bacteria. In the context of zoonosis monitoring, representative data regarding the occurrence of
zoonotic bacteria has for years been acquired in the most important food supplying animal species
and products to measure the infection risk for consumers from consuming food.

Furthermore, many decision-makers in politics and science have demanded and promoted
from agricultural science, veterinarian and human medicine, and environmental sciences, a common
collaborative holistic strategy (the “One Health” approach) against the spread of antibiotic-resistant
bacteria [51,220].

5. Final Remarks, Recommendations and Future Directions

The holistic collaborative “One Health” approach between human medicine and agricultural
sciences has advanced the risk assessment of the dynamics of MRSA and ESBL-E transmission
pathways as well as that of human exposure related to livestock production (particularly pigs) and
processing. The impact of the importance of these “indicator bacteria” is still under debate; especially
as new resistance problems and transferable resistance genes are emerging. For example, the global rise
of Carbapenemase-producing Enterobacteriaceae has resulted in the increased use of Colistin resistance
and is associated with the risk of emerging resistance. This concerns agriculture just as much as human
medicine and requires round table discussions on the prudent and sustainable use of antibiotics on
both sides. As this review has demonstrated, these discussions will no longer only focus on humans
and animals and their food products. The focus of “One Health” will expand and focus on the
environmental aspect. On the other hand, in environmental hotspots with their own dynamics and
links to the reservoirs and vectors, and “animal” and “human” in different biotopes are currently
crystallizing out.
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This review tried to make a small contribution to the better understanding of possible transmission
pathways between the presented reservoirs and highlights the following aspects:

- Healthy animals do not need antibiotic medication, thus further suppressing the risk of the
occurrence of non-pathogenic resistant bacteria. The constant administration of antibiotics
to animals will destroy potential antibiotics. Therefore, to save existing potential antibiotics,
the government, physicians, and farm industries should limit the prescription of antibiotics
to prevent antibiotic resistance, and people should not easily obtain access to self-medicated
antibiotics, especially in developing countries.

- Farmers and veterinarians come into contact with antimicrobial-resistant bacteria from pigs
within the stable environment. Strong associations between the isolation of resistant commensal
bacteria (both MRSA and ESLB-E) and contact with pigs and even the working hours in the stable
could be made.

- However, not only do animals present potential reservoirs or vectors for transferring resistance
genes and resistant bacteria, but even farmers and farm workers themselves should also be
considered for their transmission potential.

- Thus, aside from organic factors, the inanimate environment such as the stable climate has a
substantial influence on the well-being and health status of pigs and the tenacity of bacteria.
Air and dust were clearly determined as sources for the contamination of humans and animals
mainly with MRSA.

- Wastewater in general (municipal, urban, with clinical and/or agroindustrial influence) serves as
a melting pot for the possible horizontal transfer between resistance genes and multidrug-resistant
bacteria. Whereas the impact of animal wastewater on surface water has yet to be investigated.

Thus far, resistant bacteria could be isolated with a higher percentage from swine and
slaughterhouse wastewater, only indicating the potential role of agricultural wastewater within the
context of environmental resistance pollution.

- Many resistant bacteria in animal drinkers could be identified after cleaning and disinfection,
which could lead to a vertical transfer of pathogens to newly arriving pigs. Therefore, methods for
cleaning performances, especially regarding the water systems in pig stables, should be evaluated.

- A high prevalence of ESBL-E was found in pig manure, indicating a high emission and
transmission potential into the stable environment and their surroundings.

- Contamination of meat with ESBL-producing E. coli and MRSA is no longer surprising. However,
the growing diversity of ESBL-E indicates a growing dissemination of ESBL-genes in E. coli in
meat products from porcine origin.

Some aspects could improve our ability to mitigate the spread of resistances and would be a
useful supplement to the already existing health management initiatives. Possible strategies for
the enhancement of individual defense mechanisms and control of the resistance status could be
the following:

• Limit the purchase of new pigs to those that are accompanied with health certificates from the
supply farms.

• Determine the MRSA/ESBL status (similar to the Salmonella monitoring), take part in a continued
health-monitoring program and create financial incentives for reduction measures.

• Use workshops and training to transfer scientific knowledge and sensitize for reduction measures.

However, permanent colonization should be distinguished from transient colonization.
Interventions—as already implemented in the health care system—may prevent transient colonization
and may hence be a useful control of MRSA not only in the hospital, but also in the stable environment.
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In general, knowledge and information about the biotope-crossing potential of multidrug-resistant
bacteria and antibiotic resistances should be the most important approach within the “One Health”
concept. Several articles in this review demonstrated that these aspects are not yet anchored in
the teaching and education of farmers, (medical and agriculture) students, multipliers, and policy
makers. In summary, these approaches contribute to a larger goal of achieving the early recognition
of antimicrobial resistance in bacterial livestock pathogens. Therefore, future scientific efforts should
clarify the persistence and spread of highly resistant bacteria in the environment, especially in the
stable and aquatic environment and their interface.

Within this framework, the implications of the “One Health” approach could have a positive
impact on all sustainable future strategies.
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