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Abstract: Existing structural safety diagnosis methods are time-consuming due to personnel-oriented
measurement methods and have a limitation that it is difficult to obtain consistent research results.
In order to overcome these limitations, this study proposes a structural safety diagnosis method
using laser scanning and BIM. In spite of the various studies related to laser scanning and BIM, it is
difficult to find a study that verifies the effect of shortening the service period and cost reduction in
terms of project management. Therefore, in this study, case analysis of structural safety diagnosis of
large-scale civil infrastructure was conducted. In the structural safety diagnosis, the laser scanning
data and the BIM model were compared and analyzed to determine the degree of deformation of
pipe rack (e.g., truss, column). Laser scanning data reflects the deformation state of large-scale civil
infrastructure. On the other hand, the BIM model was constructed by reflecting the state before the
transformation with reference to the laser scanning data. Finally, proposed method of structural
safety diagnosis saved four months. In terms of manpower saving, 125 man-month was saved.
The research findings can provide a quantitative basis for the introduction of laser scanning and
BIM technology in the structural safety diagnosis of aging large-scale civil infrastructures. However,
the limitations of this study have not been analyzed economically by considering the investment cost
(e.g., hardware, software, training, etc.) of laser scanning and BIM technology and the cost saving
effect of technology introduction.

Keywords: large-scale civil infrastructure; structural safety diagnosis; laser scanning; BIM;
empirical study

1. Introduction

Facility management is important for AEC/FM organizations to maintain a sustainable
business [1,2]. In particular, the safety inspection of infrastructure, such as aging bridges [3],
highways and rail [4], traffic facilities (e.g., tunnel) [5], and pipe racks [6,7], needs to be urgently
dealt with in light of the possible economic damage owing to sudden safety accidents and operational
interruptions. However, few case studies have been conducted on the safety inspection of large-scale
civil infrastructure. The Facility Management System of the Korea Infrastructure Safety Corporation
manages information concerning 90,989 facilities across the country. The infrastructure for most of
these facilities was constructed in the 1970s and 1980s [8]. The increase in the number of aging facilities
increases management costs, and may lead to serious safety problems if accurate safety diagnosis and
maintenance are not performed [9]. Therefore, a system capable of inspecting and managing aging
facilities in advance is required for their efficient maintenance.

A facility safety inspection refers to the process where experts equipped with experience and
the relevant technologies examine factors affecting safety in facilities [4]. Precision structural safety
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diagnosis refers to the process whereby the physical and functional defects of a facility are found,
and methods to repair and reinforce them are suggested by investigating, measuring, and assessing
structural safety, as well as the cause of such defects to take prompt and appropriate measures [10].
Precision structural safety diagnosis secures data required to determine the status and state of safety
of a facility through precise observations, measurements using testing equipment, and tests to identify
defects that cannot easily be detected otherwise by safety inspection. Status assessment refers to the
behavior whereby the exterior of a facility is investigated, and the status of the facility, including the
degrees of defects in it, is assessed. Safety assessment can be conducted using various methods, such as
the non-destructive loading test, ground investigation, and exploration, measurement, and analysis
according to the type of facility and its structural characteristics [10]. Currently, operational facility
safety diagnosis are carried out either by time-consuming site inspections or semi-automatically by
visually analyzing imagery and video data [4].

In general, facilities requiring precise structural safety diagnosis are often very large, such as
tunnels [5,11] and bridges [3]. In addition, there are many complicated cases such as the production
line inside the plant (e.g., nuclear power plant pipeline) [6], and the infrastructure (e.g., pipe rack) that
supplies the production resources [7]. The prevalent method of safety inspection derives risk factors
through comprehensive visual inspection, operational status check, and diagnostic equipment based
on checklists for each facility and type of infrastructure. This process of safety inspection requires the
long-term input of numerous personnel [4,12]. As this method involves the inspection of large-scale
civil infrastructure through separate measurements, it is challenging to obtain consistent results of
inspection, because the outcomes of safety diagnosis can differ depending on the capabilities of the
engineers. Furthermore, safety diagnosis is performed while the facility is in operation. Therefore,
the diagnosis itself entails high risk [13]. Although the data generated in each step of safety diagnosis
are in varied formats and large in number, they lack consistency and, thus, are not easily manageable.
In particular, in case of aging facilities, field surveys, status assessments, and safety assessments are
challenging because the design information is not properly managed, and it is difficult to find the
history of the modification of the facility. Moreover, sufficient information concerning the status of a
facility that can be used for safety diagnosis is not available.

Laser scanning can be considered to overcome the limitations of existing structural safety diagnosis
method [14]. Laser scanning technology offers the following benefits compared with the typical
contact-type sensors used in the architecture, engineering, and construction (AEC) industries [15]: (1) It
can perform high-speed scanning of large facilities, and can measure the surface profile. (2) It provides
millimeter-unit accuracy and spatial resolution through point cloud data. (3) It can theoretically provide
long-distance measurements of up to 6000 m [16]. Owing to these characteristics, laser scanning
technology has been used in reverse engineering [17,18], monitoring deflection and deformation [13],
monitoring the progress of construction [11,19], and topographical surveys [20]. Along with laser
scanning, building information modeling (BIM) has been widely used in the construction industry to
help construct, store, and manage information created during the lifecycle of a facility [21]. For instance,
participants of the construction project of the AEC/facility management (FM) area can obtain the
information needed for their tasks using BIM [15]. Some recent studies have combined the benefits of
these two technologies [22,23]. Therefore, in this study, we will examine the effect of structural safety
diagnosis of large-scale civil infrastructure using laser scanning and BIM.

2. Literature Review

2.1. Laser Scanning Technology

Three-dimensional laser scanning technology collectively refers to technologies capable of
acquiring and adjusting 3D point clouds, such as light detection and ranging (LiDAR) [9].
Compared with currently used technology, laser scanning directly collects 3D data on facilities at high
precision and resolution [24,25]. Owing to these benefits, researchers in many fields have studied it.
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Some studies on the reverse design that creates 3D models from laser scanning data are as follows:
Nahangi et al. [26] researched the removal of error from laser scanning data and their clustering.
Son et al. [27] researched the semantic creation of 3D models required in construction from laser
scanning data. Gimemez et al. [28] investigated technology related to creating 3D building models
from 2D scan data. Bosche et al. [29] proposed a method to monitor facilities by converting 3D scanning
data for the MEP pipe shape into BIM data. Reeder et al. [30] focused on a method to model data
required for engineering through 3D image scanning of highways. Murphy et al. [31] researched
assessment standards for 3D image adjustment, and Bhatla et al. [32] conducted research on methods
of precision assessment for as-built 3D modeling.

From the perspective of the quality assessment (QA) of facilities, some studies on the application
of laser scanning technology are as follows: Bosche [33] proposed an automated technique to recognize
3D CAD objects from laser scanning data for the visual inspection of facility elements. Shih and
Wang [34] proposed a system to measure the quality of construction of completed structures (e.g., walls).
Akinci et al. [35] proposed a general framework to inspect the quality of facilities by comparing as-built
models acquired from laser scanning data using CAD models. Han et al. [36] proposed an automated
technique to extract the cross-section of a tunnel from laser scanning data for quality management.
Gordon and Lichti [37] and Park et al. [13] acquired the results of measurements of facility deformation
from laser scanning data.

Some studies on improving the accuracy of laser scanning technology are as follows:
Teza et al. [38] proposed a damage detection technology based on the calculation of the average
and Gaussian curvatures of concrete surfaces. Tang et al. [39] investigated the detection of the
surface flatness detects of facilities using various damage detection algorithms and a 3D laser scanner.
Olsen et al. [25] proposed a technique to quantify the lost volume of reinforce concrete structures,
and Liu et al. [40] proposed an in-situ distance-and-gradient-based volume loss estimation technique
for concrete bridges.

In addition, Golparvar-Fard et al. [41] conducted a study on the accuracy evaluation of
image-based modeling and laser scanning. Brilakis et al. [42] conducted a study to automatically
generate BIM models based on hybrid video and laser scanning data. Zeibak-Shini et al. [43] conducted
a study to estimate the damage site of structures using laser scanning and as-built BIM. Despite the
various studies mentioned above, it is difficult to find any research on project duration and labor
saving when laser scanning is applied for project management.

2.2. Role of BIM in Facility Management

In general, BIM is defined as a model that contains the lifecycle information of a construction
project or its process for construction [44]. In facility safety management, the success of the application
of BIM depends on how efficiently the information generated at the design and construction stages is
handled up to the operation stage [45–47]. BIM significantly influences the FM stage in that owners
and facility managers require computerized information concerning facilities that can improve the
existing method of safety diagnosis [48]. Therefore, BIM requires information concerning facilities that
is consistent over time [49].

However, information concerning facilities is scattered in documented construction specifications,
warranties, and operation and maintenance manuals [50]. Safety problems with facilities may occur
in unexpected places [51]. The information used for the safety diagnosis of facilities consists of
as-built documentation created by the general contractor and sub-contractors who participated in the
construction. In case of the latest construction projects to which BIM was applied, the completion status
was reflected in the as-built drawings or models, which could be utilized to operate the facilities. In the
case of aging facilities, however, as-built drawings are lost or are different from the given scenario
because of long-term operation in most cases. Therefore, the role of BIM in facility management is to
provide comparative data on the status information of facilities collected through laser scanning to
determine the degree of transformation of facilities [14].
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As shown above, Laser scanning and BIM have a number of advantages that can improve
the structural safety diagnosis of large-scale civil infrastructure. Using a case study where laser
scanning and BIM were applied to the structural safety diagnosis of a large-scale civil infrastructure,
this study investigates (1) the benefits of laser scanning and BIM in structural safety diagnosis of aging
facilities, and (2) the investigation method of the deformation state of large-scale civil infrastructure by
comparing laser scanning data with BIM model.

3. Structural Safety Inspection of Civil Infrastructure Using Laser Scanning and BIM

Generation of Safety Diagnostic Information for Large-Scale Civil Infrastructure

For aging civil infrastructure, the completed documents generally do not match its status at any
given time owing to long-term operation. Safety diagnosis must be based on accurate information
concerning the state of civil infrastructure. The proposed information generation process based on laser
scanning and BIM for the safety diagnosis of civil infrastructure is shown in Figure 1. This structural
safety diagnosis was established through an expert interview with Dongyang Structural Engineers
Group, a company carrying out the case project. The steps of the process are described as follows.

(1) The as-built drawing contains the completion information of a facility [17]. In the case of civil
infrastructure, however, the drawings can be lost during operation, or they do not match the
status at the given time in many cases. Therefore, it is difficult to use this information for
safety diagnosis.

(2) The as-built BIM data refer to the 3D model built based on the completed drawings of a facility,
and contain information concerning the shape of the facility. As-built BIM data are generated
based on as-built drawings. However, if there is no as-built drawing, the as-built BIM data should
be prepared before the transformation by referring to the laser scanning data [15].

(3) Three-dimensional laser scanning refers to scanning a facility in operation in three dimensions
using a 3D laser scanner. When the given facility is large or complex, laser scanning can acquire
accurate information concerning its status by designating scanning points at various positions [5].

(4) Three-dimensional laser scanning data can be generated by integrating data scanned from
multiple positions [23]. The data contain accurate information concerning the surface of the
facility in a point cloud data format. From the data, accurate information concerning shape
required for the safety diagnosis of the facility can be obtained. In other words, laser scanning
data contain status information, which reflect construction errors and displacement, that is
unknown in the as-built BIM data.

(5) The accurate as-built BIM data must be modeled based on laser scanning data [33]. Safety diagnosis
must be performed consistently instead of once. The BIM model should be a criterion for
determining the degree of deformation of the laser scanning data that accurately reflects the
deformation state.

(6) If laser scanning is repeated in the future for the safety diagnosis of a facility, the modifications
in it can be consistently monitored by directly comparing laser scanning data generated in the
previous safety diagnosis and the as-built BIM data [12].

(7) Field survey data relating to the external conditions of facilities are obtained by investigating
the design documents and related materials, the damage status of the components of the facility,
their deformation status, and the application status of the load. The data include the tilt,
displacement, crack, and surface damage information of the components [10].

(8) The laser scanning data and the BIM model should be integrated on the basis of specific
coordinates to more accurately analyze the results of the external condition of the large-scale civil
infrastructure [18,26]. The integrated 3D model is used to determine the degree of displacement
through cross-sectional analysis.
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(9) The field survey data concerning the internal conditions of a facility include information
concerning the cross-section of constituents of the facility. The data include information
concerning the cross-sectional status and performance of the components, such as the fire-resistant
covering of steel components, film thickness, bolt-tightening force, neutralization information for
reinforced concrete components, and compressive strength. Such information is directly surveyed
from the field [10].

(10) BIM data develops by reflecting the field survey data in terms of the internal conditions
(e.g., material, size, etc.) of facilities [29].

(11) The BIM model reflecting the internal characteristics of the facility can be utilized as a structural
analysis model for accurate structural safety diagnosis [45]. Therefore, it is possible to easily
extract a model for accurate structural analysis using BIM authoring tool (e.g., revit).

(12) Data for accurate structural analysis can be generated using this model. Such data are used to
repair and reinforce facilities [37].

(13) Facilities are subject to deformation over time owing to the aging of the constituent materials or
the effect of external forces. Therefore, the information generation process for facilities can be
repeatedly used according to the period of safety inspection of the corresponding facility [13].
Through this, it is possible to consistently manage safety and secure the data.
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As a result of the expert interview, a large amount of manpower is invested in the long-term for
the initial field investigation, data preparation and data collection for structural safety evaluation in
the structural safety diagnosis of large facilities. We expect to save not only time but also manpower
by replacing this labor-intensive work with laser scanning.

4. Case Study

4.1. Project Description

Ulsan plant of the H company was used for the case study of this research. The case project is the
largest single factory in the world with an area of 5,000,000 square meters. The Ulsan plant consists of
five finished car factories, engine and transmission plant, and road driving/crash test site that can be
independently produced. It is the largest single factory in the world, producing an average of 5400
vehicles a day. It is a large-scale civil infrastructure that can cause enormous losses economically if
production safety is interrupted due to facility safety problems. The factory was built from 1968 to
1975. Thus, the factory required structural safety diagnosis of the facilities owing to aging. Especially,
the scope of the case project is a structural safety diagnosis for pipe racks. The pipe racks of the factory
represented pipes and racks used for raw material transport inside the factory. Figure 2 shows the
layout of a case study project for a pipe rack. Yellow, green, pink, and red indicate the path of the
main pipe rack.

Figure 2. Layout of a case study project for pipe rack.

As the design documents created by the company that previously performed the structural safety
diagnosis had been different from the status of the plant at the time, the safety diagnosis of the facilities
could not be properly performed. Moreover, the facilities were large, the prevalent personnel-oriented
method of safety diagnosis was not economically efficient. Therefore, the authors performed a
safety diagnosis of the aging pipe racks in the factory using laser scanning and BIM technologies.
Dongyang Structural Engineers Group, which executed this project, is a structural engineering design
office that has examined the status of construction in factories, performed structural safety diagnosis
and maintenance, reverse engineering, and managed the quality of construction of irregular buildings
using BIM and laser scanning.

4.2. Laser Scanning- and BIM-Based Civil Infrastructure Safety Inspection

4.2.1. Equipment

The 3D laser scanner used in this case study was the TX8 model supplied by Trimble, and its
specifications are shown in Table 1. TX8 is a high-performance 3D laser scanner used to acquire
precision data. The representative characteristics of this model are that it can perform ultra-high-speed
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scanning using Trimble’s lightning technology and acquire data in a stable manner regardless of the
reflectivity of the target object. The speed of basic point cloud acquisition was 1,000,000 points/s,
indicating that the model was suitable to scan large-scale facilities.

Table 1. Specifications of 3D laser scanner (TX8 supplied by Trimble).

Category Specification

Scan speed 1,000,000 pts/s
Scan range Horizontal 360◦/vertical 317◦

Scan distance 0.6–340 m
Scan time 2–14 min
IP rating IP 54
Accuracy 1 mm (2–80 m)

Laser class Class 1
RGB External camera

Tilt sensor O (0.5”)
Operating temperature 0–40 ◦C

Furthermore, the scanner supported an intuitive and simple touchscreen interface as shown in
Figure 3. All functions of the scanner could be controlled via the touchscreen. Constantly accurate
data could be acquired regardless of weather conditions. The scanner could be used in combination
with images from high-resolution cameras and point cloud data. The applications of this 3D laser
scanner are wide-ranging, including surveying, industrial facilities, civil infrastructure, mines and
quarries, deformation monitoring, quality control, urban environment, building as built, building
MEP, BIM, and VDC, tank calibration/inspection, preservation and restoration, and public safety and
forensics [52].
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When the as-built BIM data were generated using point cloud data, multiple software programs
were used. Autodesk’s ReCap, Revit, Plant3D, and Civil3D; Trimble’s Realworks and Tekla;
Intergragh’s PDS and Smart Plant3D, Leica’s Cyclone and CloudWorkx; and Faro’s PointSense Plant
provide solutions for the management, adjustment, analysis, simulation, automatic modeling, and 3D
modeling of point cloud data so that the status of facilities can be easily modeled [53]. In this study,
the as-built BIM data were generated through Revit using point cloud data because connection to
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model generation for structural analysis and the structural analysis task, which are follow-up tasks,
was considered as the safety diagnosis of the status of the facilities was the final objective.

4.2.2. Process

Preliminary Field Survey

A preliminary field survey of the project revealed problems of constituent deformation, such as
deflection of structural beam, height increase due to pipeline expansion, subsidence and junction
defects as shown in Figure 4. Accordingly, inspections of aging facilities, enhanced facilities,
and external deformation were required. As a result of the interview with the project manager
of the structural engineering company, the prevalent personnel-oriented method of safety diagnosis
was applied, 20 personnel for three months would have been needed only for field measurements.
It was also found that 25 personnel for three months would have been needed for model creation,
structural analysis, and data summary. A number of restrictions also applied, including a limited
survey period, the absence of past data, complex structural systems, and risks of high-place work.
Therefore, laser scanning and BIM were used for the safety diagnosis of the project.
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Preliminary Survey of the Location and Status of Target Building

Prior to performing 3D laser scanning, a preliminary survey on the location and status of the
target building was conducted as shown in Figure 5 to examine the performance of the 3D laser scanner.
As the scale of the case project was large, it was impossible to generate the integrated point cloud data
for all facilities at a time. To improve the accuracy of the safety diagnosis, the facilities were divided
and integrated point cloud data were obtained.

In order to improve the efficiency of structural safety diagnosis, the structural safety diagnosis
scope of case project was set around the long span where deformation is expected. As shown in Table 2,
the total length of the area surveyed by laser scanning is close to 1 km (959.2 m) in this case project.

Therefore, as shown in Figure 6a–c, complicated areas where the pipe rack path changes or
facilities are integrated are excluded from the structural safety diagnosis. Figure 6a–c shows an
examples for a site to be surveyed. In order to minimize the manpower for a certain period of time,
the scope of the survey was set up using laser scanning around the main long span area.
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Figure 5. Preliminary survey of the location and status of pipe racks.

Table 2. Total structural safety diagnosis service scope of case project using laser scanning.

No. of Survey Sections Scope of Structural Safety Diagnosis Using Laser
Scanning: Straight Length (mm)

No. 1 50,000
No. 2 133,200
No. 3 79,180
No. 4 96,240
No. 5 57,300
No. 6 143,130
No. 7 144,700
No. 8 26,820
No. 9 61,130

No. 10 55,780
No. 11 38,240
No. 12 39,200
No. 13 34,280
Total 959,200

Laser Scanning

Figure 7 shows the results of integrating laser scanning points for the target facilities and the point
cloud data scanned at each point. To acquire the point cloud data for the target facilities, scanning was
performed at five points, and it took two to three minutes per point. The point cloud data acquired from
each scanning point were integrated into a file using Trimble’s Realworks. In the case project, pipe racks
are not only large in size but also vary in location. The global positioning system (GPS) coordinate
system was used to manage laser scanning data for large-scale civil infrastructure. According to the
results of interviews with structural experts, the coordinate system can use relative coordinates instead
of absolute coordinates depending on the type, size, and service range of the project.
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Generating BIM Data for Given Conditions

Point cloud data can be associated with various data formats as shown in Figure 8. The point
cloud data acquired through laser scanning accurately reflected the status of the target facilities.
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Although Realworks integrates point cloud data and provides functions to use them in various ways,
the data were connected to the CAD and BIM for structural analysis, creating a status drawing,
and securing facility management data. In the project, Revit was used as the authoring tool for the
BIM data because the information it generates is useful for the structural analysis task. In other words,
the structural BIM model for the facilities based on Revit was used as the model for structural analysis.
As mentioned Section 2.2, the BIM model should be comparable to laser scanning data. Therefore,
the BIM model is not modeled in the same way as the 3D shape of the laser scanning data reflecting
the post-transformation state of the facility. However, the BIM model for the pipe rack was constructed
based on the exact positional coordinates. Although this method is very simple, it can overcome the
limitations of accuracy in automatically modeling the BIM model from laser scanning data. In addition,
the manpower required for additional work required to build a BIM model using laser scanning data
can be reduced. Most importantly, it provides two quantitative, comparative data (laser scanning
data and BIM) to support structural engineer’s decision making, which is the subject of assessing the
stability of large-scale facilities in the structural safety diagnosis service.

Method of Structural Safety Diagnosis

Structural engineers can make accurate judgments by comparing and analyzing two pieces of
information in a structural safety diagnosis. The first piece of information is laser scanning data that
reflects the deformation of large-scale civil infrastructure. The second information is the BIM model
which does not reflect the deformation state created by referring to the laser scanning data. The two
pieces of information can be integrated in 3D as shown in Figure 9.

Using the integrated 3D model (Figure 9) for conditions prevailing at the given time, the plan,
elevation, and cross-sectional information was extracted, and the structural safety diagnosis of large-scale
civil infrastructure was then performed. With reference to the integrated 3D model, the structural
engineer performs the structural safety diagnosis. As shown in Figure 10, the cross-sectional information
of the structural problem can be freely extracted from the 3D model, and the degree of deflection can
be grasped by comparing and analyzing the laser scanning data and the BIM model.

Furthermore, it was possible to perform structural safety diagnosis for a specific area using laser
scanning and BIM data. Figure 11 shows a visual representation of the deflection analysis of the truss
supporting the pipes passing through the pipe rack.

The structural engineer analyzes the deflection of the truss at a specific location by reviewing
the section of the 3D model incorporating the laser scanning data and the BIM model. The degree of
deflection is analyzed by directly comparing the laser scanning data, which reflects the deformation of
the facility, and the BIM model before the deformation, through the extracted section. Through this
analysis, structural engineer perform structural safety diagnosis. The contents of analysis included the
magnitude of deflection, its span, and deflection-to-span ratio according to the measurements.

Figure 12 shows the structural safety diagnosis results for the deflection of the truss. The values
of points A, B, and C shown in Figure 12 indicate the level difference (z value difference) between laser
scanning data and BIM model at each position. The magnitude of deflection and deflection-to-span
ratio were calculated by the following Equations (1) and (2). Based on these results, the structural
engineer evaluates the structural safety of large-scale civil infrastructure. Based on these results,
a follow-up repair and reinforcement plan will be established.

Deflection = B − (A + C)/2 (1)

Deflection-to-span ratio = Deflection/Span (2)
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Figure 12. Structural safety diagnosis results for the deflection of the truss: (a) Location: X1~X2/Y1, (b)
Location: X1~X2/Y2, (c) Location: X2~X3/Y1, and (d) Location: X2~X3/Y2.

Tables 3 and 4 show the results of the investigation of the deformation (e.g., degree of tilting) of
the column supporting the pipe rack. The structural engineer performs a structural safety diagnosis of
the main columns by analyzing sections on the planes extracted from the 3D model incorporating the
laser scanning data and the BIM model. The degree of deflection is analyzed by directly comparing
the laser scanning data, which reflects the deformation, and the BIM model before the deformation,
through the extracted section. The contents of analysis included the direction of displacement, angle of
displacement, degree of displacement, displacement ratio according to the measurements.
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Table 3. Structural safety diagnosis of the tilt of the column through plan view.

Location of
Measurement

Column
Height

Direction of
Displacement

Angle of
Displacement

Degree of
Displacement

Displacement
Ratio

X1/Y2 7700

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 21 

 
Figure 12. Structural safety diagnosis results for the deflection of the truss: (a) Location: X1~X2/Y1, 
(b) Location: X1~X2/Y2, (c) Location: X2~X3/Y1, and (d) Location: X2~X3/Y2. 

Tables 3 and 4 show the results of the investigation of the deformation (e.g., degree of tilting) 
of the column supporting the pipe rack. The structural engineer performs a structural safety 
diagnosis of the main columns by analyzing sections on the planes extracted from the 3D model 
incorporating the laser scanning data and the BIM model. The degree of deflection is analyzed by 
directly comparing the laser scanning data, which reflects the deformation, and the BIM model 
before the deformation, through the extracted section. The contents of analysis included the 
direction of displacement, angle of displacement, degree of displacement, displacement ratio 
according to the measurements. 

Table 3. Structural safety diagnosis of the tilt of the column through plan view). 

Location of 
Measurement 

Column 
Height 

Direction of 
Displacement 

Angle of 
Displacement 

Degree of 
Displacement 

Displacement 
Ratio 

X1/Y2 7700 

 

0.09 12 Below 1/1000 

X1-1/Y1 7700 

 

0.18 24 1/320 

X2/Y2 6300 

 

0.86 95 1/66 

(a) X1~X2/Y1
deflection : -36.64 mm 
span : 26,751 mm
deflection-to-span ratio : 1/730

(b) X1~X2/Y2
deflection : -7.88 mm 
span : 26,751 mm
deflection-to-span ratio : below 1/1000

(c) X2~X3/Y1
deflection : -92.7 mm 
span : 33,814 mm
deflection-to-span ratio : 1/368

(d) X2~X3/Y2
deflection : -88.4 mm 
span : 33,814 mm
deflection-to-span ratio : 1/382

A
(111.18)

B
(86.70)

C
(135.50)

A
(118.25)

B
(125.08)

C
(147.66)

A
(123.66)

B
(41.22)

C
(144.27) A

(140.15)

B
(60)

C
(156.63)

A

Y2

X1

12

5
6
.22
°

A

Y1

X1-1

1
.7
5
°

BB

24

2
0
.9
2
° C95

Y2

X2

C

0.09 12 Below 1/1000

X1-1/Y1 7700

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 21 

 
Figure 12. Structural safety diagnosis results for the deflection of the truss: (a) Location: X1~X2/Y1, 
(b) Location: X1~X2/Y2, (c) Location: X2~X3/Y1, and (d) Location: X2~X3/Y2. 

Tables 3 and 4 show the results of the investigation of the deformation (e.g., degree of tilting) 
of the column supporting the pipe rack. The structural engineer performs a structural safety 
diagnosis of the main columns by analyzing sections on the planes extracted from the 3D model 
incorporating the laser scanning data and the BIM model. The degree of deflection is analyzed by 
directly comparing the laser scanning data, which reflects the deformation, and the BIM model 
before the deformation, through the extracted section. The contents of analysis included the 
direction of displacement, angle of displacement, degree of displacement, displacement ratio 
according to the measurements. 

Table 3. Structural safety diagnosis of the tilt of the column through plan view). 

Location of 
Measurement 

Column 
Height 

Direction of 
Displacement 

Angle of 
Displacement 

Degree of 
Displacement 

Displacement 
Ratio 

X1/Y2 7700 

 

0.09 12 Below 1/1000 

X1-1/Y1 7700 

 

0.18 24 1/320 

X2/Y2 6300 

 

0.86 95 1/66 

(a) X1~X2/Y1
deflection : -36.64 mm 
span : 26,751 mm
deflection-to-span ratio : 1/730

(b) X1~X2/Y2
deflection : -7.88 mm 
span : 26,751 mm
deflection-to-span ratio : below 1/1000

(c) X2~X3/Y1
deflection : -92.7 mm 
span : 33,814 mm
deflection-to-span ratio : 1/368

(d) X2~X3/Y2
deflection : -88.4 mm 
span : 33,814 mm
deflection-to-span ratio : 1/382

A
(111.18)

B
(86.70)

C
(135.50)

A
(118.25)

B
(125.08)

C
(147.66)

A
(123.66)

B
(41.22)

C
(144.27) A

(140.15)

B
(60)

C
(156.63)

A

Y2

X1

12

5
6
.22
°

A

Y1

X1-1

1
.7
5
°

BB

24

2
0
.9
2
° C95

Y2

X2

C

0.18 24 1/320

X2/Y2 6300

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 21 

 
Figure 12. Structural safety diagnosis results for the deflection of the truss: (a) Location: X1~X2/Y1, 
(b) Location: X1~X2/Y2, (c) Location: X2~X3/Y1, and (d) Location: X2~X3/Y2. 

Tables 3 and 4 show the results of the investigation of the deformation (e.g., degree of tilting) 
of the column supporting the pipe rack. The structural engineer performs a structural safety 
diagnosis of the main columns by analyzing sections on the planes extracted from the 3D model 
incorporating the laser scanning data and the BIM model. The degree of deflection is analyzed by 
directly comparing the laser scanning data, which reflects the deformation, and the BIM model 
before the deformation, through the extracted section. The contents of analysis included the 
direction of displacement, angle of displacement, degree of displacement, displacement ratio 
according to the measurements. 

Table 3. Structural safety diagnosis of the tilt of the column through plan view). 

Location of 
Measurement 

Column 
Height 

Direction of 
Displacement 

Angle of 
Displacement 

Degree of 
Displacement 

Displacement 
Ratio 

X1/Y2 7700 

 

0.09 12 Below 1/1000 

X1-1/Y1 7700 

 

0.18 24 1/320 

X2/Y2 6300 

 

0.86 95 1/66 

(a) X1~X2/Y1
deflection : -36.64 mm 
span : 26,751 mm
deflection-to-span ratio : 1/730

(b) X1~X2/Y2
deflection : -7.88 mm 
span : 26,751 mm
deflection-to-span ratio : below 1/1000

(c) X2~X3/Y1
deflection : -92.7 mm 
span : 33,814 mm
deflection-to-span ratio : 1/368

(d) X2~X3/Y2
deflection : -88.4 mm 
span : 33,814 mm
deflection-to-span ratio : 1/382

A
(111.18)

B
(86.70)

C
(135.50)

A
(118.25)

B
(125.08)

C
(147.66)

A
(123.66)

B
(41.22)

C
(144.27) A

(140.15)

B
(60)

C
(156.63)

A

Y2

X1

12

5
6
.22
°

A

Y1

X1-1

1
.7
5
°

BB

24

2
0
.9
2
° C95

Y2

X2

C

0.86 95 1/66

X2-1/Y1 6300

Sustainability 2018, 10, x FOR PEER REVIEW  15 of 21 

X2-1/Y1 6300 

 

0.78 86 1/73 

X3/Y2 5855 

 

1.01 103 1/57 

X3-1/Y1 5855 

 

0.61 63 1/93 

Table 4. Structural safety diagnosis of the tilt of the column through section view. 

Location of 
Measurement 

X1/Y2 X1-1/Y1 X2/Y2 X2-1/Y1 X3/Y2 X3-1/Y1 

Section view of 
column 

      

Facility Management Using Laser Scanning Data and a BIM Model 

The case study of this study focused on the way to investigate the safety status of the 
large-scale civil infrastructure by comparing the laser scanning data with the BIM model. The 
advantage of the structural safety diagnosis using the laser scanning data and the BIM model 
proposed in this study is that it provides quantitative information necessary for long-term 
operation and maintenance of the large-scale civil infrastructure. This information can be used as 
basic data for the maintenance and reinforcement planning of large-scale civil infrastructure, and 
can also be directly used for extracting the drawings for the status of the facilities as shown in 
Figure 13. Various stakeholders can take advantage of drawings that reflect accurate state of 
large-scale civil infrastructure. This information can shorten the duration of operational and 
maintenance services and reduce the workforce. 

D
86

X2-1

Y1

D

1
9
.5
9
°

Y2

X3

E

E

2
4
.4
8
°103

F

F

1
7
.2
9
°

63

Y1

X3-1

0.78 86 1/73

X3/Y2 5855

Sustainability 2018, 10, x FOR PEER REVIEW  15 of 21 

X2-1/Y1 6300 

 

0.78 86 1/73 

X3/Y2 5855 

 

1.01 103 1/57 

X3-1/Y1 5855 

 

0.61 63 1/93 

Table 4. Structural safety diagnosis of the tilt of the column through section view. 

Location of 
Measurement 

X1/Y2 X1-1/Y1 X2/Y2 X2-1/Y1 X3/Y2 X3-1/Y1 

Section view of 
column 

      

Facility Management Using Laser Scanning Data and a BIM Model 

The case study of this study focused on the way to investigate the safety status of the 
large-scale civil infrastructure by comparing the laser scanning data with the BIM model. The 
advantage of the structural safety diagnosis using the laser scanning data and the BIM model 
proposed in this study is that it provides quantitative information necessary for long-term 
operation and maintenance of the large-scale civil infrastructure. This information can be used as 
basic data for the maintenance and reinforcement planning of large-scale civil infrastructure, and 
can also be directly used for extracting the drawings for the status of the facilities as shown in 
Figure 13. Various stakeholders can take advantage of drawings that reflect accurate state of 
large-scale civil infrastructure. This information can shorten the duration of operational and 
maintenance services and reduce the workforce. 

D
86

X2-1

Y1

D

1
9
.5
9
°

Y2

X3

E

E

2
4
.4
8
°103

F

F

1
7
.2
9
°

63

Y1

X3-1

1.01 103 1/57

X3-1/Y1 5855

Sustainability 2018, 10, x FOR PEER REVIEW  15 of 21 

X2-1/Y1 6300 

 

0.78 86 1/73 

X3/Y2 5855 

 

1.01 103 1/57 

X3-1/Y1 5855 

 

0.61 63 1/93 

Table 4. Structural safety diagnosis of the tilt of the column through section view. 

Location of 
Measurement 

X1/Y2 X1-1/Y1 X2/Y2 X2-1/Y1 X3/Y2 X3-1/Y1 

Section view of 
column 

      

Facility Management Using Laser Scanning Data and a BIM Model 

The case study of this study focused on the way to investigate the safety status of the 
large-scale civil infrastructure by comparing the laser scanning data with the BIM model. The 
advantage of the structural safety diagnosis using the laser scanning data and the BIM model 
proposed in this study is that it provides quantitative information necessary for long-term 
operation and maintenance of the large-scale civil infrastructure. This information can be used as 
basic data for the maintenance and reinforcement planning of large-scale civil infrastructure, and 
can also be directly used for extracting the drawings for the status of the facilities as shown in 
Figure 13. Various stakeholders can take advantage of drawings that reflect accurate state of 
large-scale civil infrastructure. This information can shorten the duration of operational and 
maintenance services and reduce the workforce. 

D
86

X2-1

Y1

D

1
9
.5
9
°

Y2

X3

E

E

2
4
.4
8
°103

F

F

1
7
.2
9
°

63

Y1

X3-1

0.61 63 1/93

Facility Management Using Laser Scanning Data and a BIM Model

The case study of this study focused on the way to investigate the safety status of the large-scale
civil infrastructure by comparing the laser scanning data with the BIM model. The advantage of the
structural safety diagnosis using the laser scanning data and the BIM model proposed in this study is
that it provides quantitative information necessary for long-term operation and maintenance of the
large-scale civil infrastructure. This information can be used as basic data for the maintenance and
reinforcement planning of large-scale civil infrastructure, and can also be directly used for extracting
the drawings for the status of the facilities as shown in Figure 13. Various stakeholders can take
advantage of drawings that reflect accurate state of large-scale civil infrastructure. This information
can shorten the duration of operational and maintenance services and reduce the workforce.
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Table 4. Structural safety diagnosis of the tilt of the column through section view.

Location of
Measurement X1/Y2 X1-1/Y1 X2/Y2 X2-1/Y1 X3/Y2 X3-1/Y1

Section view
of column
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5. Discussion

Dongyang Structural Engineers Group introduced laser scanning to improve the structural safety
diagnosis service of the facility. The purpose of introducing these latest technologies is to improve
service quality, reduce input costs, shorten the service period, and secure worker safety. As a result of
the interview with the structural engineer who manages the case project, it was confirmed that the
manpower input is reduced as shown in Figure 14.
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Figure 14. Personnel input comparison (as-is vs. to-be).

In the conventional method, 20 manpower is invested for three months in the drawing review
and field measurement of large facilities. Next, 25 manpower is injected into the structure analysis
and the collection of analysis results over three months. Finally, five personnel are invested in the
detailed field survey and structural safety diagnosis for one month. However, with the introduction of
laser scanning, only five people were added to the initial data collection for two months. In addition,
only five manpower was put into the structure analysis, collection of analysis results, detailed field
survey and structural safety diagnosis work for only one month.

In the service period of the structural safety diagnosis, it saved four months. In terms of
personnel savings, interviews revealed that 20 people would have to be put in for an average of
seven months (140 man-month) when performing structural safety diagnosis in the existing way.
However, when laser scanning and BIM were used, it was found that five manpower was actually
invested (15 man-month) for three months on average. In terms of manpower saving, 125 man-month
was saved. Existing practice reported that the laser scanning of large bridges took only five days [54].
On the other hand, this study considered not only the time required for laser scanning of a large-scale
pipe rack, but also the manpower and duration required for a structural safety diagnosis. In terms
of cost efficiency, the laser scanning technology proved to be 50% cheaper compared with traditional
surveying methods and by reducing the need to work through the night savings were made on
staff overtime [4]. This research analyzed the cost effectiveness of the structural safety diagnosis
method using laser scanning and BIM. The research findings can provide a quantitative basis for
the introduction of laser scanning and BIM technology in the structural safety diagnosis of aging
large-scale civil infrastructures.

However, the limitations of this study have not yet been analyzed economically by considering
the investment cost (e.g., hardware, software, training, etc.) of laser scanning and BIM technology and
the cost saving effect of technology introduction. Structural engineering companies in the case project
collect information (e.g., man, project period, etc.) to calculate cost effectiveness by applying laser
scanning to various areas, as well as structural safety diagnosis. If such information is accumulated,
the economic feasibility of the proposed method can be analyzed from a long-term perspective.
In addition, we could not analyze the effect of laser scanning on safety improvement of workers.
Therefore, it is necessary to analyze the effects of laser scanning and BIM technology (e.g., safety of
workers) in a future study.
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6. Conclusions

This paper reported a case study to improve the structural safety diagnosis of large-scale
civil infrastructure using laser scanning and BIM technologies. From a sustainability perspective,
this paper provides a technological approach to laser scanning for aging large-scale civil infrastructures.
In addition, we have presented a method to access the displacement of the large-scale civil
infrastructure by comparing the data generated from laser scanning and BIM. In this way, we can
diagnosis the precise structural safety condition of the aging large-scale civil infrastructure. Based on
these accurate diagnoses, we can establish maintenance strategies for large-scale civil infrastructures.
Finally, even if it is a very innovative technology in any research field, it is difficult to introduce it if it
is not economical. In terms of sustainable construction management, this study presents strategies
for recovering investment costs for expensive laser scanning equipment (e.g., laser scanner, SW,
training cost, etc.). We confirmed that the proposed structural safety diagnosis method can save service
duration and significantly reduce the manpower input compared with the conventional method.
The major contributions of this study are as follows:

First, an information generation process for the safety diagnosis of large and aging facilities was
proposed. The safety diagnosis must be based on accurate information concerning the status of the civil
infrastructure. To this end, a method to generate and utilize information through laser scanning and
BIM was proposed. The limitations of the prevalent method of safety diagnosis were also confirmed
through the case study and the feasibility of the proposed method was verified.

Second, the economic efficiencies of the prevalent method of safety diagnosis and the proposed
safety were analyzed by applying both to the case study. Interviews with officials of the structural
engineering offices that had built the facility revealed that the proposed safety diagnosis method was
effective in terms of time and personnel input. In other words, when the project was performed using
the prevalent safety diagnosis method, 20 personnel were needed for seven months. However,
the proposed method required only five people for three months. Finally, proposed method
of structural safety diagnosis saved four months. Additionally, in terms of manpower saving,
125 man-month was saved. These results show that the proposed method of safety diagnosis can
save cost in terms of time and personnel for AEC/FM companies, which are burdened with the costs
of investment.

Third, from the perspective of long-term facility safety management, the feasibility of laser
scanning and BIM as methods for managing the status information of facilities was examined.
The point cloud data and BIM data for conditions prevailing in the target facility at the given time,
generated through laser scanning, can contain a diversity information regarding the facility. Therefore,
they are essential data management tools for constructing a safety management system to consistently
monitor the safety of facilities.

To improve the capabilities of AEC/FM, which is relatively slow in innovating businesses using
the latest technologies, further research is required to analyze ROI (return on investment) of introducing
these technologies, e.g., through analyses of the economic efficiency of the maintenance and safety
diagnosis that uses laser scanning and BIM, maintenance by securing facility management data,
and improvement in the efficiency of safety diagnosis.
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