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Abstract: Construction contractors play a vital role in reducing the environmental impacts during 

the construction phase. To mitigate these impacts, contractors need to develop environmentally 

friendly plans that have optimal equipment, materials and labour configurations. However, 

construction plans with optimal environment may negatively affect the project cost and duration, 

resulting in dilemma for contractors on adopting low impacts plans. Moreover, the enumeration 

method that is usually used needs to assess and compare the performances of a great deal of 

scenarios, which seems to be time consuming for complicated projects with numerous scenarios. 

This study therefore developed an integrated method to efficiently provide contractors with plans 

having optimal environment–cost–time performances. Discrete-event simulation (DES) and particle 

swarm optimisation algorithms (PSO) are integrated through an iterative loop, which remarkably 

reduces the efforts on optimal scenarios searching. In the integrated method, the simulation module 

can model the construction equipment and materials consumption; the assessment module can 

evaluate multi-objective performances; and the optimisation module fast converges on optimal 

solutions. A prototype is developed and implemented in a hotel building construction. Results show 

that the proposed method greatly reduced the times of simulation compared with enumeration 

method. It provides the contractor with a trade-off solution that can average reduce 26.9% of 

environmental impact, 19.7% of construction cost, and 10.2% of project duration. The method 

provides contractors with an efficient and practical decision support tool for environmentally 

friendly planning. 

Keywords: construction contractor; environment-cost-time optimisation; particle swarm 

optimisation; discrete-event simulation; construction planning 

 

1. Introduction 

The mitigation of energy use and environmental impacts during the building operation has been 

the research focus in last few decades [1]. However, when the potential for curbing operational 

impacts has been greatly explored, the current emphasis has shifted to the construction phase, i.e., 

the transportation of building materials to construction site and on-site construction [2]. Li et al. [3] 

and Bilec et al. [4] proposed that the construction phase cause relatively intensive impacts in a short 

construction period and in a specific location. Considering the fast increased urbanisation in 
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developing countries worldwide, the impacts from construction phase could be significant at the 

aggregate level [5]. Contractors, who are responsible for planning of the construction configurations, 

may mitigate the environmental impacts by developing an environmentally friendly plan [6]. 

The life cycle assessment (LCA) is the most widely used approach to assess environmental 

impacts from the construction phase [7]. Many constructive suggestions for environmentally friendly 

construction have been provided by previous studies. Li et al. [3] proposed a systematic construction 

impact assessment model with a LCA method, and applied it to an earthworks case. Results suggested 

that reducing the construction dust, reusing water, and concrete waste are the most effective way to 

alleviate construction impacts. Bilec et al. [4] holistically analysed the environmental impacts of the 

construction processes with a process-based hybrid LCA. They found the construction phase is as 

important as other life-cycle stages like materials production and demolition. In order to compare 

environmental performance of different construction activities, Sandanayake et al. [8] proposed an 

assessment method using LCA to characterise the impacts into different geographical perspectives. 

Results showed the activity with more GWP impacts, such as fuel intensive work have more influence 

at global perspective. And the activity with more POFP and HTP such as earthmoving work have 

more influence at regional and local perspectives. However, Davies et al. [9] still claimed that it lacks 

a practical tool that would allow the contractor to develop the environmentally friendly plans. 

One reason for this may be due to the contractor normally assumed that the cost and duration 

performances certainly suffered from the environmentally friendly planning [10]. LCA-based 

approaches focusing on environmental metrics may provide the contractor with optimal plans that yield 

conflicting costs or duration performances. It could put contractors under a dilemma for adopting low-

impact planning. The study of Shi et al. [10] found that this is one of the most significant factors, 

preventing contractors from environmentally friendly construction. 

In order to overcome this limitation, Ozcan-Deniz et al. [11,12] introduced genetic algorithms 

into construction to take trade-off environmental performances with project time and cost. Cheng 

and Tran [13] proposed a novel method based on differential evolution to reach a construction 

environment–time–cost optimisation. Nevertheless, previous methods have simplified the 

construction process with a fix logic, and used static performance data that cannot address other 

potentials [11]. 

Another difficulty of environmentally friendly planning may derive from the characteristics of 

construction. The interactions in the construction processes cause the re-calculation of the 

performance for all scenarios, due to even one variable change potentially leading to effects in whole 

construction [14]. Discrete event simulation (DES) is adept at capturing complicated interactions in 

complex systems [15]. A widely applied method uses the DES technique to enumerate interested 

plans. This includes the research conducted by Krantz et al. [16], which applied DES-based simulation 

to analyse the CO2 and the cost of different earthmoving strategies. More references can be referred 

to [17–19]. This enumeration method is suitable for cases with limited construction scenarios. 

However, at the construction planning stage, many alternative plans could be available for 

construction activity [6]. It seems to be very inefficient for enumerating all scenarios, because there 

are a great deal of scenario combinations. 

This study, therefore, developed an integrated method in order to provide contractors with an 

efficient multi-objective optimization approach, considering the environmental performance. DES, 

which has the ability to simulate alternative scenarios by capturing the interaction among 

construction processes [20], is used to simulate the duration and cost of each scenario. While 

environmental performances are assessed, based on data from DES and environmental database, 

which overcomes the limitation of previous studies that usually simplify the process interaction. 

Particle swarm optimisation (PSO), owing to their advantage on multi-objective optimisation, is used 

to search optimal environment–cost–time construction solutions. DES, performance assessment, and 

PSO are integrated working in an iterative loop, which avoids the enumeration of every single 

scenario. The integrated method is design to be a multi-objective decision-making tool for contractors 

to effectively and efficiently search a great deal of scenarios and to develop environment–cost–time 

optimal plans. 
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2. Literature Review 

2.1. Construction Multi-Objective Performances and Optimisation 

The construction projects usually have multiple dimensional objectives that need to be pursued. 

Among others, project cost and duration are normally two of the objectives of most concern when 

contractors develop construction plans. Eshtehardian et al. [21] proposed a method that combines 

fuzzy set theory and genetic algorithm to solve time–cost trade-off problems in construction schedule 

planning, and the results show that the proposed method can provide the contractor with Pareto 

solutions, considering the different risk acceptance level. Zhang and Ng [22] applied the ant colony 

optimisation to solve construction time–cost multi-objective problems. A case study shows the 

present method used less computing loads, compared with the genetic algorithm. The construction 

quality could be another interested target that is usually studied by previous multi-objective research. 

El-Rayes and Kandil [23], and Cristóbal and Ramón [24] integrated quality performance into 

traditional time–cost problems. Optimisation methods such as genetic algorithms and integer 

programming were proposed and applied into cases, and the results show the Pareto solutions that 

simultaneously made a trade-off among time, cost, and quality could be achieved. 

With the increase of environmental consciousness in Architecture, Engineering and 

Construction (AEC) field, several pilot studies have analysed the relationship between the 

environment and other traditional objectives. However, there are still some contradictory conclusions 

among previous studies. Ozcan-Deniz et al. [11] found that the global warming potential (GWP) 

performance has a negative correlation with the duration of residential house construction, and it has 

positive relations with the cost performance. On the contrary, in another research project for highway 

construction projects [12], the project duration, cost, and greenhouse gas emissions presented positive 

correlations. In a tunnel construction case, Cheng and Tran [13] found that the environmental impacts 

have a negative relation with duration, but it is positive with the project cost. In light of no confirmed 

correlation among the environment, cost, and time, it is necessary to develop a proper method for 

contractors to take the environmental performance trade-off with other traditional objectives. The 

intelligent optimisation algorithms with efficient multi-objective optimisation, such as PSO [25], may 

address the issue by providing Pareto-optimal solutions. 

The algorithm of PSO is an efficient searching method that is inspired by the movement of a bird 

flock or fish school to a desired destination [25,26]. Elbeltagi et al. [27] and Barraza et al. [28] 

demonstrated that when solving a construction trade-off problem, PSO generally performs better 

than genetic algorithms, memetic algorithms, ant colony optimisation and shuffled frog leaping in 

terms of success rate, optimum quality, and convergence speed. PSO may be especially suitable for 

multi-dimensional optimisation, mainly due to its high speed of convergence [29]. Therefore, this 

technique has been used to solve multi-objective problems, some of which can be found at Pulido 

and Coello [30], Zhang [31], and Xue et al. [32]. In addition to continuous problems [33], PSO is also 

suitable for discrete optimisation problems [27], which could represent most of the construction-

related decisions. 

Many previous studies have demonstrated the efficiency of PSO in AEC application. Xu and 

Feng [34] developed a PSO-based method to optimise the earth–rock transportation task during dam 

construction. Results show that 2.06% of the operational cost, 6.82% of the transport duration, and 

9.35% of the total waste can be simultaneously reduced using optimised transport planning. Barraza 

et al. [28] compared the PSO-based optimisation with genetic algorithms to simultaneously minimise 

the structural weight, control the maximum inter-story drift, and satisfy strength requirements. The 

application of a three-story steel frame building shows that both PSO and genetic algorithms can 

achieve the research target, but that PSO obtained better solutions than the genetic algorithms. Li et 

al. [35] proposed an efficient optimisation method by combining PSO and the Kriging method. It was 

tested by optimising the HVAC (Heating, Ventilation and Air Conditioning) design of a typical office 

building in terms of thermal comfort, air quality, and energy consumption. Results show the 

proposed method can reduce 46.6% of computing time without sacrificing the optimization quality. 

More references can be referred at [36–39]. However, previous studies usually focus on time and cost 



Sustainability 2018, 10, 4207 4 of 22 

objectives, rather than multi-objective optimisation, considering the environmental impact [21,22]. 

The way of a practical environment–time–cost optimisation tool for contractors have not been fully 

explored. 

2.2. Discrete Event Simulation for the Construction Phase 

Alternative scenarios, such as the re-configuration of equipment, labour resources, new 

construction technique etc., may propagate to others because of interaction and interdependence 

among construction processes [14]. DES thus has been applied to modelling the complex interaction 

among construction processes. In study of Lee et al. [17], a simulation method combining DES and 

system dynamics was established. The interactions between construction operation and context, such 

as the relation between total project duration with work errors and changes were revealed by 

proposed method. With a similar DES and system dynamics hybrid method, Li et al. [18] analysed 

the schedule risks of a six-day cycle prefabrication housing production. The results indicated that the 

most significant schedule risks included ambiguous labels on components, misplacement storage, 

crane breakdown or maintenance, slow quality inspection, and inefficient design data transition. 

Alvanchi et al. [19] proposed a simulation-based method for adjusting labour resources along with 

the construction progress. A case study of steel fabrication building demonstrated the project cost 

could be reduced by better labour management. 

However, the DES method has not been widely applied in real construction practices [14]. At 

the construction planning stage, many alternative plans, such as the selection of construction 

techniques, equipment, schedule, and labour, are available for construction activity [6]. A widely-

used approach to obtain optimal scenarios is to simulate the performance for every scenario, then to 

compare these alternatives in order to find out the optimal solution, which can be found at many 

previous study [14,16,40]. However, a high computing load is required for a complex simulation [41]. 

Therefore, the enumeration method can be only suitable for projects with several scenarios. This is 

time consuming for complex projects with numerous alternatives. 

In construction field, the study of Cheng and Yan [42] and Zhang and Li [43] is the pilot study 

that proposed the integrated DES and optimisation algorithms to avoid enumerated comparison. 

However, the focused objectives are time and cost, without environment consideration. Therefore, it 

is interesting to explore the potentials of simulation–optimisation integrated method for an efficient 

environment–cost–time construction planning optimisation. In the study, DES is integrated with PSO 

through the iterative loop, in order to avoid time-consuming assessment for all of possible 

construction scenarios. The integrated method could remarkably reduce the efforts on optimal 

scenario searching, which seems to be extremely appealing when many scenarios are available. 

3. Integrated Optimisation Method 

The overall integrated method follows six automatic interactive steps, as shown in Figure 1. 

Alternative scenarios could be extracted from an enterprise knowledge database and contractors’ 

interviews. The particles of PSO are initiated using a uniform randomly selection from possible 

construction scenarios, which are modelled and simulated by DES for each construction scenario. 

Then, the data from DES and the environmental database are automatically extracted to support 

multi-objective performance assessment, i.e., fitness evaluation at each optimisation iteration. The 

results of fitness evaluation will update the swarm’s global and local best information that are the 

basis of further solution searching. New solutions will be searched by PSO particles and the 

corresponding construction scenarios are simulated by DES, if the optimisation threshold or 

maximum iterations are not reached. 

This integrated procedure will be executed in loop, and Pareto-optimal construction plans are 

obtained at the end of loop procedure. By this integration, the performance of construction scenarios 

alongside the optimisation pathway can be properly assessed, and multi-objective optimal plans can 

be quickly converged. 
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Figure 1. Integrated environment–cost–time optimisation method. 

3.1. PSO Initialisation 

In this study, the optimisation mechanism of PSO, originally formulated by Kennedy and 

Eberhart [25], is integrated with DES and the performance assessment to efficiently search multi-

objective optimal plans in terms of environment, construction cost and duration. Each particle of PSO 

represents one possible construction scenario (X). The objective function of PSO is set as Equation (1), 

where X = {(1, x1) (2, x2) (3, x3) … (N, xN)} indicates that a series of construction tasks (from 1 to N) is 

constructed by related x alternative plan. The first iteration of the particle swarm is uniformly and 

randomly assigned from a defined possible construction scenario set, in order to ensure globally 

optimisation. 

f(X) = min(Environment, Cost, Time) (1) 

3.2. DES Simulation 

In the integrated framework, the DES is designed for a construction scenario simulation. The 

solutions that are represented by PSO particles are automatically input in the simulation model as 

parameters. After the simulation, it provides construction-process data for impacts assessment, cost 

estimation and directly duration simulation. The steps involved in the DES construction simulation 

are shown in Figure 2. Firstly, the construction DES model need to be developed. The construction 

planning documents and on-site observation are valuable information for model production. A 

construction conceptual model referred to as the Activity-Component-Resource-Action-Sequence 

(CARS), originally proposed by Fischer et al. [44], is used to collects the decentralised construction-
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related information into a unity model. It concepts the construction operation as four aspects, which 

are the constructed component, the required resource (materials, labour, and equipment), and series 

of required actions to construct the component, and the inherent work sequence, such as work 

predecessor and successor. Thus, the DES-based construction model can be developed with 

systematic information. 

Planning document/
On-site observation

No

1/6 PSO 
solution

Model production“CARS”

Model validation

Acceptable 
difference 

Test 
data

Ready-use DES 
model

Performance 
assessment

Simulated
process data

Yes

 

Figure 2. Simulation model production and scenario simulation (1 and 6 indicate the inputs from 

steps 1 or 6, and the same hereafter). 

The established model should be validated before the scenario simulation performed [45]. In the 

planning stage of a construction project, the construction plan documents, such as a construction 

Gantt chart/network diagram and the cost document are valuable for validating the simulated 

process logic, entire duration and cost. If construction has already started, useful information for 

validation can be obtained from on-site observations and survey. After the information collection, the 

construction planning/observation can be compared with the output of the simulation. No or an 

acceptable difference validates the established simulation model; otherwise, the DES model must be 

further modified. 

3.3. Performance Assessment 

The simulated process data from DES, including the simulated working productivity, working 

time and idle time of each equipment and crew, and materials consumption provides detailed data 

for environment–cost–time performance assessment (see Figure 3). Firstly, the construction processes 

are simulated by the DES model. The impact sources, such as the materials used, equipment, and 

labour are obtained. The time performance is directly simulated, and the impacts and cost are 

assessed with impact sources. The results work as fitness for multi-objective optimisation, by which 

the PSO can perform information updating (step 4), and further Pareto solution searching. 
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Figure 3. Simulation and environmental database for performance assessment. 

This study attempts to search the environmentally friendly plan trade-off with project time and 

cost. The environmental assessment boundary follows the standard rules EN 15804:2012 + A1:2013 

[46] and from a previous study [47]. It includes construction auxiliary materials from upstream 

extraction, processing, and production (A1–A3); major and auxiliary material off-site transportation 

(A4); and on-site equipment construction (A5). On the other hand, human labour will cause indirect 

environmental impact alongside a product [48]. Some construction tasks are naturally labour-

intensive practices, and hence, the impacts caused by labour may influence assessment completeness 

and eventually bias the optimal decisions [48]. According to Cole [49], the transportation of different 

construction crews to task sites is a significant impact source. This study thus considers on-site 

everyday crew transportation. Thus, environmental improvement can be achieved by construction 

plans such as the selection of optimal materials, equipment type, and number, as well as crew sizes 

for each construction task. 

Using simulation data, the impact assessment is then performed based on Equations (2)–(5), 

where Em, Ee1, Ee2 and Ew are the direct and indirect impacts from auxiliary materials, fossil fuel, 

electricity equipment, and crew transportation, respectively. According to research by Pechan [50], 

the actual energy consumption using fossil fuels can be calculated by Equation (3). For electrically-

driven equipment on a construction site, the electricity consumption can be calculated using Equation 

(4); impact by crews is determined from Equation (5): 

Em = Q × em (2) 

Ee1 = BSFC × EP × PD × LF × ef (3) 

Ee2 = P × PD × ee (4) 

Ew = N × TE × ee (5) 

where Q is the quantity of consumed auxiliary materials, BSFC (lb·hp−1·hr−1) is the brake-specific fuel 

consumption giving a measure of engine efficiency that can be referred to at the EPA database [50], 

EP is the engine power (hp), PD is the process duration of the task that is simulated by simulation 

that is determined by workload (Q) and work productivity (WP) of each task, LF is the load factor 

that reflects the level of equipment use for a specific operational scenario from [51]. P is the power 

rating of electrical equipment. em, ef, and ee are impact equivalents per unit of sources, which are equal 

to the emission factors of materials, fossils, and electricity energy multiply characterisation factors of 

different environmental impacts. N is the crew size for construction tasks, and TE is the transportation 

energy per person from the simulation. 

According to the China Construction Engineering Quota (CEQ) [52], the cost of auxiliary 

materials (Cm), construction equipment (Ce) and the salary for the crews (Cw) can be estimated as 

Equations (6) and (8). In Equations (6)–(8), cm, ce, and cw is the unit cost of material consumption, rented 

equipment, and employed crews, respectively. PD and ID are the equipment operational time and idle 

time by the DES model. The duration of construction is influenced by both the process interactions, 
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logic, and the duration of each construction task. The DES model, which already includes the process 

logic and WP to describe these, is designed to directly estimate the construction duration. 

Cm = cm × Q (6) 

Ce = ce × (PD + ID) (7) 

Cw = cw × PD (8) 

3.4. PSO Local and Global Best Updating 

The particle of PSO moves to the optimal position alongside a trajectory that calculates the 

relation between the present position and their own previous best position (local best), as well as the 

best position of the swarm (global best) [33]. Therefore, it achieves a balance of exploration and 

exploitation by combining local and global searching [53]. Using the results of fitness evaluation (step 

3), the local and global best positions are updated as Figure 4. Each particle has a list of its best 

position history, which is updated if the present position is better than previous best history; 

otherwise, it will be kept. In the same way, the global best position will be updated by present particle 

swarm. These global/local best information updates are the basis of further solution searching. 

Is current
objective value better than local 

best pbestPk(t-1)?

Update locate best 
with current value

Keep local best 
history

Update global best 
gbestPk(t-1) with 

current particles’ best

Yes No

6

3

Reach 
convergence criteria or 
maximum iterations?

Pareto solutions

Yes

No
t=t+1

Iteration 
(t)

 

Figure 4. Global and local best updating and stop criteria. 

3.5. Pareto Optimisation Stop Criteria 

The optimisation stop criteria are checked after PSO global/local best updating, as in Figure 4. 

In this study, the stop criteria are set as (1) the maximum number of iteration T, and; (2) the 

optimisation threshold for each objective. According to the previous study in construction [6], 200 

iterations are acceptable for construction engineering. To ensure a robust result, the initial number of 

iterations (T) is set to 500 in this study. The threshold for the environment, cost, and duration is 

defined as one unit of environmental impact, 10 units of local currency, and one hour, respectively. 

The optimisation threshold is set to stop after certain periods (M) of iteration that continuously stay 

below threshold improvement or no change on Pareto solutions. To set a proper M for a specific case, 

a sensitivity analysis is required. The solution searching will continue to be performed (step 6), until 
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the stop criteria are reached and the results are returned, i.e., of the Pareto plan combinations X = {(1, 

x1) (2, x2) (3, x3) … (N, xN)} for construction. 

3.6. PSO Solution Searching 

The particle of PSO will search new solutions by the movement of particle positions (P), as 

described by Equations (9) and (10) when stop criteria are not reached. As shown in Figure 5, based 

on the velocity updating mechanism (Equation (9)), the new velocities Vk(t) for each particle are 

calculated. Then, the position (plan) of each particle are calculated based on new velocity and their 

previous positions (Equation (10)). In this way, the searched new construction plans changes xn for 

each task n, in order to (1) move to other particles that have optimal performances, and; (2) to learn 

from their own optimal performance history. And these new construction plans will return to be 

simulated by DES (step 2) for further iteration. 

Vk(t) = w(t) × Vk(t − 1) + c1 × r1 × (pbestPk(t − 1) − Pk(t − 1)) + c2 × r2 × (gbestPk(t − 1) − Pk(t − 1)) (9) 

Pk(t) = Pk(t − 1) + Vk(t) (10) 

where t = 1, 2, …, T denotes the iteration of PSO, whereas k = 1, 2, …, K denotes the specific particle 

of the swarm. According to Bratton and Kennedy’s [54] study, the proper size of particle swarm 

depends on nature of problem, but it only has a slight marginal influence on the optimisation quality. 

Thus this study initially set particle size as 30, and make modification if necessary; Pk(t) = {(1, x1k(t)) 

(2, x2k(t)) (3, x3k(t)) … (N, xNk(t))} denotes the position of the k-th particle in the t-th iteration, whereas 

Vk(t) represents the movement velocity on position; pbestPk(t − 1) and gbestPk(t − 1) describes the local 

and global best positions; inertia weight w(t) describes the inertia of velocity influencing the t-th 

iteration by the t-1th iteration, which was first introduced in Shi and Eberhart’s study [55]; c1, c2 are 

acceleration coefficients that weight the significance of the local best and the global best position, 

respectively, of the particles; r1 and r2 are random numbers ranging from 0 to 1. 

 

Figure 5. Particle swarm optimisation (PSO) solution searching. 

The parameter of a PSO method will influence the optimisation quality. According to Shi and 

Eberhart [55], Tuppadung and Kurutach [56], Chatterjee and Siarry [57], a decreasing form of inertia 

weight w(t) would yield an increased convergence speed and an improved search for multi-

dimensional optimisation. An inertia weight is set as a decreased form (see Equation (11)), where 

{wmax, wmin, m} should be determined at fixed T for individual cases. Based on our study by Wang et 

al. [6], {wmax = 1.3, wmin = 0.1, m = 1} is acceptable for construction decisions: 

w(t) = wmax + (wmax − wmin) × (T − t)m/Tm (11) 

The acceleration coefficients c1 and c2 will balance the influence of the particle individual best 

information and swarm best information. To make an equal consideration between the individual 

and the swarm, they can be set as an equal value [58]. The reasonable value can be varied between 

0.5 and 2.5 [26]. But a proper value selection can be obtained by a sensitivity analysis for the studied 

problem. 

4. Prototype and Application 
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4.1. Prototype Overview 

The integrated method was programmed and developed as a prototype as Algorithm 1 

(complete codes refer to supplementary materials). An object-based modelling platform SimioTM, 

capable of simulating discrete-event process, as well as having application programming interface 

(API) capability that is extended by outside environment, is employed as the DES production 

platform. The construction simulation are managed by five relational tables following the “CARS” 

conceptual model. Furthermore, the customised PSO are programming in the MatLab® platform, to 

achieve multi-objective optimisation. An established API connector by Dehghanimohammadabadi 

and Keyser [59] to link Simio and MatLab is extendedly programmed for this study to handle the 

simulation at each fitness evaluation of PSO, which also records the number of the DES model call. 

The performance assessment is built within Simio using its calculation ability. 

Algorithm 1. Prototype overview for the integration method (pseudocode). 

procedure DES-PSO in MATLAB 

initialization particles velocity V, position P, iteration t = 1 

  global best position gbestP and particle best position pbestP 

while stop criteria: iteration t < maximum iteration T || below improvement threshold, do 

particle solution searching: 

V(t) = w(t) × V(t − 1) + c1 × r1 × (pbestP(t − 1) − P(t − 1)) + c2 × r2 × (gbestP(t − 1) − P(t − 1)) && 

P(t) = P(t − 1) + V(t) 

  while k-th particle < total particles K, do  

  run DES-based simulation for position of k-th particle in SIMIO with API 

  evaluate cost, time, and environmental impact using Equations (2)–(6) and 

LCA database 

  k<--k + 1 

  end   

update swarm gbestP and particle pbestP 

t<--t + 1 

 end 

4.2. Case Application 

The proposed framework and prototype were implemented in the construction of a hotel 

building located in Heilongjiang province, China. This 36,000-m2 building is a reinforced-concrete 

frame structure, with 16 floors above ground and two floors at the basement level. The construction 

of 14 standard floors are optimised in this case study. This construction project is chosen as a case 

study because it has been completed. Thus detailed on-site observation records and the 

corresponding interview data were sufficient for validating the method. 

The construction of the frame structure for the standard floors started from 15 June 2014 and 

ended on 15 September 2014. The regular on-site working schedule was from 7:00 a.m. to 17:00 p.m., 

with a 2-hr lunch break. Through on-site observations, the actual construction tasks and process logic 

of the frame structure thereof were surveyed (shown in Table 1 and Figure 6). The on-site space was 

divided into two sections. A flow construction process was performed on these two working spaces 

by each task team in sequence. In this construction method, each construction activity was influenced 

by the factors of prerequisite work, equipment, materials, labour resources, and working space. Thus, 

the real-time schedule of an activity will influence their succeeding tasks, and thus affect the entire 

project duration. The idle time due to prerequisite work being incomplete, unavailable resources, and 

unreached working space will also affect the total equipment rent cost. 
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Table 1. Frame structure construction tasks and related resources. 

Task Name Resource Quantity (Set for eq.) 

C-off-site Transportation mixer truck (7 m3) diesel (30 km) 5 

C-pumping concrete pump (80 kW) (HBT8018C-5)—electricity 1 

C-vibration 
vibrating screen (1.1 kW)—electricity 20 

concrete crew 20 

S-off-site transportation trailer (25 t)—electricity (183 km) 5 

S-straightening steel bar straightener (φ14)—electricity 3 

S-curving steel bar bender (φ40)—electricity 8 

S-cutting-steel steel bar cutter (φ40)—electricity 
3 (for HPB) 

6 (for HRB) 

S-threading die head threading machine (φ39)—electricity 5 

S-on-site hoist 
construction lift (SCD200/200 V)—electricity 1 * 

crane tower (ST60/15)—electricity 1 * 

S-installation steel crew 60 

F-off-site transportation formwork truck (15 t)—diesel 1 

F-cutting wood circular saw (φ500)—electricity 4 

F-hoist 
construction lift (SCD200/200 V)—electricity 1 * 

crane tower (ST60/15)—electricity 1 * 

F-installation 

formwork crew 50 persons 

plywood 64.4 t 

steel tube  6758.46 kg 

joint  1695.57 kg 

bolt  4959.22 kg 

iron wire φ 0.7 mm 10,646.57 kg 

batten  149.46 m3 

Note: C-, S-, and F- denote concrete, steel, and formwork task, respectively; eq. stands for equipment; 

* means the both construction lift and crane tower can handle S-On-site and F-On-site Transportation 

jobs. 
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Figure 6. Construction process logic for frame structure. 

With the increase of height of task location, the vertical transportation equipment, like the tower 

crane and construction lift will use more time and higher electricity usage to complete a unit 

construction task. At the same time, both the crew transportation and concrete pumping’s energy 

consumption will also change [60]. It requires moment analysis during the construction process. By 

DES model in the proposed integrated method, it provides a momentary simulation ability to assess 

the accumulated project time, cost, and environmental impacts. 

In addition, supplementary information, such as the probability distribution of the working 

productivity (WP), is collected through an interview with the construction manager. According to 

the interview, the triangular distribution that represents the probability of activity to be minimum, 
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most-likely, and maximum is suitable to describe the actual working productivity, which has also 

been validated by the previous study [61]. According to the manager’s empirical estimation for this 

construction project, 75% and 125% of the average productivity could be appropriate values for the 

minimum and maximum probability. 

The contractor of the case project has established an enterprise database for construction 

techniques. After retrieving the enterprise database with project manager, possible alternative 

planning scenarios were selected, as shown in Table 2. Four types of mixer trucks, with volumes of 

5, 6, 7, and 8 m3, are commonly used for premixed concrete in China. Similarly, four types of concrete 

pumps, with electric power of 80, 60, 45, and 30 kW, can be rented locally. In the original construction 

documents, 60 crews were designated for completing the manual steel installation during the heavy-

workload period. The DES model compared the operational performance associated with different 

numbers of crews (from 1 to 80). In this case, this was the contractor employed crane tower ST60/15 

and construction lift SCD200/200 V. Two other types of crane and lift were compared. The traditional 

formwork system in China is timber formwork system (TFS). Other types of formwork systems have 

obtained many discussions and some application. A steel formwork system (SFS) that is one 

promising alternative is selected to be compared in this case. A proper system of overtime work for 

some tight duration project is a popular strategy. It is assumed that two more hours than normal 

working hours (8 hr) is acceptable. Proposed method will select the best overtime strategy in order 

to balance environment–time–cost performances. 

Table 2. Alternative construction plans. 

(n, x) Construction Task Alternative Plan Remarks 

(1,1) C-off-site transportation mixer truck (8 m3) 247 hp 

(1,2)  mixer truck (7 m3) 180 hp 

(1,3)  mixer truck (6 m3) 180 hp 

(1,4)  mixer truck (5 m3) 103 hp 

(2,1) C-pumping concrete pumper (80 kW) 1 × 104/(7.5 + H) m3/hr  

(2,2)  concrete pumper (60 kW) 0.8 × 104/(10 + H) m3/hr 

(2,3)  concrete pumper (45 kW) 0.8 × 104/(20 + H) m3/hr 

(2,4)  concrete pumper (30 kW) 0.4 × 104/(20 + H) m3/hr [60] 

(3,1) C-pumping number of pumper 1  

(3,2)  number of pumper 2  

(3,3)  number of pumper 3  

(4,1~4,80) S-installation size of crew 1~80 restricted by work space 

(5,1) S-on-site/F-on-site transportation crane ST60/15 41/4/8 kW, 45 m/min, 1.5 t 

(5,2)  crane XGT8039-25 90/26.1/15 kW, 37.6 m/min, 8 t 

(5,3)  crane XGT8040-25 110/27/15 kW, 48.4 m/min, 7.6 t 

(6,1) S-on-site/F-on-site transportation construction lift SCD200-200V 56 kW, 60 m/min, 4 t or 25 persons 

(6,2)  construction lift SCD200-200E 66 kW, 36 m/min, 4 t or 20 persons 

(6,3)  construction lift SCD200-200P 60 kW, 23 m/min, 4 t or 20 persons 

(7,1~7,60) F-installation size of crew 1~60 restricted by work space 

(8,1) F-installation timber formwork system (TFS) see Table 1 

(8,2)  steel formwork system (SFS) 

steel plate and tube 11.739 t 

joint 2295.40 kg 

bolt 8327.62 kg 

iron wire 6047.71 kg 

batten 121.46 m3 

(9,1) F-installation iron wire φ 0.7 mm 10,646.57 kg 

(9,2)  annealed iron wire φ 1.2 mm 31,305.15 kg  

(10,x) working schedule working hours (8~10 h) 

1.5-fold overtime fees for labour 

working over 8 hr; additional light 

(6×3.5 kW) when time over 6mp. 

Note: X = {(1,1) (2,1) (3,1) (4,60) (5,1) (6,1) (7,50) (8,1) (9,1) (10,8)} is the original plan. 

The workload (Q) of each task were determined from building design and construction 

documents provided by the project contractor (see Figure 6). The price of the labour hour and 

equipment are collected from several local databases, and in the Construction Engineering Quota 

(CEQ) of Heilongjiang and at the China national level [60,62] (see Table 3). The case study employed 
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global warming potential (GWP, eq. CO2 kg) as an environmental indicator. The data source for the 

emissions factors cited from the NDRC [63] and EMSD [64] based on Chinese energy production and 

local delivery modes; and the characterisation factors to GWP 100yr are from IPCC [65] (see Table 4). 

Table 3. Price data for case construction. 

Sources Unit Unit Price Sources Unit Unit Price 

labour CNY/hr 53 (North China); 100 (South China) crane XGT8039-25 CNY/d 4335.66 

formwork cutter CNY/d 110.37 crane XGT8040-25 CNY/d 4335.66 

steel straighter CNY/d 132.54 lift SCD200-200V CNY/d 1094.64 

steel cutter CNY/d 161.4 lift SCD200-200E CNY/d 1094.64 

steel bender CNY/d 89.07 lift SCD200-200P CNY/d 1094.64 

steel threading CNY/d 128.79 plywood CNY/t 2050 

vibrator CNY/d 131.4 steel tube CNY/kg 5 

concrete pumper (80 kW) CNY/h 2060.13 joint CNY/kg 5 

concrete pumper (60 kW) CNY/h 1573.66 bolt CNY/kg 5 

concrete pumper (45 kW) CNY/h 1043.65 iron wire CNY/kg 5 

concrete pumper (30 kW) CNY/h 716.03 batten CNY/m3 6.61 

crane ST60/15 CNY/d 480 annealed iron wire CNY/kg 6.362 

Table 4. Global warming potential data source. 

Impact Sources Unit CO2 Equivalents * Reference 

electricity kWh 1.096 (North China); 0.714 (South China); [63] 

diesel kg 2.617 [64,65] 

plywood kg 1.049 [66] 

steel tube kg 3.589 [67] 

joint kg 3.589 [67] 

bolt kg 3.589 [67] 

iron wire kg 7.442 [67] 

batten kg 1.049 [66] 

annealed iron wire kg 6.362 [68] 

Note: * the value is calculated by emission factors and characterisation factors, such as diesel: 2.614 

(CO2) + 0.0239 × 21/1000 (CH4) + 0.0074 × 310/1000 (N2O). 

5. Results Summary and Discussion 

5.1. Model Validation and Optimisation Parameters Selection 

According to proposed integrated method, firstly, the DES model was developed based on 

observed construction process logic as Figure 6. The DES model was validated by comparing the 

actual construction performance with the simulated performance. Using this original construction 

scenario, the duration of the simulation-based construction was 95.46 days (8 hr/d), i.e., (95.46 − 93)/93 

× 100% = a 2.65% difference compared with the actual construction time (93 days). The actual materials, 

equipment, and labour cost of original plan can be calculated by Equations (6) to (8), which is 2.27519 × 

106-CNY. The simulation value was 2.33630 × 106 CNY, i.e., (2.27519 × 106 − 2.33630 × 106)/2.33630 × 106 × 

100% = 2.69% difference. These time and cost differences were regarded as acceptable in this study. 

The proper parameters in PSO need to be selected to achieve a best optimisation, considering 

efficient computing loads. The inertia weight w is set as a dynamic value. Acceleration coefficients c1, 

c2, and the stop replication below the optimisation threshold M remain crucial parameters for PSO-

based optimisation. As the optimisation quality for multi-dimension problems is not easily visualised, 

a popularly used indictor (hypervolume indictor) proposed by Zitzler et al. [69] is used to evaluate 

the quality of different Pareto fronts (see Figure 7, HI = H/(L1 × L2)). A sensitivity analysis was 

conducted to choose proper parameters, taking the balance of optimisation quality and computing 

loads (see Figure 8). Results show the optimisation quality receives an improvement when M 

increases from 5 to 20, and the acceleration coefficients c1 = c2 = 2.5 are better than c1 = c2 = 0.5 when M 

is higher than 10. Therefore, the c1 = c2 = 2.5 was chosen for this case. On the other hand, the 

optimisation improvement was less clear cut when M was over 10 for c1 = c2 = 2.5. Besides, the required 
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simulation increases sharply when M reaches 20. Thus, replication M was set as 15, considering both 

the optimisation quality and the computing loads. 

 

Figure 7. Hypervolume example for 2-objective Pareto fronts. 

 

Figure 8. Parameters selection of PSO-based optimisation. 

5.2. Application Results 

After the above preparation, the simulation-based optimisation algorithms (see Algorithm 1) 

were performed, and DES-based simulation and assessment were called at each step of particle fitness 

evaluation. The iteration stop criteria was reached at the 83th iteration (see Figure 9), and CPU (2.8 

GHz, 4 cores) running time was 24,989 (s). At each iteration of integrated optimisation, the fitness of 

the global best particle, the swarm’s average values on three objectives, and searched the number of 

Pareto solutions were recorded, as in Figure 9. It shows that the global best values on construction 

cost, duration, and environmental impacts had a sustained reduction before the 65th iteration. 

However, the swarm’s average values on three objectives represented a trade-off relation on the 

objectives before the 68th iteration. The number of Pareto solutions show an increase tendency with 

fluctuation before the 68th iteration. After the 68th iteration, the average values on the objectives and 

the number of Pareto solutions became steady. 
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Figure 9. Multi-objective performances and Pareto solutions at integration iteration. (Values are 

normalised as x’ = (x − min)/(max − min) × 100%). 

By enumeration method, the assessment of the environmental impact, construction cost, and 

duration, as well as making multi-objective decisions in large numbers of plans could be extremely 

challenging. If all scenarios are simulated in the solution space using the traditional method, in 

theory, more than 108 iterations of simulation are required. While, proposed integrated method 

recorded only 2520 iterations of simulation during the optimisation iteration. It means that a great 

number of simulations are reduced by integrated method. Taking advantage of the fast convergence 

of PSO, the proposed method avoids the time-consuming assessment for all of construction scenarios. 

For this case study, a total of 28 Pareto construction scenarios were obtained by the proposed 

method (see Figure 10). Compared with the simulation of the original plan (GWP: 383,414-kg, cost: 

2,336,300 CNY, time: 95.46 d), they at most lead to reductions of (383,414 − 268,788)/383,414 = 29.9% 

on the environmental impact, (2,336,300 − 1,306,245)/2,336,300 = 44.1% on construction cost, and 

(95.46 − 69.68)/95.46 = 27.0% on project duration, respectively, when choosing the single objective best 

solution. X1 = {(1,4) (2,1) (3,3) (4,70) (5,3) (6,1) (7,22) (8,2) (9,1) (10,8.67)} is the environment best plan 

in environment-cost-time Pareto solutions (see Figure 10a). While X2 = {(1,4) (2,4) (3,2) (4,66) (5,2) 

(6,1) (7,51) (8,2) (9,1) (10,8.00)} is a three objective trade-off plan, which improves the environment 

with non-worse times and cost performances, compared with the original plan (see Figure 10b). If 

the cost increase of the environment best plan X1 (7,808,526 − 2,336,300)/2,336,300 = 234.2% is not 

acceptable for contractors, there still are 15 trade-off plans in Pareto solutions having lower 

environmental impacts without sacrificing cost and duration. For instance, the plan X2 reduces 

(383,414 − 280,201)/383,414 = 26.9% of GWP impacts, (2,336,300 − 1,875,089)/2,336,300 = 19.7% of 

project cost, and (95.46 − 85.69)/95.46 = 10.2% of duration. 
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(b) 

Figure 10. Pareto construction plans by environment–time–cost and the time–cost optimisation, (a) 

full scale, (b) trade-off plan scale. 

To analyse the reason of impact reduction in detail, the objectives trade-off solution, X2 and 

original construction plan are compared by impact sources as Figure 11. A value of 280,201 kg GWP 

is obtained by trade-off plan within Pareto solutions using X2. Compared with original construction 

plan, overall 26.9% of GWP impacts can be reduced by X2 using integrated method. In all of impact 

reduction, the total impact reduction contribution by sustainable material selection is 18.2% because 

of using SFS (steel formwork system) and annealed iron wire. As construction equipment, new type 

of mixer truck contributes 4.4% of GWP reduction, and the crane tower contributes 1.0%. According 

to the results of a case study, the iron wire and plywood are the two major contributors in terms of 

GWP impact as auxiliary materials. The concrete mixer truck, steel transport trailer, and the 

construction lift contribute the three major parts of GWP impact as equipment (see Figure 11). These 

results are consistent with previous studies by Feng et al. [40] and Bilec et al. [4], which demonstrated 

that construction-related iron wire, plywood, and transportation are the major sources of GWP 

impact. 

 

Figure 11. Impact sources of original and environment best plan. 
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method, which yields 11 Pareto solutions (see Figure 10). As Figure 10b shows, these time–cost Pareto 

solutions occur at the time–cost Pareto front. The Pareto solutions of environment–cost–time and 

time–cost settings show different performances on environmental impact, project cost, and duration, 

which can be seen as Figure 12. It shows proposed environment–time–cost provided better solutions 

associated with the environment (see Figure 12), which at most yielded more GWP reductions by 

(290,348 – 268,788)/290,348 = 7.4%, compared with a traditional time–cost trade-off. The missed 

solutions should have increased the opportunity for contractors improving the environmental 

performance. In addition, the Pareto scenarios searched out by the environment–cost–time 

optimisation yield best cost (1,306,245-CNY) is slightly (1.9%) worse than those obtained via the time-

cost optimisation (see Figure 12). The shortest project duration is equal (70 d) to the time–cost 

optimisation. 

E.-T.-C. T.-C. E.-T.-C. T.-C. E.-T.-C. T.-C.  

Figure 12. Pareto multi-objective comparison between environment–time–cost (E.–TC.) and time–cost 

(T.–C.) optimisation (red diamond indicates average value). 

A comparison study was conducted to compare optimisation results of original construction 

location (Heilongjiang, North China) with an assumed location (Shenzhen, South China). The local 

price level and energy emission factors are different between two regions. The local cost for 

construction is based on Construction Engineering Quota (CEQ) of Heilongjiang [60] and Shenzhen 

[70], while the construction energy emissions are based on NDRC [63] of these two regions. A total 

of 28 Pareto plans are obtained when case building was constructed in Shenzhen. Performances are 

compared between these two locations with frequency distribution (see Figure 13). The final Pareto 

solutions of Shenzhen in average have higher construction costs than Heilongjiang, while the 

environmental impact is lower than Heilongjiang. According to CEQ of Heilongjiang and Shenzhen, 

the construction cost is higher at Shenzhen (South China) than Heilongjiang (North China), but the 

CO2 equivalents of electricity supply are lower in the south of China [63]. The Pareto solutions 

obtained by integrated method conform to these (see Figure 13). 
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Figure 13. Performance frequency distribution of Pareto solutions at the compared locations. 

For these two construction locations, the Pearson’s correlation is used to analyse the correlation 

between environment, cost, and project duration performances (see Table 5). The SPSS (Version 20) 

is used as statistical platform. The construction samples (100 for each) of these two locations are 

uniformly random generated. It shows that time and cost have high positive relations, environment 

and cost have negligible relations, and environment and time also have negligible correlations, based 

on the standards of Hinkle et al. [71]. The results indicate that it is hard to obtain a general conclusion 

on the correlation between the environment, with cost/time objectives. The negligible correlations 

between the environment and cost/time imply the possibility of environment–cost–time trade-off 

plans. These trade-off plans could reduce environmental impacts with limited or without cost and 

time compromises. The proposed integrated method is an approach to reach this possibility. 

Table 5. Correlation among environment–cost–time performances (Pearson’s r). 

Location  Environment Cost Time 

Heilongjiang 

Environment 1   

Cost 0.00 1  

Time 0.22 0.66 1 

Shenzhen 

Environment 1   

Cost 0.10 1  

Time 0.05 0.91 1 

6. Conclusions 

Making an environmentally friendly construction plan that simultaneously considers 

performances in multiple metrics is extremely difficult for the construction contractor. Many industry 

practitioners assume that other product performances will certainly suffer from the environmentally 

friendly strategy. This study proposes an innovative method that employs simulation, assessment, 

and optimisation integration to perform efficient environment–cost–time multi-objective 

optimisation, which may constitute a practical method for reducing environmental impacts with 

limited compromises on project cost and time performances. According to the case study, the 

obtained solutions not only reduce construction-related GWP impacts, but also could receive the 

same or even better cost and time performances. This method provides construction plans that 

enables contractors to take trade-offs on interested objectives, and help dispel the misgivings for 

further environmentally friendly applications. 

This integrated method could be used in many types of applications. After adjusting the DES 

model and replacing assessment data sources, it could be used as a decision-making tool for 

contractors to plan a low-impact construction. In the construction planning stage, it can explore and 

identify several environment–cost–time Pareto solutions from numerous possible construction 

scenarios. Solutions that perform poorly on interested objectives are automatically excluded, thereby 

alleviating the difficulty of making multi-objective decisions. The contractor can make their final 

decisions based on their preferences and project characteristics. In addition to the decision-making 

ability on construction planning, proposed method is also a credible tool that shows the ability and 

responsibility of a contractor company. This method could be used for contractors to show that 

construction is conducted in an energy-efficient, cost-, and time-effective manner. In addition to the 

construction, the integration of simulation, assessment, and multi-objective optimisation could be 

implemented in other fields. This integration will be especially valuable for industries where several 

industrial objectives, many feasible options, and complex activity interactions need to be considered. 

Although proposed method is an effective decision support tool of assessment and optimisation, 

this tool suffers from some limitations, which will be addressed in future work. The construction 

planning consists of auxiliary materials, equipment, and labour configuration in this case. Other 

planning aspects such as process logic and project schedule can be extended. Furthermore, it might 
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be still subjective for contractors to select a preferred solution from several Pareto solutions. A further 

decision support after obtaining Pareto solutions can be valuable for future work. 
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