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Abstract: In third world countries, industries mainly cause environmental contamination due to lack
of environmental policies or oversight during their implementation. The Sheikhupura industrial
zone, which includes industries such as tanneries, leather, chemical, textiles, and colour and dyes,
contributes massive amounts of untreated effluents that are released directly into drains and used
for the irrigation of crops and vegetables. This practice causes not only soil contamination with an
excessive amount of heavy metals, but is also considered a source of toxicity in the food chain, i.e.,
bioaccumulation in plants and ultimately in human body organs. The objective of this research study
was to assess the spatial distribution of the heavy metals chromium (Cr), cadmium (Cd), and lead
(Pb), at three depths of soil using geostatistics and the selection of significant contributing variables
to soil contamination using the Random Forest (RF) function of the Boruta Algorithm. A total of
60 sampling locations were selected in the study area to collect soil samples (180 samples) at three
depths (0–15 cm, 15–30 cm, and 60–90 cm). The soil samples were analysed for their physico-chemical
properties, i.e., soil saturation, electrical conductivity (EC), organic matter (OM), pH, phosphorus (P),
potassium (K), and Cr, Cd, and Pb using standard laboratory procedures. The data were analysed with
comprehensive statistics and geostatistical techniques. The correlation coefficient matrix between
the heavy metals and the physico-chemical properties revealed that electrical conductivity (EC)
had a significant (p ≤ 0.05) negative correlation with Cr, Cd, and Pb. The RF function of the
Boruta Algorithm employed soil depth as a classifier and ranked the significant soil contamination
parameters (Cr, Cd, Pb, EC, and P) in relation to depth. The mobility factor indicated the leachate
percentage of heavy metals at different vertical depths of soil. The spatial distribution pattern of Cr,
Cd, and Pb revealed spatial variability regarding subsoil horizons. Significant contamination was
discovered near the Deg drain and the Bed Nallah irrigated area that indicated a high Cr topsoil
contamination, and in a homogenous pattern in Cd and Pb (p < 0.05). Consequently, different soil
management strategies can be adopted in an industrial irrigated area to reduce the contamination
load of heavy metals in soil.

Keywords: spatial interpolation; heavy metals; variogram model; soil contamination; Random Forest

1. Introduction

Increasing population growth, large-scale industrialization, and exceptional urbanization during
the last few decades are responsible for the degradation of the quality of environment and soil [1].
Soil is one of the basic environmental media, it can be contaminated through the accumulation of
heavy metals through the discharge of effluents from mine tailings, coal combustion, sewage sludge,
disposal of high metal wastes, paints and leaded gasoline, land application of fertilizers, and animal
manures [2]. The ill-defined group of inorganic compounds and hazardous chemicals that industries
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may release and discharge in drains as industrial effluents constitute contamination with different
heavy metals, such as arsenic (As), chromium (Cr), lead (Pb), cadmium (Cd), zinc (Zn), mercury
(Hg), nickel (Ni), and copper (Cu). Industrial effluents may also lead to the release of heavy metals
into the soil that is considered a significant sink media [3]. The availability of heavy metals in soil
solution and its downward movement in the profile is highly dependent on the concentration of the
particular heavy metal, type of soil, and their physicochemical properties. Metals may be adsorbed on
the surfaces of soil particles, precipitate as sulphides, carbonates, oxides or hydro-oxides [4]. Because
of the scarcity of fresh water in the arid region, many farmers use industrial wastewater or a mixture
of both. This practice has led to a high concentration of heavy metals in soil & soil solution due to
the repeated application of wastewater. Soil cannot adsorb such a high concentration of metal when
it is released into the soil solution for crop uptake or downward movement in the soil profile and
ultimately into the groundwater. The effect of long-term irrigation using wastewater on the heavy
metal contents of soil under vegetables in Harare, Zimbabwe was estimated by Manapanda [5].

Soil pollution due to heavy metals is a serious concern because of their toxicological effects on
the environment. Heavy metals induced into the soil pose a serious threat to the cultivated soil,
vegetables, and food chain, causing human health-related hazards [6]. Heavy metals in soil can cause
bioaccumulation in plants and in different organs of the human body through the intake of toxic
food [7]. For example, long-term continuous exposure to Cd can cause health issues [8], such as
prostatic proliferative lesions, lung cancer, hypertension, kidney dysfunction, and bone fractures.
Chronic exposure to an environment that contains Pb may cause symptoms of nephropathy, plumbism,
anaemia, central nervous system, and gastrointestinal colic. Different forms of Cr may cause toxicity in
the human body. The Cr may exist in many oxidation states, Cr(0), Cr(III), and (VI) valences, which are
considered as stable states, while trivalent chromium Cr(III) is naturally occurring in the environment.
The Cr(VI) is considered highly mobile and a cause of toxicity [9]. Many industrial processes also cause
oxidation and produce Cr(VI) in effluent and industrial wastes. Cr(VI) (hexavalent chromium) is a
significant carcinogenic metal for humans, accepted by both the United States Environmental Protection
Agency (US-EPA) and International Agency for Research on Cancer (IARC) [10]. Several health risks are
associated to Cr(VI), moreover, Cr(III) cannot enter the body’s cells directly: the Hexavalent chromium
(Cr VI) may cross the cell membrane and, after entering the cell, it may diminish to Chromium (III),
which creates ducts with the DNA and is considered very carcinogenic for health [11]. In agricultural
irrigated areas, the spatial dispersal of heavy metals is associated with wastewater, industrial effluents,
pesticides, and natural sources.

Heavy metals’ spatial extent and mobility is a critical component to be considered in studies of soil
contamination. It is essential to provide detailed information regarding the mobilization, origin, extent,
association, and biological availability of toxic metals at different soil depths [12]. The distribution and
mobility of heavy metals with regard to soil profile and their bioavailability at different depths of soil
for plant growth [13] have been a great concern.

Geospatial analysis techniques are essential tools for the characterization of soil parameters [14].
The implementation of geographic information systems (GIS) using geostatistical and multivariate
analysis is an essential method for the evaluation of the spatial structure of heavy metals and the
physiochemical properties of soil [15]. Several studies investigated the spatial distribution of heavy
metal contamination in the surface soil of industrial areas around the world. For example, Wang et al.
reported the spatial disctribution of Cu, Zn, Cr, Cd, As, and Hg concentration in the industrial area in
Sichuan, China, were less than the national standards but slightly higher than the naturally occurring
baseline values [16]. Ravankhah, et al. conducted an ecological risk assessment of heavy metals in
surface soil in the industrial city of Aran-o-Bidgol, Iran [17]. They reported that the concentration of
Cd, Pb, Ni, and Cu were higher than the background values. Hossain, et al. compared the spatial
distribution of heavey metals in the industrial area with the residental area and reported a higher
concentration in the indstrial area [18]. Similarly Agca reported a higher concentration of heavey
metals’ (Cd, Cu, Pb, and Zn) spatial distribution around the indutrial area of southern Turkey [19].
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Some analyses performed methodical investigations to determine the presence of heavy metals
and other elements in soil sediments. They employed conventional statistical techniques to classify soil
properties and other factors using a cluster analysis (CA) and a principal component analysis (PCA) [20].
CA and PCA are multivariate analysis techniques and are commonly employed to extract hidden
patterns and structures from multi-dimensional data from different fields of the social sciences, natural
sciences, and soil sciences [21]. The combinations of these methods are applied for the evaluation
and classification of the elements and heavy metals present in soil [22]. However, these methods
entail some complexities regarding data analysis from different dimensions with multiple soil depths.
Moreover, they require the normalization of skewed results and spatial data distribution patterns that
are influenced by many principal components [23]. Therefore, a comprehensive method is required
to replace the conventional multivariate statistical methods for the selection of soil parameters with
spatial heterogeneity in soil depths. The Random Forest (RF) classifier can accomplish reliable and
robust estimations [24] of essential soil parameters at different soil depths. No studies reported a
reliable method of assessment for the technique of soil and the ranking of significant soil pollution
variables at different depths using the RF classifier of the Boruta Machine Learning Algorithm. In this
regard, this article introduces a new assessment of soil parameters at multiple lithological classes of
soil depths.

Furthermore, exponential and spherical variogram models have been employed by many experts
for the analysis of the spatial variability of heavy metals in soil [25]. For this purpose, apart from the
spatial variability of heavy metals at large distances described by the lag distance, the practical interest
of variability at short distances is also required for improved characterisation. The Matern constitutes
a flexible variogram model with a behaviour of the smoothness and fits the semivariogram close to the
origin, supporting the differentiability and continuity of the random variables and covering the local
smoothness [26] to plot the sample concentration of soil parameters.

Traditional interpolation methods, such as the Generalized Kriging Method, Polynomial Method,
and the Inverse Distance Weighting Method (IDW) have been extensively employed to transform the
experimental point data of sample locations into thematic maps that show the spatial distribution [27].
The polynomial method and IDW method are comparatively easy and quick to evaluate, but the spatial
variability and relations between the nodes cannot be estimated with them, moreover, these methods
allow a partial accuracy of estimation. In comparison, the Kriging Interpolation Method employs the
variogram model to analyse the structure of the spatial variation of estimated values and considers the
spatial autocorrelation in modelling the surface [16]. The kriging technique comprises a collection of
interpolation methods based on stochastic approaches, including ordinary kriging (OK), cokriging,
universal kriging, simple kriging, residual, and regression methods [28].

This study applied traditional statistical and geospatial methods, and in addition a novel machine
learning approach, i.e., the RF Wrapper function of the Boruta Algorithm, which had not been
previously employed in soil contamination studies in the literature. These techniques of analysis were
employed to explore the spatial variability of heavy metals not only at the surface soil, but also at the
subsurface and deep-soil, and to further assess the mobility factor due to the leaching of heavy metals
in the lower horizons of the soil profile.

2. Materials and Methods

2.1. Study Area

The study area was located in the industrial zone of Sheikhupora (31◦20′ N to 33◦05′ N and
73◦37′ E to 74◦41′ E) (Figure 1). A total of 220 major industries are located in this area, which includes
tannery and leather, shoes, textile, chemical industries, batteries and tires, rubber, pipe, food, glass,
oil and polyester, flour mills, steel mills, rice mils, and fertilizer industries. These industries generate
about 395 cusecs of effluent sewage that is released directly into municipal sewers and open surface
drains, and ultimately end up in the river Ravi [29]. The discharged effluent contains carcinogenic and
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hazardous substances and a high level of heavy metals, aromatic dyes, inorganic salts, and organic
material [30].
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Figure 1. Soil sampling locations and major industries in the study area.

2.2. Soil Sampling and Lab Analysis

A random soil sampling technique was employed for the collection of soil samples to make sure
that all sites in the study area were represented in the soil sampling [31]. A total of 60 sites were
sampled at three depths (0–15 cm, 15–30 cm, and 60–90 cm) and a total of 180 (60 × 3) soil samples
were collected with a tube auger (Figure 1). Each soil sample was represented by three replicates that
were composited as a single sample. The spatial coordinates of the sampling locations were recorded
using a handheld Garmin Global Positioning System (GPS).

The collected soil samples were placed in labelled paper bags and transported to the lab for
further analysis. The soil samples were dried, and subsequently, crushed and passed through a fine
sieve of 2 mm [32]. Soil chemical properties including EC, pH, P, K+, and saturation were determined
in soil samples using the standard procedures [33,34]. Soil organic matter (OM) was determined
through Tyurin’s method [35,36]. The acid digestion method followed by USEPA standards 3051A
and 3050B was employed to evaluate the total concentrations of selected heavy metals in the soil
samples [37,38]. Further, the digested soil samples were analysed for the selected heavy metals (Cr, Pb,
and Cd) using the Graphite Furnace Atomic Absorption Spectrometer (GFAAS) by means of their
respective wavelengths [39,40]. The metal concentrations were expressed in units of mg kg−1 of the
dry soil. The concentrations of all examined physiochemical properties and selected heavy metals for
the three depths of soil were arranged along with their spatial coordinates in ArcGIS Geodatabases.
The soil data was further explored using exploratory data analysis techniques.

2.3. Descriptive Statistics and the Correlation Matrix of Soil Parameters

The heavy metals present in the soil and other chemical properties were statistically analysed
using the SPSS software (IBM Corp., Armonk, NY, USA) [41] to determine the descriptive statistics
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(max. min., standard deviation, kurtosis and skewness) and coefficient of correlation. The distribution
pattern of all parameters for the three depths of soil was estimated based upon the SD and skewness
values. Datasets of a variable with skewness in the range −1 and 1 were considered to be normally
distributed [42].

2.4. Selection of Soil Parameters Using the Random Forest Classifier

In order to classify the soil parameters according to their variability or consistent distribution
patterns at different soil depths, a feature selection of algorithm Boruta [43] was applied with the
Classifier (RF) function. The RF classifier is a machine learning function of the wrapper method
through the Boruta algorithm [44]. The wrapper function of RF identifies relevant parameters by
performing multiple runs of the provided classification factors that test the performance of different
subsets of the input parameters [45]. The RF function is a suitable alternative for the analysis of soil
parameters at different depths, as it can be employed without extensive parameter tuning and returns
an estimate of the feature’s importance (Z-score) [46]. This parameter selection method is different
from other dimensionality reduction techniques, such as PCA or other methods. The purpose was to
identify the compound linkages of the concentration of heavy metals in the geographical context of the
soil profiles. Unlike the PCA, this method attempts to reduce the number of attributes in the dataset,
without reducing the dimensionality [47].

In the present scenario, the soil’s physio-chemical parameter (soil saturation, EC, OM, pH, P & K)
and heavy metals (Cr, Cd, and Pb) were evaluated using the RF, while soil depths were assigned as the
classification factor. Therefore, it was likely to identify the effective random soil parameters that may
explain some of the variability in the targeted classes of soil profile by obtaining the positive Z-score
by a single run of the RF classifier (Equation (1)).

PPV∗ =
Nrelevant

(
Xoriginal

)
Nrelevant

(
Xoriginal

)
+ Nrelevant(Xcontras)

(1)

where PPV∗ represents the approximate positive predicted values, Nrelevant (Xcontrast), and Nrelevant
(Xoriginal) constitute a number of contrast and original variables respectively, which the algorithm
considered significant. The importance scores of the original features were tested against these random
variables and only parameters with a positive higher Z-score were retained as significant soil variability
factors. The analysis was repeated for each depth of soil (0–15 cm, 15–30 cm, and 30–90 cm) to check
the robustness of the parameters for the contamination risk at the subsoil level. This may examine the
possibility of selected soil heavy metals for quantification according to their mobility at different depths.

2.5. Metal Mobility Ratio in Subsoil Profiles

A metal mobility factor (Equation (2)) was utilised to differentiate the natural concentration of
heavy metals at different soil depths [48] from the anthropogenic contamination. The metal mobility
factor describes the possible movement of the selected heavy metals out of the soil profiles [49].

MMR =
(Mt1 + Mt2 + Mt3)

(Mt1 + Mt2 + Mt3 + Ma4 + Ma5 + Ma6)
× 100 (2)

where MMR denotes the metal mobility ratio, and M represents a concentration of metals (Mt1, Mt2,
and Mt3 indicate total heavy metal concentration in the soil, Ma4, Ma5, Ma6 indicate available heavy
metal enrichment for plants) at the three different fractions of soil depths. The mobility ratio of selected
heavy metals (Cr, Cd, and Pb) denotes the vertical distribution of soil contamination parameters at
different depths; however, to assess the variability and spatial distribution of heavy metals in the soil,
the geostatistical approach was further employed to map the geographical extent of heavy metals.
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2.6. Geostatistical Analysis and Variogram Modelling for Soil Heavy Metals

The spatial distribution of selected soil heavy metals (Cr, Cd, Pb) at different depths was assumed
as a normal random distribution and was assessed using variogram modelling. Spatial distribution
maps were generated to depict the spatial variability of heavy metals. Four variogram models (Matern,
Spherical, Exponential, and Gaussian) were tested. The Matern (Ste) variogram, which had the smallest
root mean square error (RMSE), was optimally suited and selected. Experimental variograms were
estimated and fitted with the theoretical models. If a variogram reaches a certain limit that results in
a certain effective range, the spatial structure and conditions for inherent spatial assumption can be
achieved. The Matern variogram models were calculated [25] using the given Equation (3).

γ(h) = σ2{1− 21−v

Γ(v)
(
|h|
α
)vKv

(
|h|
α

)
} (3)

where σ2 > 0 represents the variance, v > 0 is the shape parameter, α > 0 represents the scale (or range)
of parameter, Kv(.) forms the modified Bessel function of the second kind order, Γ(.) represents the
gamma function, while |h| and v constitute the norm of vector h, v = 0.5. Further, the Matern model is
the exponential model, while the Gaussian model represents a limiting case of the Matern model when
n tends to infinity [50]. The variograms were calculated for the nine different parameters of soil at the
three soil depths. The maximum sample variogram distance, taken from 1/3 of the range parameter,
sill displayed the spatial autocorrelation component. The nugget parameter was assumed as the mean
of the first three sample variogram values. The partial sill was assumed to be the mean of the last five
sample values of the variogram and scaled through variance values. Furthermore, based on estimation
and the smallest RMSE, the Matern variogram was considered as a suitable model to predict the spatial
surfaces of heavy metals’ concentration, except for Cr (15–30 cm), for which the spherical variogram
was selected as the suitable model.

Kriging Interpolation

Spatial prediction to assess the variability of parameters implies the process of estimation
of a target quantity’s values at un-sampled locations. Ordinary kriging (OK) interpolation is the
geostatistical method employed for the spatial distribution of heavy metals’ concentration (Cr, Cd, and
Pb) in soil at three depths. It entails the superior method for the estimation of interpolation weights
and can provide error information for the creation of the thematic maps. The following formula was
used to estimate the OK:

Ẑ(S0) =
N

∑
i=1

λiZ(Si) (4)

where Ẑ(S0). represents the interpolated or predicted value for S0 point, and λi. is the value for the
equivalent weight of the Z(Si) values, while Z(Si) indicates the known value to satisfy the condition
and ∑N

i = 1 λi = 1.
The SPSS software was utilised for the statistical analysis, GeoR (version 3.3.3) [51] the gstat

package was used for the geostatistical analysis, and ArcGIS (ESRI, Redlands, CA, USA) [52] was
applied for the interpolation of the distribution maps for heavy metals in soil [53,54]. Figure 2 presents
the complete methodology flowchart.
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3. Results and Discussion

3.1. The Exploratory Analysis of Soil Variables

Table 1 presents the descriptive statistics of all the soil variables. All the variables display a normal
distribution, except potassium (K) (skewness value > 2) and EC (skewness = 1 in topsoil and subsoil;
< 1 in deep-soil). The mean concentration of EC for the topsoil was significantly (p < 0.05) higher than
that for the subsoil and deep-soil horizon. The mean pH (8.2–7.8) and EC values (4.9–4 µS cm–1) exhibit
a decreasing trend from the topsoil to the subsurface soil. The order of heavy metal concentration in
the soil was Cr > Pb > Cd, with a decreasing trend from the surface to the subsurface soil (Table 1).
The heavy metals’ assimilation can be greatly influenced by the physiochemical properties of soil that,
ultimately, also affect the root growth and mobility of the contaminants at different soil horizons [55].

The P concentration significantly increased from the topsoil to the subsoil (range 17.3–20.3 mg kg–1).
Andersson found high P concentrations at the subsoil, as compared to the topsoil, that indicated that
the subsoil acted as a sink or source for P leaching. Therefore, depending on the P concentration and the
soil saturation level, the subsoil properties could be considered for the adoption of mitigation measures
to reduce the P leaching in soil horizons [56].
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Table 1. Descriptive statistics of selected soil parameters at three depths of soil.

Depth of Soil Soil Quality
Parameters Min Max Mean Median SD Kurtosis Skewness FAO/WHO

Standards

0–15 cm

EC (µS cm−1) 1 15 4.9 3 3.9 −0.1 1
pH 7.2 9.6 8.2 8.2 0.5 −0.5 0.4 6.5–8.5

OM (%) 0.3 2 1.2 1.4 0.4 −0.7 −0.4
P (mg kg−1) 0.7 55 17.3 16.7 14 0.3 0.7
K (mg kg−1) 68 806 212.8 193 131.4 7.4 2.4

Saturation (%) 28 48 38.2 38 3.6 1.4 −0.4
Pb (mg kg−1) 7.9 22.8 14.1 13.6 4.6 1.3 0.3 100
Cr (mg kg−1) 21.8 31.6 26 25.9 2.2 0.4 0.4 30
Cd (mg kg−1) 2.5 9 6 5.6 1.6 0.4 0.2 300

15–30 cm

EC (µS cm−1) 1 13.5 4.56 2.75 3.6 −0.2 1 -
pH 7 9.6 7.98 8 0.6 0.2 0.7 -

OM (%) 0.55 2.02 1.24 1.25 0.4 −0.6 −0.4 -
P (mg kg−1) 1 55 19.22 17.75 16 −1 0.5 -
K (mg kg−1) 36 806 202.18 184 137.6 6 2.1 -

Saturation (%) 24 44 37.47 38 3.8 2.6 −1.3 -
Pb (mg kg−1) 2.98 9.57 6.16 6.27 1.9 −1.3 0 -
Cr (mg kg−1) 10.3 24.8 17.55 17.3 4.5 −1.4 0.1 -
Cd (mg kg−1) 2.4 8 5.22 4.64 1 −0.9 0.6 -

60–90 cm

EC (µS cm−1) 1 12.3 4 2.2 3.4 −0.4 0.9 -
pH 6.5 9.4 7.8 7.7 0.6 0.6 0.7 -

OM (%) 0.3 2 1.2 1.2 0.4 −0.6 −0.2 -
P (mg kg−1) 2.7 55 20.3 18.2 13.9 −0.2 0.8 -
K (mg kg−1) 36 806 181.8 124 143.9 7.5 2.6 -

Saturation (%) 19 42 36.5 38 5.2 3.1 −1.7 -
Pb (mg kg−1) 3 9.6 5.8 5.5 2 −1.2 0.3 -
Cr (mg kg−1) 2.2 24.8 10.4 7.8 8.2 −1.1 0.7 -
Cd (mg kg−1) 2.8 5.4 4 4.4 0.7 −1 −0.7 -

p < 0.05, n = 180 (60 × 3).

Table 2 presents the results of the correlation coefficient for various soil properties. A positive
significant (p ≤ 0.01) correlation coefficient (r = 0.55) was found between pH and EC. However,
a non-significant (p ≥ 0.05) relationship (r = 0.12) was found between OM and pH, and a negative
correlation was found between all heavy metals and pH. Many laboratory experiments and studies
demonstrated the existence of a negative correlation coefficient between the mobility of heavy metals
and pH [57]. A significant correlation was assessed between all three heavy metals and P, while OM
indicated a positive relationship with Cr and Pb, but a negative non-significant (p ≥ 0.05) correlation
with Cd. A negative correlation between Cd and Pb was discovered with soil saturation, while a
positive correlation was found with Cr. The Cr with its oxidation states may affect greater downward
mobility in the presence of high soil saturation [58]. Generally Cr is highly mobile in soil, however,
Cr(VI), due to its anionic nature, can be adsorbed by clays, iron and manganese oxides and hydroxides
in acidic soil because of an increase in positively charged sites at mineral surfaces [59]. The retention
of Cr(VI) decreases with increasing pH, resulting in higher mobility in the subsurface soil due to weak
adsorption in the alkaline to neutral conditions [60]. Similarly, Pb and Cd solubility and movement is
highly dependent on soil pH and the type of soil separates. Both metals are highly available naturally
at low pH, but since the study site is repeatedly irrigated with the wastewater enriched with the heavy
metals, the concentration will govern its bioavailability and movement in the soil [61]. The metal to
metal correlation indicated the mutual variability in metal accumulation and their bioavailability in
soil [62]. The random pattern of correlation among each soil parameter is observed from each layer of
soil. Therefore, to check the relevance and importance of each soil parameter with regard to soil depth,
a wrapper algorithm with the RF classifier [63] was employed using the R package Boruta [46].
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Table 2. Correlation coefficient matrix of physiochemical parameters and heavy metals in soil.

Soil
Parameters EC pH OM P K Sat (%) Pb Total Cr Total Cd Total

EC 1.00
pH 0.55 ** 1.00
OM 0.04 ns 0.12 ns 1.00

P 0.26 * 0.08 ns 0.78 ** 1.00
K 0.06 ns −0.07 ns 0.47 ** 0.40 ** 1.00

Sat (%) 0.01 ns 0.06 ns 0.05 ns −0.02 ns −0.01 ns 1.00
Pb Total −0.33 ** −0.20 * 0.05 ns −0.17 ns 0.09 ns 0.10 ns 1.00
Cr Total −0.32 ** −0.19 ns 0.01 ns −0.18 ns 0.06 ns 0.10 ns 0.99 ** 1.00
Cd Total −0.39 ** 0.03 ns 0.00 ns −0.45 ** 0.16 ns 0.09 ns 0.22 * 0.20 * 1.00

* p < 0.05, ** p < 0.01, ± the mean concentration of all soil parameters was assessed for correlation analysis.

3.2. Assessment of Soil Contaminant Parameters

Further investigation of the soil parameters was required to sort and denote the soil contamination
factors with regard to the downward soil profile at the random spatial scale. Therefore, a combination
of multiple parameters (parameters = 9 and depths = 3) were tested and assessed with the wrapper
RF Boruta algorithm that performed three iterations based on different classes of soil depths to
attain reliable soil contamination plots for the study area. The outcomes associated with this method
confirmed the relative significance values of all soil parameters (soil saturation, EC, OM, pH, P & K,
and Cr, Cd, and Pb) in this study. In Figure 3, the Y-axis represents the Z-score values to discriminate
the importance of each soil property (X-axis) for the given random samples. The significance of the
soil parameters was evaluated with regard to spatial distribution and downward availability from the
topsoil to subsoil profiles, and the relative importance factor was assessed as Z-scores ≥ 1. The blue
boxes represent the shadow variables. In RF, randomness is assigned to the data, and the shuffle copies
of all parameters are created as shadow features. At every iteration of soil depth, whether a real soil
parameter had a higher critical score than its shadow feature was determined.
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Figure 3. The Relevance feature selection of different parameters in soil by using the RF Boruta
Algorithm in machine learning (n = 180, Classes = 3 depths of Soil) * p < 0.05 (Green represents the
important parameters for contamination at three soil depth classes; blue presents the shadow variables
through RF machine learning; yellow indicates the tentative variables; red represents significant
variability with reference to soil depths); (X-axis = soil parameters; Y-axis = importance of parameters
at depth in Z-score).
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Large Z-scores of a parameter indicated significant (p ≤ 0.05) importance. The distribution of Pb
was found to be random with substantial importance (Z ≥ 30) which showed significant permutations
in comparison to other heavy metals (Cr ≤ 30 and Cd ≥ 20). This indicates that the concentration of
heavy metals has higher Z-scores based on permutations of spatial variability and the heterogeneity
of metals at different soil depths [64]. The importance of P was also found to be significant (p ≤ 0.05,
Z-score ≤ 10) in the consideration of the soil analysis with RF, it is the critical nutrient in soil and vastly
used in agricultural soil as a fertilizer [65] and showed significant leaching from topsoil to subsoil
(p ≤ 0.05). The RF importance score for EC with Z-score ≥ 1.0 implies the least significance (10%) as
compared to other significant soil parameters. The importance of score K is estimated as a tentative
parameter by a simple comparison of the median attribute, which was not confirmed as significant.
The saturation (Sat), OM, and pH were indicated as not confirmed by the RF (p ≥ 0.05), which may
indicate some assortment of soil horizons with the least important Z-score (≤1.0). Furthermore, it is
evident that the soil parameters that invariably yielded the high importance Z-scores in each class of soil
depth during the individual RF runs were selected as important. The classification performance and
assortment of soil parameters was directly affected by the permutation process of the RF. The relatively
high importance factor revealed its permutations by using the RF algorithm. Since the whole process is
dependent on permutation without reducing the dimension, dimensionality reduction techniques such
as PCA [66] were replaced by RF to explore the distribution of soil parameters at depth. Additionally,
the mobility assessment of important soil heavy metals at the individual level is necessary for further
investigations at subsoil horizons.

3.3. Estimation of Metal Mobility and Variability at Vertical Soil Profile

For the RF classifier, the heavy metals were selected as essential contamination factors with
significant speciation at different soil depths. The degree of contamination and downward percolation
of heavy metals in soil was assessed using the metal mobility ratio. The mobility ratio of the total
heavy metals’ concentrations and environmentally available metals’ concentrations at different depths
were assessed. The metal mobility ratio was calculated for the leachate of Cr, Cd, and Pb at three
different depths of soil. Figure 4 revealed that the topsoil contained >50% mobility for Cr, while
for the middle soil, the value of metal mobility ratio (MMR) was 30%, and 0–20% MMR for subsoil.
The mobility of Cd was 40% at the topsoil profile, while there was >45% mobility in the middle soil
depth and >20% mobility at subsoil (Figure 5): this indicates the highest speciation of Cd below the
surface soil. Pb displayed the highest mobility at the topsoil horizon, with >60% MMR, while it was
20% in the middle and subsoil MMR. This demonstrates a low leachate of Pb in the deep-soil (Figure 6).
The concentration of heavy metals that can pose a danger to the ecosystem and plants was represented
as the environmentally available level. The comparison of the available and total concentrations of
heavy metals in the three soil depths indicated that the mobility ratio of Pb is higher than that of Cr
and Cd. Furthermore, the percentage of water-soluble Cd concentration in the subsoil was higher than
that obtained for the effluent irrigated topsoil. The concentration of Cr indicated more water-soluble,
exchangeable, and carbonated bound forms in the topsoil profile [67]. The heavy metals’ speciation
and their mobility associated with toxicity at soil depths were critical to understand and evaluate the
bioavailability of environmental risks. However, various variogram models for each heavy metal were
evaluated for all three depths before generating their respective spatial interpolation maps.
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Figure 4. The graph shows Cr (%) at different soil depths in the soil profile.
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Figure 5. The graph shows Cd (%) at different soil depths in the soil profile.
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3.4. Assessment of Appropriate Variogram Models

The spatial analysis of heavy metals in soil is considered as a prerequisite for designing effective
strategies for the improved management of contaminated soil [68]. For that purpose, the selection
of the best-fitted variogram model to explore the spatial structure, and ultimately, generate accurate
perdition maps at the un-sampled location is required. The variogram models for the soil heavy
metals were estimated based on cross-validation. The best-fit parameters of the variogram models are
presented in Table 3. The best-fit experimental variogram models were selected based on the lowest
RMSE values obtained by the GeoR software.

The spatial correlation of the soil heavy metals was assessed through the estimation of the ratio of
the nugget effect in relation to the sill. A variable was considered to be strongly spatially dependent if
the ratio was ≤ 25%; moderately spatially dependent if the ratio ranged between 25% and 75%; and
weakly dependent if the ratio exceeded 75%. The heavy metals’ concentration was indicated to have a
moderate to weak dependency for the spatial variability on the topsoil to subsoil profiles. Therefore,
it indicated that the concentration of heavy metals at the subsoil profile is affected by the slow leachate
process. High soil saturation, with less permeability and a high porosity of soil at the deep-soil level,
may also affect the variability [69]. The variogram of Cd (60–90 cm soil depth) (Figure 7ii,iii) showed
some fluctuations with a small upward trend with a low sill, suggesting that there is less spatial
autocorrelation. This may lead to heterogeneity in the spatial distribution of Cd. The variograms
for the concentrations of Pb (Figure 8i–iii) and Cr (Figure 6i–iii) are normally well structured with
small nugget effects, demonstrating that the sampling density is acceptable for the spatial structures
with moderate spatial dependency. According to the nugget/sill ratios of heavy metals’ (Cr, Cd, Pb)
concentration, the selected variograms were found to be suitable for the adoption of interpolation
techniques to predict attribute values at un-sampled locations using related information.
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Table 3. The different variogram models for spatial distribution of heavy metals at different soil depths.

Soil Depths Soil Heavy
Metals

Nugget
(m2/h)2 Sill Nugget % * Range (m) RMSE Model

Soil Depth
(0–15 cm)

Pb

1.0 4 25 0.4 6.372 Matern
6.4 11.25 57 0.425 6.803 Spherical
6.5 30.83 21 0.771 6.872 Exponential
8.01 21 38 0.214 6.496 Gaussian

Cr

1.2 5 24 0.16 7.238 Matern
0.02 0.08 25 0.03 7.488 Spherical
4.7 14 34 0.21 7.429 Exponential
4.66 14.06 33 0.94 7.325 Gaussian

Cd

1.2 4 30 0.17 0.589 Matern
2.13 4.5 47 0.00 0.693 Spherical
2.1 6.03 35 0.586 0.691 Exponential
2.06 5.64 37 0.17 0.735 Gaussian

Soil Depth
15–30 cm

Pb

3.6 10 36 0.01 3.24 Matern
3.73 9.28 40 2.38 4.486 Spherical
3.17 11.52 28 3.13 4.348 Exponential
4.13 13.24 31 38.12 8.404 Gaussian

Cr

12 31 39 0.04 3.330 Matern
4.8 19.53 25 0.29 3.295 Spherical
3.23 11.31 29 0.18 4.410 Exponential
8.38 23.13 36 0.14 3.316 Gaussian

Cd

0.63 1.9 33 17 0.207 Matern
0.3 1.41 21 0.09 0.244 Spherical
0.5 1.94 26 0.207 0.397 Exponential
0.38 1.22 31 0.098 0.686 Gaussian

Soil Depth
30–90 cm

Pb

1.8 4.2 43 0.28 3.225 Matern
2.8 7.65 37 3.20 4.014 Spherical
2.23 6.85 33 5.94 3.512 Exponential
2.43 9.74 25 9.43 3.408 Gaussian

Cr

0.97 4.9 20 0.28 7.970 Matern
12.7 55 23 4.85 10.885 Spherical
18.2 81.56 22 11.8 13.850 Exponential
9.6 29.75 32 4.30 8.014 Gaussian

Cd

0.56 1.8 31 0.34 0.127 Matern
1.08 2.85 38 1.25 0.148 Spherical
1.07 4.79 22 3.36 0.148 Exponential
0.19 0.78 24 0.21 0.184 Gaussian

Bold are selected variogram models for mapping interpolation with minimum RMSE. * % nugget (nugget
semivariance/total semivariance) × 100; strong spatial dependence (% nugget_25); moderate spatial dependence
(% nugget between 25 and 75).

3.5. Spatial Distribution of Heavy Metals in Soil

The spatial extent of the Cr concentration reveals a homogenous trend in the topsoil (Figure 7A)
and subsoil (Figure 7B) around the tanning industries in the (northern) N and (western) W part of
the study area. In the topsoil, high concentrations of Cr in the eastern (E) part of the study area
exhibited trans-boundary chromium discharge in drains from the tanning industry in the neighbouring
areas [70]. An extensive amount of untreated effluent containing chromium is discharged by the
tanning industries and released directly into the drains for irrigation purposes [71]. Figure 7C reveals
a different spatial trend for Cr with E to W, with a maximum concentration of 20–24 mg kg–1 in
deeper soil profiles that indicate Cr leached into the deep-soil from the anthropogenic source. The Cr
percolation may vary with different valent stats of metal through the processes of oxidation and
reduction [72]. The spatial extent of Cd displays a higher concentration in the central part of the
study area in patches while it covers greater spatial extent of higher values in subsoil and deep-soil
(Figure 8A–C). It showed the highest Cd concentrations, ≥8 mg kg–1 in Figure 8A topsoil, ≥7 mg kg–1

in Figure 8B subsoil, and ≥5 mg kg–1 in Figure 8C deep-soil at the central part, with a south (S) and S-E
trend of Cd around the industrial zone of the study area. While, a medium concentration (≤5 mg kg–1)
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was found in the extreme eastern part at all soil depths. Low concentrations (≤4 mg kg−1–≥2 mg kg−1)
were found in the W parts for the topsoil and the subsoil. While a ≥2 mg kg–1 Cd concentration was
found in the N-W part and ≥3 mg kg−1 in western parts of the deep-soil. There was a narrow outlier
of high Cd concentrations in the extreme W portion of the study area that may be associated with the
industrial point source pollution, such as the Cd battery production plants indicated in Figure 8C.
The Cd concentration decreased spatially from top to deep-soil layer, however, the subsoil formed
a transitional layer with similar distribution patterns while the deep-soil demonstrated more stable
and consistent deposition of Cd, and the same was reported by Onweremadu [73]. The Pb in all three
depths of soil revealed higher concentration in the N-E quadrant (Figure 9A) of the study area, while a
small-scale discontinuity pattern of Pb was found with a concentration level of 6 mg kg−1 (Figure 9B)
in the subsoil. The patterns of medium and low concentrations in Figure 9C were observed under the
lead emission drain that form slow sinks of Pb in the deep-soil profiles [74].

The overall heavy metals’ concentration maps revealed that high amounts of Cr, Cd, and Pb were
found in soil profiles in the north direction and the central part of the study area. This area is subject to
the discharge of different drains that carry industrial effluents that are used to irrigate the agricultural
fields. This causes heavy metal emission in the soil, with a continuous uptake of contamination [75].
Clusters of many industries were discovered in the study area based on our survey that constitutes
the source of untreated wastewater. The industries and the discharged effluent waste form the major
possible sources of the leading extrinsic factors responsible for a high concentration of heavy metals in
soil in this area.

This research would be instrumental in the assessment of heavy metals’ contamination of soils and
their remediation strategies. The reclamation of contaminated soil with heavy metals at different depths
can be achieved with an appropriate understanding of the trends, availability, and leaching of metals
downward. Further, heavy metal contamination can be assessed at subsequent groundwater levels,
in cultivated plants, and humans. Scientific information regarding the spatial variance of measured
soil properties is essential for the formulation of sustainable soil and environmental management
decisions [76].
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4. Conclusions

Continuous effluent discharge contaminates the soil in the vicinity of industrial areas. It was
discovered in this study that soil is being contaminated with the continuous loading of heavy metals
at different levels. The EC values were found to be low from the topsoil to the subsoil and exhibited
negative correlations between heavy metals, while they shared a positive correlation with pH. However,
pH and EC were found to have a negative correlation with all the heavy metals. The RF function was
found to be extremely useful for assortments that possess a significant variability in subsoil horizons
without changing or reducing the parameters. In the RF EC, P, Cr, Cd and Pb were found as significant
(p ≤ 0.05 and Z score ≥ 2) soil parameters across all soil depths. The soil mobility ratio identified
the different percentages of heavy metal leachate with a downward vertical scale. The spatial extent
and geographical distribution pattern of the heavy metals were assessed through the geostatistical
technique of kriging, based upon the most suitable variogram model. The variogram modelling for the
soil contamination sorted at three different depths of soil and the spatial distribution of heavy metals
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provided a comprehensive depiction of soil pollution in the industrial area. The N-W and central part
of the study exhibited maximum contamination at all soil depths. This, therefore, constituted the major
effluent irrigated area for raising crops and vegetables. It is recommended that agriculture crops and
vegetables are not irrigated with waste water, to eliminate the toxic effects that it may have on humans.
Instead, it should be used for non-food crops. Further research is needed to assess the concentration of
heavy metals in the groundwater, field crops, and their impact on human health.
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