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Abstract: In this study, the neural network method (Multi-Layer Perceptron, MLP) was integrated
with an explorative model, to study the feasibility of using machine learning to reduce the exploration
time but providing the same support in long-term water system adaptation planning. The specific
network structure and training pattern were determined through a comprehensive statistical
trial-and-error (considering the distribution of errors). The network was applied to the case study in
Scotchman’s Creek, Melbourne. The network was trained with the first 10% of the exploration data,
validated with the following 5% and tested on the rest. The overall root-mean-square-error between
the entire observed data and the predicted data is 10.5722, slightly higher than the validation result
(9.7961), suggesting that the proposed trial-and-error method is reliable. The designed MLP showed
good performance dealing with spatial randomness from decentralized strategies. The adoption
of MLP-supported planning may overestimate the performance of candidate urban water systems.
By adopting the safety coefficient, a multiplicator or exponent calculated by observed data and
predicted data in the validation process, the overestimation problem can be controlled in an acceptable
range and have few impacts on final decision making.

Keywords: urban planning; water infrastructure; adaptation planning; artificial neural network;
multi-layer perception

1. Introduction

Long-term strategic planning on urban infrastructures is often obsessed with future uncertainties
such as the state of the world (e.g., economic situation, climate) or state of the city (e.g., population
growth). These uncertainties are not statistical in nature which makes them hard to predict. One of the
most convincing examples is the “Shrinking City” event in Dresden since 1990, where 7 predictions
have been made during 15 years to predict the population growth and guide the city planning but
none of them turned out to be right [1,2].

To deal with this issue, computational tools have been developed to look into more future scenarios
and offer more reliable plans, such as Adaptation tipping points [3], Robust decision making [4],
Info-gap [5]. The adaptation tipping points offered shifting between different strategies and plans
but no guarantee of success adaptation due to lack of system performance evaluation. The robust
decision-making and info-gap both aim to explore as much future as possible and evaluate the
robustness of candidate plans by trade-off on the target.

As an improvement exploring planning tools have been developed to model the performance
of different infrastructure plans under different scenarios, such as Adaptive policy making [6],
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Adaptation pathways [7] and Dynamic adaptive policy making [8]. The adaptation pathways are able
to simulate the dynamic of different infrastructure and the adaptation among them under relatively
small range of future scenarios. Meanwhile, the adaptive policy making looks into wide range of future
scenarios without lack of infrastructure adaptation. As the improvement of them the dynamic adaptive
policy making tries to consider both but could only work out plans for independent strategies.

The limitation of the current tools is they are not able to evaluate the adaptation of a real-world
combined system (centralized + decentralized) as such simulation is excessively time-consuming.
More precisely, one of the major challenges on reducing the time consumption in such exploration
planning tools is the robustness problem. The more detailed designs to be modelled (especially spatial
distributed decentralized systems) and the more scenarios to be considered, the more time it will take,
the more robust the plan can be.

Unfortunately, there are only few methods or tools that could reduce the exploration time while
maintain the exploration range. This problem is being addressed in this paper by integrating the
neural network method (multi-layer perceptron) with an explorative model that simulates possible
urban infrastructure adaptation, to study the feasibility of using machine learning to reduce the
computational time in such exploration.

In recent years, Artificial Neural Networks (ANNSs), as a data-drive, self-adaptive and
non-linear forecasting tool was applied in various fields such as natural resource management [9-11],
pattern recognition [12,13], medical diagnosis [14] and decision making [15,16]. As a matter of factor,
the methods and its derivative tool are often used in short-term decision makings or predictions
(event scale) rather than long-term planning (strategy scale). To cope with the exploration model,
the machine learning algorithm was designed and trained to predict urban water infrastructure
performance for individual events while the decision on planning was made based on microscopic
strategy performance distribution.

In this paper, the above accelerated explorative long-term planning method was proposed and
tested. The following works have been conducted: (1) a comprehensive statistical trial-and-error
analysis method is proposed and tested to avoid local optimization of network structure. (2) a neural
network was integrated in the explorative adaptation planning to significantly reduce the simulation
time, performance was tested and analyzed; (3) a correction method was proposed and tested to
minimize the overestimation problem of the designed exploration framework.

2. Methods

2.1. Site Description and the Exploration

The case was carried out in Scotchman’s Creek catchment, locates at the southeast of Melbourne
CBD. The catchment is mostly located within Monash City council but a part of the catchment (6%) is
situated within Whitehorse City council. It has an area of approximately 10.36 km? and a population
of approximately 25,000 residents.

The council started to introduce rainwater tanks to households since 2005 to deal with the
unpredictable rainfall events (e.g., reduce peak flow during highly intensive rainfall event, store rain
water during drought season). Although the council tried to set up a progressive goal of rainwater tank
uptake rate in the area, there were several obstacles in making such a plan: (1) The spatial distribution
of rainwater tanks will largely influence the flood resistance in the catchment resulting from them.
Thus, the promoting of higher rainwater tank uptake rate cannot be easily determined compared to
upsizing pipe systems; (2) The population growth in the area could infect the construction of houses
and buildings which increases the impervious surfaces in the catchment as well as the opportunity
for uptake rainwater tanks; (3) The flood-resistance robustness of the combined drainage system
(under different rainwater tank uptake ratio and pipe system capacity) was unclear.

Thus, a long-term (2015-2035) evolution of the urban development, climate change and water
infrastructure adaptation were simulated by DAnCE4Water (Dynamic Adaptation for enabling City
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Evolution for Water) [17,18] to set up a robust plan of progressive goals for both rainwater take
uptake ratio and drainage pipe system upsizing. With the initial city scenario established based on the
real-world catchment in 2015, DAnCE4Water ran in a 5-year interval to simulate the transformation of
the city and assess the urban water system performance with different drainage infrastructure updates
under all possible development scenarios.

The development scenario consists of two parameters: the population growth rate (PGR) and the
climate change factor (CCF). The 5-year population growth rate is ranged in [0.03,0.06] which calculated
based on the maximum annual growth rate (0.012 per year) in the area according to the 1990-2015
census data from the Australian Bureau of Statistics. DAnCE4Water would replace old buildings and
construct new ones according to the increased population through its urban development module
(UDM) [17,18]. The 5-year climate change factor is a coefficient used to magnify the 5-year designed
storm. Initialized to 1.00, CCF is assumed to change every 5 years within three rates: 0.95X, 1.00X
or 1.05X.

Three drainage update options were tested in this paper: (1) business as usual, (2) uptake rainwater
harvesting tanks and (3) upsize drainage pipes. “Business as usual (BAU)” maintained the existing
infrastructures from the previous step. The more BAU was taken, the less contribution would be done
in reducing flooded junctions. “Uptake rainwater harvesting tank (RWHT)” increased the current
probability of households installing rainwater harvesting tanks by 5%. The more RWHT was taken,
the more decentralized systems would be built to reduce the runoff and peak flow. “Upsize drainage
system (PIPE)” upgrades the drainage network, which was divided into 4 groups according to their
diameters. Each upgrade enlarged one group of pipes, from the large one to the small one. The more
PIPE was taken, the higher capacity of the drainage network would be.

The exploration randomly selected a PGR, a CCF and a drainage infrastructure update within the
available range and applied to the base city scenario. The UDM would then generate a future scenario
of the city while the performance of the combined system (the number of flooded junctions in the
catchment area along the drainage network) would be evaluated by SWMM. The result city scenario
was saved as the base city scenario for the next 5-year decision (see Figure 1).
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Figure 1. Designed exploration of the Scotchman’s Creek catchment area.

The result scenarios were classified by the drainage infrastructure status (e.g., how many steps
of BAU, RWHT and PIPE were adopted respectively). The corresponding distribution of system
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performance (flooded junctions) for each status was calculated. As only one strategy was taken in each
decision step, the status contains the year information as well. If the number of flooded junctions of a
status was below the target (110 in 2020, 100 in 2025, 90 in 2030 and 80 in 2035, which is 100%, 91%, 82%,
73% of the flooded junctions in 2015) in over 95% of the cases, the status would be consider “robust.”
The “robust” statuses were connected in a time line to form a drainage infrastructure implementation
pathway as the long-term plan in this case study.

To compare the proposed acceleration exploration method, the plan was first explored through
the above traditional exploration. The 20-year planning took 2.93 million simulations including
1.73 million explorations with uniformed input values and 1.2 million with random input values for
the last two decision steps. The uniformed input values were listed in Figure 1, with 36 scenarios in
2020 (4 PGRs * 3 CCFs * 3 add-on strategies), 36 in 2025, 36° in 2030 and 36* in 2035. The random
explorations selected result scenarios in 2025 and 2030, PGR and CCF within range of [1.03,1.06] and
[0.95,1.05]. The whole exploration took 1 year and 4 months with 32 instances in the DAnCE4Water
cloud server while the result was saved in a SQLite database containing the input values and output
values for every simulation.

2.2. The Accelerated Exploration and ANN Design

The proposed accelerated exploration started with a normal exploration and paused when a
certain amount of simulation had been finished. These simulations would be used as the training set
to train an ANN while the exploration continued. The exploration then stopped when another certain
amount simulation had been finished. These extra simulations would be used for validation. The ANN
would be trained with different structures and settings and tested on the validation simulations.
The errors of the validation would be used to choose the best structure and setting, and the ANN
would do the rest of exploration by predicting with the scheduled PGR, CCF and add-on strategies (as
the normal exploration) but skipping the UDM and SWMM process.

The results in the reference exploration (the scenarios as well as the evaluated system performance)
were classified into three sets: the training set (size: 0.1%, 1% or 10%), the validation set (size: 10%)
and the test set (size: the remaining data).

The training set was used to train the network (e.g., weights) while the validation set was for
adjusting the structure of the network (e.g., number of nodes) [4]. The test set was used to assess the
performance of a trained and validated network. In most literature [14,19-25], as the network structure
are usually pre-defined or tested by trial-and-error, the validation sets are usually disused or replaced
by the test sets. Under such substitution, the performance of the network is only meaningful for certain
sets (the “test sets’), which have been optimized during the training, rather than for the untrained data
which we expect more precise predictions.

2.2.1. Type of ANN

There are several groups of networks such as Feedforward Networks (e.g., Multi-layer
Perceptron [26], the Probabilistic Neural Network [27], the Dynamic Neural Network [28]),
Recurrent Networks (e.g., Elman Network [29], Autoregressive Networks [30]), Polynomial
Networks (e.g., Ridge Polynomial Networks [31], Function Link Network [32]), Modular Networks,
Support Vector Machine and so forth. [33].

Among these extensive types of ANNs and their derivations, The multi-layer perceptron (MLP),
a feedforward multilayer network with non-linear node functions, is the most commonly encountered
one [33,34]. Practically, MLP shows successful generalization capability, effectiveness and efficiency in
forecasting time series [10,11,19,23], as well as great compatibility coping with different optimization
methods or existing models [19,35]. Although MLP is usually the better choice or at least the same
performance with respect to other proposal networks [33], there remain certain delimitations that have
a remarkable impact on the training accuracy and efficiency. Such aspects include the structure of
the network, the activation function of nodes, the existence of bias units, the quality and quantity of
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training and validation datasets, the choice of training algorithm and parameters and so forth. In this
paper, the MLP network will be adopted while the design process of these aspects will be investigated
and adapted to the case study. The network will be established using PyBrain [36], a modular Machine
Learning Library for Python.

2.2.2. The Structure of MLP Network

The MLP usually consists of nodes(units) arranged in three types of layer: the input layer,
the hidden layer(s) and the output layer. As Figure 2 shows, each node (unit) has its own output value
y and is connected by real-valued weights w to all (and only) the nodes of the subsequent layer. For the
ith node in the /th layer n;;, let S;; be the set of nodes that connect to 7, f(x) be the activation function
of n;;, the output value is calculated using Formula (1):

Y = FC Y wlilyam) (M

m 1
1y €S;

where v, is the output value the ith node in the Ith layer; w}?l is the weight of the connection between
this node and the jth node in the mth layer; Yy is the output value of the jth node in the mth layer; f(x)
be the activation function of this node.

Input Hidden Output
Layer Layer(n) Layer

O Node

D” U V I:[ D Bias unit

Figure 2. Structure and value propagation of MLP.

The input layer receives the input data while the output of output layer refers to the predicted
results. Thus, both only requires only 1 layer to fulfill the task. The number of nodes in these layers
are determined according to the number of input variables and target variables [37]. In some cases,
the input and output variables are linearly normalized to (0,1) or (—1,1), to avoid computational
problems or to meet algorithm requirement [24,38,39]. In this study, such methods were not applied
because: (1) with the exploration continues, the input variables will always exceed the range of the
existing records while the output variable also has the chance. (2) the weights may undo the scaling.

The number of hidden layers and its nodes has a significant impact on MLP training [37,40].
Simple networks maybe less accurate in learning the problem while complex networks may take
excessively long training time. one hidden layer is usually sufficient in most cases [14,19-25,33,41-43]
while sometimes multiple hidden layers shows better learning on certain problems [35].

The number of nodes in hidden layer is usually determined through trial-and-error method [19,23,43].
The range of attempts is usually within 1 to 20 [14,19-25], or 3 times the number of input variables [43].
The best number of nodes was the one having the smallest mean-square error (MSE) and root-mean-square
error (RMSE) and the highest correlation coefficient (r) for the validation data set. [11]

In this paper, the designed MLP consists 1 input layer, 1 hidden layer and 1 output layer. There will
be 5 nodes in the input layer representing climate change factor, population, the number of decision
take for BAU, RWHT and PIPE within the 20 years and 1 node in the output layer referring to the
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flooded junctions. No variables will be normalized. The number of nodes in the hidden layer will be
determined within 1 to 20 through trail-and-error method.

2.2.3. The Activation Functions

The role of activation function (AF) in MLP is to non-linearize the linear combination of weights
and node values passing through from the previous layer. Practically, there are three types of AFs:
(1) the analytic AFs, which are classic functions such as Gaussian, Sigmoid and Tanh; (2) the fuzzy
AFs, which has faster convergence in training; and (3) the adaptive AFs, which improves the nonlinear
response of the network [40]. Although the fuzzy AFs perform better on specific problems [44], there is
little evidence on the advantage of such AFs in practice. On the other hand, the adaptive AFs also
suffer from a more complex and error-prone training algorithm [40]. Thus, only classic analytic AFs
are considered in this study.

For nodes in the hidden layer, most commonly used AFs are the logistic sigmoid
function [34,38,41], the tanh function [35,43,45]. These two functions are similar in shape while
different in output ranges (sigmoid: [0,1], tanh: [-1,1]). For the output layer, most researchers adopt
linear function [11,35,41,45].

In this paper, the log-sigmoid function has been used for the hidden layer nodes while linear
function has been applied in the output layer to test their performance on handling random noise.

2.2.4. Bias Unit

The bias unit is an extra set of nodes added to all layers but the output layer, which helps to get a
better and quicker learning of the network. The output value of a bias unit is fixed value while the
weights of connection from the bias unit to the subsequent nodes are still adjustable. The addition of
bias unit introduces a threshold value that may influence the activation of the subsequent nodes [24,37],
or, from another perspective, helps to move the AF in the subsequent nodes along the x-axis for better
learning results. Thus, in most cases, bias units always contribute positively to the network.

2.2.5. Learning Algorithm and Parameter Setting

The traditional and most commonly used training method for MLP is the two-step
error-backpropagation method [14,19,24]. Firstly, the input vector is fed into the input layer,
propagating forward through hidden layer(s) to the output layer. Then, the error is calculated in the
gradient descent and propagated backward from the output layer through the hidden layer(s) to the
input layer, which modifies the weights for every connection between nodes. The training repeats until
the network’s overall error are less than a predefined learning rate, or until the number of maximum
epochs is reached. Learning rate is a damping factor applied to weights correction during training [40],
indicating the amount that the weights are updated. Epoch is a measure of the number of times all of
the training vectors are used once to update the weights. Obviously, when dealing with huge datasets,
it is super time consuming if all the weights are recomputed for each training vector. Thus, there is
also a batch-learning term for the backpropagating method, which feeds multiple training samples in
one forward/backward pass. The number of samples in one pass is called batch size while such one
forward /backward process is count as one iteration.

As the original backpropagation method is likely to be slow [41], improved strategies such as
Second-order On-Line training methods have been developed. Although these second-order training
algorithms are likely to converge significantly faster than first-ordered backpropagation [37], they require
more complex data preprocessing as well as more storage and computational costs. Luckily, there are also
several improved first-order backpropagation methods. The most commonly used is the Backpropagation
with Momentum [22,24], which significantly speed up the training process. The momentum is an inertial
factor applied to the weights during the back propagate process, which aims to maintain the direction of
weight changing [40]. The addition of momentum accelerates convergence where the learning quality is
good while precisely reduces the number of oscillations where bad [37].
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The settings of training parameters are more likely to be empirical and case-dependent. In most
cases, the start/fixed learning rate will be in the range of [0.01,0.3] [21,22,25,34] while the end learning
rate within [0.00013,0.001] [19,21]. The number of epochs usually depends on the training data size and
the computational capacity, ranging from 200 to 15,000 [19,21,22,24,34,35,42]. Momentum is typically
set to 0.9 [22], although the optimal value might be task-specific [21,24,34].

The designed network structure and learning parameters are shown in Table 1. All combinations
of structure and learning parameters were tested with the first 0.1% of data and validated with the
following 0.05% data. After the best structure was determined, the network was again tested with
different size of training set size to find the best application pattern. The validation set size is half of
the training set. The best performing structure and application patter were applied to the case study to
study the feasibility of ANN in supporting long-term planning.

Table 1. Designed Neural Network Parameters.

Structure

Type Activation Function  Bias Units Learning Settings
Name Layer Node
. C : 1 1%, 1%, 109
input 1 5 _ True trablgtl?f Ssilzzee 0.1%, 1/0 0%
MLP hidden 1 1220 sigmoid True | 1ejarn1ng rate 0.01,0.1,0.3
earning rate decay 1.0
momentum 0.1-0.9
tput i
ouipt 1 1 linear False epoch 500, 1000, 5000

I Training size is the percentage of total data used as the training set, tested after the ANN structure
being determined.

2.3. Trial and Error

The performance of learning results was assessed by the root-mean-square error (RMSE), which is
a commonly used index in machine learning [14,20,21,34]. The lower RMSE it is, the better prediction
the module makes [19].

RMSE is defined as the absolute value of the estimated error between the predicted result and the
observed result, calculated by:

10— P)?
n

RMSE = @)

where O; is the observed result; P; is the predicted result.
As the unit of RMSE is case-dependent, the correlation coefficient (r) [14,20,21,34] was adopted to
compare the training performance with other studies.

i (P —P)(0; = 0)

y = — — ®)
VI (P —P)’ ¥, (0 - O)

where O; is the observed result; P; is the predicted result; O is the mean value of the observed result;
P is the mean value of the predicted result.

Practically, as the decision in long-term infrastructure implementation planning is not
scenario-based but strategy-based, the distribution of predict results for each strategy combination
should be more convincible than RMSE. Thus, the prediction distribution of outputs was also adopted
in this study as the other performance indicator

3. Results and Discussion

3.1. ANN Structure and Training Parameters

As mentioned in the previous section, all combinations of structure (number of hidden nodes)
and learning parameters (learning rate, momentum and number of epochs) were tested with the first
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0.1% of all data (training size = 0.1) and validated with the following 10% of data. For each parameter,
the distributions of RMSE for each candidate value under all possible combinations are shown in
Figure 3.
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20 20
19 19
18 ([ A M [ I I M 18 3 ] ] Bl ]
17 I 17 « y X
16 x| X 16 X
% X P X I P [ W X I % sl X
S 15 S 15 <
& & X X
14 I 14
13 13 l
I - o L
12 12
11 11
10 10
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Numberof hidden nodes Momentum
RMSE - Learning rate RMSE - Epoch
20 20
19 = 19
18 8 =§= 18 == — —
17 17
16 X 16
g ﬁ X X X
> 15 S 15
= 14 2 = 14
13 13
12 12
11 11
10 10
0.01 0.1 03 500 1000 5000
Learningrate Training epoch

Figure 3. RMSE Distributions under different manipulated variables.

By adopting ANN(MLP) in urban water infrastructure performance prediction, the RMSE of
such method ranges from 10.97-19.33 nodes with the observed flooded junctions ranging from 20 to
146. For the number of hidden nodes, setting 1 node caused the highest average RMSE (16.62) which
may due to the strongest linearity of the network. With the number of hidden nodes rises to 4 nodes,
the average RMSE drops gradually to 15.46 where the non-linearity starts to develop effect. From 4
nodes to 20 nodes, the average RMSE keeps stable within (15.13,15.56). Although there is no significant
difference in the average RMSE with the number of hidden nodes changing, the distributions of RMSE
still have dramatic and irregular variations. These distributions are characterized by the minimum,
maximum, Q1, Q3 and mid-values, which indicates 100%, 75%, 50%, 25%, 0% chance of getting a higher
RMSE than the given value, respectively. Thus, the lower these values are, the better performance of
the network we will get.

As shown in Table 2, the MLP network with 15 nodes was always in the top 5 well-performed
structure and has significant advantages in low mid-value compared to others. The 17 nodes network
is slightly better than the 15 nodes one on minimum, Q3 and maximum as well as slightly poor on Q1
and mid-value. Thus, the network of 15 and 17 hidden nodes are selected as the candidate structure
for the following studies.

Following the same process, the rest parameters are then determined: momentum = 0.1, learning
rate = 0.01, epoch = 5000.

The candidate network was again tested with different size of training set size to find the best
application pattern (see Table 3). The result indicates that network with 15 nodes performs better than
the 17 nodes one under the select learning parameter, which is within 3 times the number of input
variables [38]. Training with the first 10% data will have a significant improvement in reducing the
RMSE while maintaining an acceptable time-saving capacity (reduce 80% of the time).
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The best performing structure and application pattern (Table 3) were then applied to the case
study. The overall RMSE for the whole observed data and the predicted data is 10.5722 and the detailed
performance of MLP prediction is shown in Figure 4. The overall RMSE is slightly higher than the
validation result (9.7961).

Performance of Designed MLP
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Table 2. Comparison of performance distribution for different number of hidden nodes.

1st RMSE 2nd RMSE 3rd RMSE 4th RMSE 5th RMSE

Min 12 10.97 14/17 11.17 19 11.18 9 11.25 15 11.26
Q1 19 11.95 18 12.04 16 12.05 15 12.08 13 12.16
Mid 15 14.02 17 14.20 8 16.67 19 16.79 10 16.98
Q3 17 18.15 5 18.17 10/12 18.19 13/14 18.20 15 18.21
Max 17 18.37 8 18.39 9 18.41 6 18.42 15/16 18.43

Table 3. ANN performance under different training set sizes.

Training Size Hidden Nodes Learning Rate Momentum Epoch RMSE

0.001 11.5051

0.01 15 11.8653

Validation set 01 0.01 0.1 5000 97961
0.001 12.2593

0.01 17 12.5760

0.1 11.9862

Test set 0.1 15 0.01 0.1 5000 10.5722

The correlation coefficient (r) of the test set was 0.821, which was preferable compared to rs
in the other close applications of ANN (flood discharge: 0.683-0.851 [47], open-channel junction
velocity field: 0.035-0.884 [48], drought effects on surface water quality:0.819-0.922 [49], BOD in river:
0.505-0.821 [19]).

Taking account of the tremendous amount of data in this case study, the above result suggested
the proposed statistical trial-and-error method for determining network parameters is feasible and
reliable on selecting the best structures.

3.2. Performance on Supporting Long-Term Planning

To analyze the performance variations of different implementation strategy combinations for the
urban water system in the case study, boxplots are again used while the upper end of the whiskers is
set to 95th percentile (Figure 4). In other word, the probability of a certain system performing better
than this upper end is 95%. Thus, the accuracy on the 95th percentile and Q3 is practically more
important than that of mid-value, Q1 and minimum.

For strategies containing only rainwater tanks ([0,5.0,0], [0,10.0,0], [0,15.0,0] and [0,20.0,0]), the first
two combinations are all included in the training set and share the same distribution with the observed
results. For the latter two strategies, the 95th percentile errors are —0.24% and —1.26% respectively
while the Q3 errors being —2.28% and —5.68%. This suggests the designed MLP network is effective
and has relatively good performance in predicting strategies with spatial randomness. The performance
of purely decentralized systems may have stronger and more linear relation with the rainfall events
and urban permeability (related to buildings/population), which makes the prediction of these purely
decentralized strategies better than mix strategies.

For the same reason, the purely business as usual strategies also have good predictions: for
[3,0.0,0], Q3 = —0.22% and 95th = 0.18%; for [4,0.0,0], Q3 = —0.77% and 95th= —0.88%. As no additional
systems were implemented in these scenarios, the designed network performs well in generalizing the
relation between water system performance and rainfall events and urban permeability.

For the overall performance, the MLP result has similar minimum, Q1 and mid-value compared
to the observed result (min: 20, 20; Q1: 48.1, 47.0; mid: 58.3, 60.0). Whereas the predicted values have
a narrower range (20.0-88.44) than the observed ones (20-93) despite the outliers. Such phenomena
indicate that the prediction in the high-value events (poorly performed water system in practice)
tend to aggregate to the Q3. This suggests that, from an overview perspective, the adoption of ANN
supported planning may raise the chance of overestimating the performance of urban water systems.
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To make this proposed method applicable and reliable in practice, the error distributions of the
result are investigated to solve the overestimating problem. As shown in Figure 5, all errors of Q3 lie
between (—10.56%,8.76%) and 95th percentile between (—18.91%,14.95%). The majority of these errors
are negative, indicating universal overestimations of the urban water system.

Errors for Q3 Errors for 95th percetile
30% 30%
20% 20%
A underestimation A underestimation A
10% T 10%
A A
7 A A
e : ata . Aa A A ar e N - = D B AA At =
A N A A A A A &
-10% A. A Aa A -10% a ‘
Voverestimation ¥ overestimation* A .
-20% -20% A
-30% -30%
AQ3 4 95 percetile
(a) (b)
Error for Q3 (mutiplicator) Errors for 95 percetile (mutiplicator)
30% 30%
A
20% . 20%
A underestimation A A underestimation
10% A A ,a N 10% A L ‘i N faka
AL A, A A A a N A A a N
0% [aa = C B 0% 2 A
% = .
A A A A
-10% -10% = _
Voverestimation V overestimation
20% -20%
-30% -30%
A4Q3 4 95 percetile
() (d)
Error for Q3 (exponent) Errors for 95 percetile (exponent)
30% 30%
A
20% N 20%
A underestimation a A underestimation .
10% Ao, Lt 10% + o Ay < A
e i xk A " i A N A
0% fatk = T 0% — s
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-10% -10% 2 —
Voverestimation V overestimation
-20% -20%
-30% -30%
403 4 95 percetile
(e) )

Figure 5. Error distribution of MLP predicted result and corrected result ((a,b) observed errors for 95th
percentile and Q3; (c,d) corrected errors for 95th percentile and Q3 by multiplication; (e,f) corrected
errors for 95th percentile and Q3 by exponent).

As Table 4 shows, the adoption of safety coefficient could effectively raise the error from negative
to positive (from overestimation to under estimation) while slightly enlarge the standard deviation of
the errors.

Table 4. Mean =+ SD error of adopting the safety coefficient.

Observed Error Multiplicator Exponent
Q3 —2.29% + 4.28% 3.38% =+ 4.73% 3.43% + 4.72%
95th percentile —3.13% + 6.34% 2.63% £ 7.15% 2.96% £ 7.32%

As these errors are related to the network structure and its final status, a safety coefficient, which
comes from the validation process, is adopted to adjust the final output of the network. By investigating
the observed data and the predicted data in the validation set, a multiplicator or exponent can be



Sustainability 2018, 10, 4600 12 of 16

calculated out and applied for the test set. As the 95th percentile is the dominant factor of this case
study, the safety coefficient also comes from the 95th percentile of the validation (multiplicator:1.0910,
exponent:1.0272).

The result of correction is shown in Figure 5. There is no obvious difference between correction
with multiplicator and exponent. The corrected errors of Q3 lied in —3.05% to 18.24% (multiplicator)
and —2.96% to 17.87% (exponent) while that of the 95th percentile in —11.69% to 25.41% (multiplicator)
and —11.60% to 25.36% (exponent).

As shown in Table 5, the accelerated exploration identified all robust drainage infrastructure
status in the reference exploration while overestimated three. The corrected accelerated exploration
identified most robust drainage infrastructure status in the reference exploration while underestimated
one. The underestimated one has no influence on the plan generation as there is no connectable route
in the previous decision year. Thus, the correction is essential and effective to raise the robustness of
the proposed accelerated exploration.

Table 5. Robust progressive goal for Scotchman’s Creek.

Reference Exploration = Accelerated Exploration  Corrected Accelerated Exploration

2020 [0,0,1] [0,0,1] [0,0,1]
2025 [0,0,2] [0,0,2] [0,0,2]
[0,0,3] [0,0,3] [0,0,3]
[0,5,2] [0,5,2] [0,5,2]
[0,10,1] [0,10,1] [0,10,1]
2030 [0,15,0] [0,15,0] -
[1,0,2] [1,0,2] [1,0,2]
- [1,51] -
[0,0,4] [0,0,4] [0,0,4]
[0,5,3] [0,5,3] [0,5,3]
2035 [0,10,2] [0,10,2] [0,10,2]
- [1,5,2] -
- [2,0,2] -

1 [BAU,RHWT(%),PIPE].

Notably, for 95th percentile, the majority of errors are controlled within £10%. The two outliers
represent the two pure strategies of upgrading pipes, [0,0.0,3] and [0,0.0,4]. Although there are great
errors on these two strategies (underestimation of water system), the origin system performance of
them is good enough that the errors have no influence on identifying them as good strategies (not
influencing decision). This error also indicates that different from purely decentralized strategies, such
purely centralized strategies which have only relations with rainfall events, do not have a preferable
prediction at all.

Such a result indicates that when using the MLP to predict a black box problem, such as the urban
water system in the case study, there should be at least two related input factors for each variable (the
candidate infrastructure, e.g., pipe, rwht) to ensure reliable prediction.

4. Conclusions

In this study, an accelerated exploration planning method was proposed by integrating
the neural network method (multi-layer perceptron) with an explorative model (DAnCE4Water),
to significantly reduce the simulation time of generating a robust long-term water system adaptation
plan. The proposed method was applied to a case study in Scotchman’s Creek, Melbourne, Australia.
Results showed the proposed method can cut down 80% of the simulation time while offering the
same plan.

Instead of modifying the network parameters, the network structure and settings in this paper
were determined through a comprehensive statistical trial-and-error analysis (evaluating for all possible
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parameter combination). With 10% of the training data, the validation error (10% data) was 9.7961,
the overall prediction RMSE was 10.5722 (80% data) and the correlation coefficient (r) was 0.821.
This suggests that the ANN could have stable and reliable with good designed network and low
proportion of training data. It also emphasis the necessity of network design which did take time in
the trial-and-error analysis but having promising return in total time saving and accuracy.

The ANN showed diverse capacity on predicting the performance of different type of
flood-resisting strategies. The estimation of purely decentralized strategies (scenarios with RWHT only)
and purely BAU strategies is far more accurate than that of mixed strategies. Meanwhile, the purely
centralized strategies (scenarios with PIPE only) had the worst prediction. Considering the input
variables related to the strategy, it is obvious that the performance estimation would be more accurate
if more flood-related input variables are related to it (two for RWHT and BAU while one for PIPE).
Thus, more flood-related input variables should be considered (for each strategy) in future studies.

The proposed exploration method raised the chance of overestimating the performance of urban
drainage systems (—3.13% = 6.34% flooded junctions than observed). By adopting the safety coefficient,
a multiplicator or exponent calculated by observed data and predicted data in the validation process,
the overestimation problem was controlled in an acceptable range and have very limited impacts on
final decision making (2.63% =+ 7.15% flooded junctions than observed). Such correction is effective
in practice as the real-world goal for planning is either above or below a certain target. Instead of
reducing the error which is a tough task, the correction shifts the error along one direction (to more
underestimate side) to ensure the reliability of the given plan. As the error came from the method,
the safety coefficient calculated by the validation data could be reasonable to some extent.

Although the proposed accelerated exploration method was proved to be efficiency in time saving
(saved 80% of exploration) and effective (offered similar decisions after correction), there are still
several aspects requires further studies. (1) The training set used in this study followed a “real-world
exploration” time sequence, which means there were much more simulations in the later decision steps
than in the earlier steps. Such setting may have influence on the network performance. Further studies
have to be conducted on the composition of the training set to ensure efficient and effective training;
(2) Further investigation in the cause of the universal overestimation have to be conducted to optimize
the algorithm or training pattern. (3) More case studies should be carried out to further validate and
improve the proposed accelerated exploration method.
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