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Abstract: Temperate forests in Northeast China have been severely exploited by timber harvesting in
the last century. To reverse this trend, China implemented the Classified Forest Management policy
in the Natural Forest Conservation Program in 1998 to protect forests from excessive harvesting.
However, the policy was unable to meet the 2020 commitment of increasing growing stock (set in
the Kyoto Protocol) because of high-intensity harvesting. Accordingly, China banned all commercial
harvesting in Northeast China in 2014. In this study, we investigated the long-term impacts of the no
commercial harvest (NCH) policy on ecosystem services and biodiversity using a forest landscape
model, LANDIS PRO 7.0, in the temperate forests of the Small Khingan Mountains, Northeast China.
We designed three management scenarios: The H scenario (the Classified Forest Management policy
used in the past), the NCH scenario (the current Commercial Harvest Exclusion policy), and the
LT scenario (mitigation management, i.e., light thinning). We compared total aboveground forest
biomass, biomass by tree species, abundance of old-growth forests, and diversity of tree species and
age class in three scenarios from 2010 to 2100. We found that compared with the H scenario, the NCH
scenario increased aboveground forest biomass, abundance of old-growth forests, and biomass of
most timber species over time; however, it decreased the biomass of rare and protected tree species
and biodiversity. We found that the LT scenario increased the biomass of rare and protected tree
species and biodiversity in comparison with the NCH scenario, while it maintained aboveground
forest biomass and abundance of old-growth forests at a high level (slightly less than the NCH
scenario). We concluded there was trade-off between carbon storage and biodiversity. We also
concluded that light thinning treatment was able to regulate the trade-off and alleviate the negative
effects associated with the NCH policy. Our results highlighted limitations of the NCH policy and
provided new insights into sustainable forest management and the interdependence between human
society and the forest ecosystem.
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1. Introduction

Forests provide many ecosystem services that benefit the population, such as carbon storage and
timber. Forests are managed with multiple objectives, such as carbon storage, timber harvesting, and
biodiversity conservation [1–3]. However, these goals are often conflicting [4,5]. A recent study showed
that there was trade-off between mitigation (high carbon storage) and adaptation (high biodiversity)
strategies for climate change [6].

Forest management is the process of reducing the undesirable impacts of forest disturbances or
increasing the output of desirable forest products, amenities, and ecosystem services [7]. In the past,
timber production was the main purpose of forest management in some countries and regions [8–10].
In some cases, forest management policies brought severe ecological consequences, such as forest
degradation, carbon storage loss, and biodiversity loss, which resulted in a decrease in ecosystem
services [11]. It is necessary to restore the forest ecosystem to enhance the provision of ecosystem
services. A suite of ecological and human factors should be considered in an assessment of framework
before selecting a restoration approach. Then, the manager should choose the best restoration
method based on the assessment [12–14]. Ecological restoration has been widely used to reverse
the environmental degradation caused by human activities [15]. A recent study also showed that
landscape-scale conservation management increased the provision of ecosystem services [16].

In the late 1990s, China shifted the primary purpose of forest management from timber production
to forest sustainability, and thus ecological restoration and protection became a focus of management.
The Natural Forest Conservation Program was enacted in 1998 to promote natural forest resource
rehabilitation and recovery, sustain natural forests, and maintain healthy forest industries. The program
adopted the Classified Forest Management (H) policy that divided forests into two types: those that
are completely protected, and those for commercial harvest, to ensure the supply of wood while
improving carbon storage and biodiversity [17]. Recent studies showed that the program promoted
natural forest resource rehabilitation and recovery [18–20]. China was committed to increasing the
national forest area by 40 million hectares and increasing forest growing stock by 1.3 billion cubic
meters by 2020, in accordance with the Kyoto Protocol [9]. However, commercial harvest goals in the
Classified Forest Management policy contradicted the high commitment of increasing growing stock.
Accordingly, China implemented the Commercial Harvest Exclusion (NCH) policy in 2014 to increase
forest stock in Northeast China [21]. While the NCH policy may maximize the increase of aboveground
forest carbon, it may also result in some potential negative consequences [22]. For instance, Brandt [23]
found that protected areas effectively conserved old-growth forests, but there were negative impacts
on secondary pine forests, which consequently decreased biodiversity. Recent study also showed
that banning commercial harvest had a negative effect on rare and protected species [24]. Given such
potential negative impacts, a mitigation strategy needed to be developed and evaluated.

In this study, we investigated the effects of the NCH policy on ecosystem services and biodiversity
over the 21st century on temperate forests of Northeast China. Specifically, we intended to determine:
(i) how the NCH policy would affect forest ecosystem services as represented by forest carbon storage
and abundance of old growth forests; (ii) how the NCH policy would affect biodiversity as represented
by tree species diversity and age-class diversity; and (iii) whether additional thinning would effectively
mitigate the negative effects associated with the NCH policy.

Assessing the long-term impacts of forest management is challenging, because it involves
processes and factors that operate at multiple spatial scales across a long time span. First, forest
composition and structure are affected by processes operating at multiple scales [25–27]. Species
establishment, growth, mortality, and competition affect forest dynamics at the site scale. Meanwhile,
disturbances (e.g., fire and harvest) result in landscape heterogeneity and affect forest dynamics at
the landscape scale [28]. Second, forest management has lasting and cumulative effects, which will
lead to changes in forest composition and stand structure [3,23,29]. Traditional field trials or direct
observations have limited capacity to evaluate long-term and large-scale effects of forest management.
Thus, spatially explicit forest landscape models become important to investigate these long-term and
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landscape-scale effects because they simulate forest changes incorporating site- and landscape-scale
processes [30–32]. Using forest landscape models, it is possible to evaluate the impacts of forest
management policy on ecosystem services and biodiversity over large spatial areas and a long
time frame. Our study falls within the broad scope of social ecology, as forest management policy
has long-lasting impacts on ecosystem services, which ultimately affect human well-being [33,34].
Results from this study will provide new insight into the interdependence between human society and
forest ecosystems.

2. Materials and Methods

2.1. Study Area

Our study area is located in the Small Khingan Mountains in Northeastern China (47◦05′–49◦10′ N,
127◦50′–130◦10′ E), covering about 1.5 million hectares (Figure 1) and ranging in elevation from
139 m to 1429 m above sea level. The climate is temperate continental monsoon with long cold
winters (mean January temperature −25 ◦C) and short humid summers (mean July temperature
21 ◦C) [35]. The mean annual precipitation increases from 485 mm in the north to 694 mm in the south,
occurring mostly in summer. The dominant soil is Haplic Luvisols in this area, and Mollic Gleysols,
Gleyic Phaeozems, Gleyic Luvisols, and Haplic Phaeozems soils are slightly distributed. The Small
Khingan Mountains contain coniferous forests in the north, mixed coniferous-hardwood forests in the
central area, and hardwood forests in the south. The most common tree species are included in Table 1.
Korean pine is the regionally dominant species, while spruce and Khingan fir are dominant only in
high elevation areas. Four representative communities are present in this area: mixed Korean pine
hardwood forests, spruce-fir forests, mixed larch hardwood forests, and aspen-white birch forests.

Figure 1. The location of the study area and forest management area map in the Classified Forest
Management policy. The study area follows the borders of forestry bureaus.
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Table 1. The life history attributes for major species in the Small Khingan Mountains, Northeastern China.

Common Name and Species MT/Long ST MD MDBH MSDI NPGS

Korean pine, Pinus koraiensis 40/300 4 150 110 550 20
Korean spruce, Picea koraiensis and Picea jezoensis 30/300 4 150 90 600 20

Khingan fir, Abies nephrolepis 30/300 4 150 85 650 20
Larch, Larix gmelinii 20/300 2 300 95 650 30

Manchurian ash, Fraxinus mandschurica 30/250 3 300 100 600 25
Manchurian walnut, Juglans mandshurica 20/250 2 200 90 650 25
Amur corktree, Phellodendron amurense 20/250 3 300 95 650 25

Mongolian oak, Quercus mongolica 20/300 2 200 95 600 20
Black elm, Ulmus davidiana 20/250 3 800 90 600 25

Mono maple, Acer mono 20/200 3 200 60 700 25
Ribbed birch, Betula costata 20/250 3 800 90 650 25
Dahur birch, Betula dahurica 15/150 2 800 50 750 25
Amur linden, Tilia amurensis 30/300 3 200 85 650 20

White birch, Betula platyphylla 15/150 1 2000 50 800 30
Poplar, Populus davidiana 15/150 1 2000 60 800 30

MT, mature, age of sexual maturity of tree species (years); Long, longevity, mean maximum age of tree species
(years); ST, shade tolerance class (including 1–5, 1 and 5 refer to the least and the most tolerance, respectively); MD,
maximum dispersal distance (m); MDBH, maximum diameter at breast height (cm); MSDI, maximum stand density
index (number of standard trees per ha, with respect to 10-inch trees); NPGS, number of potential germination seeds
per mature tree (number/single cell).

The dominant clear-cutting evidently reduced forest stock and changed forest composition prior
to the 1980s. The Natural Forest Conservation Program adopted the Classified Forest Management
policy and regulated rare and protected tree species in 1998 [9]. The Classified Forest Management
policy divided forests into two categories: Ecological Welfare Forest (including Special and General
Ecological Welfare Forest) and Commercial Forest [9,36]. The Ecological Welfare Forest category was
established to protect forest ecological functions, and the Commercial Forest category identified sources
of forest products. We divided forests into three forest categories based on forest stand map which
provided criteria for classification. Korean pine, Manchurian ash, Manchurian walnut, Amur cork
tree, and Amur linden were the rare and protected tree species, and they were prohibited for timber
harvesting. Korean spruce, Khingan fir, larch, Mongolian oak, black elm, mono maple, ribbed birch,
Dahur birch, and white birch were timber species. Commercial harvest (thinning from above) of
forests in this area is now entirely forbidden, while tending (thinning from below) still exists. Harvest
was the dominant disturbance that affected forest dynamics. Fire was not a common disturbance in
mixed hardwood and coniferous forests in this study area, especially under extensive fire suppression.
Therefore, we did not consider fire. Additionally, we also did not consider windthrow or insect
outbreaks. Because of historically extensive timber harvesting, white birch and poplar (pioneer species)
were widely distributed, and their ages representatively ranged from 40 to 50 years.

2.2. Experimental Design

We designed three forest management scenarios: the H scenario, the NCH scenario, and the LT
scenario (mitigation management, i.e., light thinning), which we designed to mitigate the potential
negative effects associated with the NCH policy (Table 2). We compared the different outcomes
between the H scenario and the NCH scenario to evaluate whether the NCH policy would achieve
its goal of increasing carbon storage, and to identify the potential negative consequences of the NCH
policy on biodiversity. We compared the LT scenario and the NCH scenario to explore whether the
additional thinning treatment we designed through using thinning from below could alleviate the
negative consequences associated with the NCH policy. We classified the forest age classes into
young (0–40 years), middle-aged (40–60 years), near-mature (60–80 years), mature (80–120 years),
and old-growth (>120 years) based on the Regulation for Tending of Forest [37].



Sustainability 2018, 10, 1071 5 of 16

Table 2. The harvest parameters of forest management scenarios in LANDIS PRO.

Forest Management
Scenarios Removal Method

Percent Area Treated, Minimum/Target Stand Stocking (m3 ha−1)

SEWF GEWF CF

H
Thinning from above — 15%, 52/46 25%, 57/46
Thinning from below — 10%, 46/44 10%, 46/44

NCH Thinning from below — 10%, 46/44 10%, 46/44

LT Thinning from below — 15%, 46/44 15%, 46/44

H, the Classified Forest Management policy; NCH, the Commercial Harvest Exclusion policy; LT, mitigation
management; SEWF, Special Ecological Welfare Forest; GEWF, General Ecological Welfare Forest; CF,
Commercial Forest.

We evaluated the effects of the NCH policy on ecosystem services as represented by abundance
of old-growth forests and forest carbon storage using response variables including aboveground forest
biomass and biomass by tree species. We assessed the effects of the NCH policy on biodiversity using
response variables including diversity of tree species and age class. One of the most important services
of forest ecosystems is to store carbon. Tree biomass is the direct indicator of carbon stored in forest.
Thus, we can use biomass to reflect carbon storage.

We derived the harvest parameters (including minimum entering stand stocking, target stand
stocking, percent area treated per decade, tree species’ preferences for harvest) for each management
scenario based on the China Code of Forest Harvesting [38], the China Regulation for Tending of
Forest [37], and consultation with local experts (Table 2). Forests were divided into three management
areas, including Special Ecological Welfare Forest (27.9%), General Ecological Welfare Forest (43.3%),
and Commercial Forest (28.8%) (Figure 1). Harvest was not simulated in Special Welfare Forest, and
we harvested 10% of both General Ecological Welfare Forest and Commercial Forest management area
per decade using thinning from below as background harvest for three forest management scenarios.
Background harvest was used to simulate the current tending treatment that removes some small
trees in dense stands to promote tree growth. In the H scenario, we harvested 15% of the General
Ecological Welfare Forest management area and 25% of the Commercial Forest management area per
decade using thinning from above. The NCH scenario only considered background harvest. In the
LT scenario, we only simulated additional thinning from below with 5% of the management area
per decade in both General Welfare Forest and Commercial Forest, except for background harvest.
All three management scenarios were simulated from 2010 to 2100 using 10-year time steps with five
replicates to incorporate the model stochasticity.

2.3. LANDIS PRO 7.0 Model

2.3.1. Model Description

LANDIS PRO 7.0 is a spatially explicit raster-based forest landscape model (http://landis.
missouri.edu; developer, Professor Hong S. He; School of Natural Resources, University of
Missouri-Columbia, 203 ABNR Building, Columbia, MO 65211, USA) that simulates species
demography, competition, disturbances, and forest management over large spatial (~1 × 108 ha) and
temporal (~1 × 103 years) scales with flexible resolutions [39,40]. Within each cell, the model tracks the
number of tree and age cohorts by species. Species demography includes establishment, growth, and
mortality, mainly driven by species life history attributes such as longevity, mature age, shade tolerance,
maximum diameter at breast height (MDBH), and potential germination seeds (Table 1). The seedling
establishment was controlled by local site abiotic suitability [quantified as the species establishment
probability, (SEP)], biotic suitability (quantified as the available growing space), and species shade
tolerance. Tree species growth was simulated using species growth rates (age–DBH relationships)
that vary among different land types to capture the environmental heterogeneity. Competition was
initialized once reaching the maximum growing space (MGSO). Competition-caused mortality was

http://landis.missouri.edu
http://landis.missouri.edu
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simulated using Yoda’s self-thinning theory where the number of trees decreases with increasing
average tree size following a−3/2 rule [41,42]. Tree harvest was simulated using the management area
map and the forest stand map in the LANDIS PRO Harvest module [43]. Different harvest objectives
were implemented in management areas (Figure 1). Stand was the minimum treatment unit to which a
harvest event was implemented and its boundaries were described by the stand map.

2.3.2. Model Parameterization

We simulated 15 major tree species in this study (Table 1) [35]. We derived the initial forest condition
recorded in the forest composition map, including number of trees and DBH, by age cohort for tree
species in each cell from forest stand map and forest inventory data at year 2010. The resolution of
forest composition map was 100 × 100 m. The forest stand map provided forest composition and forest
inventory data provided age structure (DBH). We stratified the heterogeneous landscape into relatively
homogeneous land type units based on abiotic controls (e.g., topography). Thus, each land type is
assumed to be homogeneous in terms of resource availability represented by MGSO, while different
land types are heterogeneous [31]. We stratified landscape into eight land types based on latitude
(greater or less than 48◦), elevation (higher or lower than 600 m), and aspect (south slope or north
slope). We derived life history attributes of tree species from the previous studies in this region [44,45].
We derived the SEP, tree species growth rates, and MGSO from previous study [35].

The main parameters in harvest module included the type of management area, harvest method,
harvest rotation, the target size of harvest, and the type of regeneration. We parameterized all three
management scenarios according to the specifications of the H, NCH, and LT scenarios (Table 2).
The stands with highest stock level were chosen for treatment. The silvicultural harvesting system
applied was thinning from above by stock ranking and thinning from below randomly. The reason we
used thinning from below randomly was there was no other way to approximate so much site-level
thinning from below activities across such a large region. The random treatment was also used in
similar modeling studies [24]. We simulated harvest by selection cutting. Harvest priority of species
in descending order was white birch, larch, Kingan fir, Korean spruce, black elm, Mongolian oak,
Dahur birch, and ribbed birch. In this study, we presumed forest management plans, management units,
and stand map remained unchanged. The management (Table 2) implemented in the LANDIS PRO
model was intended to reflect the reality. However, there were always gaps between model simulation
and harvest reality. Comparing simulated outcomes from LANDIS PRO against post-harvest field
inventory could provide the validation that the model simulated the reality [46].

We iteratively adjusted species growth rates and calibrated model parameters to ensure the initial
forest composition captured the real forest conditions by comparing the initiated aboveground forest
biomass at the initial year 2010 with the observed estimates from inventory data in 2010 [35].

2.3.3. Model Initialization

We used 94 forest inventory plots and extracted the corresponding biomass from initiated biomass
map (LANDIS output). To compare the initiated aboveground forest biomass with forest inventory data
for year 2010, we used a scatter plot of observed biomass with initiated biomass and made a linear fit
(Figure 2). A significant (p < 0.05, R2 = 0.80) linear correlation existed between field inventory biomass
and initiated biomass in 2010 of the inventory plots, while the t-test result showed no significant
(p = 0.92 > 0.05) difference between observed biomass and initiated biomass.
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Figure 2. Comparison between initiated and observed aboveground biomass at year 2010. Observed
aboveground biomass was estimated by forest inventory data. N, the number of sampling plots.

2.4. Data Analysis

We calculated the basal area of tree species by age class. To determine the forest age class for
a certain cell, we set the age class with the largest basal area as the cell’s age class. Basal area was
derived from model outcomes. We evaluated diversity of species using Shannon–Wiener’s index of
diversity (H’). The Shannon–Wiener index incorporates both species richness and the evenness of
species abundance. The Shannon–Wiener index is calculated as:

H′ = −∑ pi× ln(pi) (1)

where pi is the percent cover of tree species i that refers to the percentage of pixels of each species/age
class in total number of pixels of our study area [47]. Likewise, forest age-class diversity also was
calculated using Equation (1).

We averaged the simulation results including aboveground forest biomass, biomass by tree
species, abundance of forest age classes (percent of the landscape by age class), and diversity of tree
species and age class for the whole area from the five replicates for each scenario. To capture the forest
dynamics, we averaged the simulation results at the time periods 2020–2030, 2040–2060, and 2070–2100
to represent the short-, medium-, and long-term results. We then compared the simulation results
among three forest management scenarios using ANOVA and Duncan test in the short-, medium-,
and long-term, respectively.

3. Results

3.1. Aboveground Biomass

Aboveground forest biomass increased rapidly at the short- and medium-term and then gradually
slowed at the long-term, regardless of management scenarios (Figure 3). Compared with year 2010,
aboveground forest biomass increased by 30.7%, 41.3%, and 37.1% at year 2100 in the H, NCH and LT
scenarios, respectively. Aboveground forest biomass in the NCH and LT scenarios was higher than
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that in the H scenario by 8.1% and 4.9% at 2100, respectively. The differences in aboveground forest
biomass among three scenarios increased significantly over time (p < 0.05).

Figure 3. Aboveground forest biomass in the H, NCH, and LT scenarios across the simulation period
at the landscape level. Error bands represent the variance among the five replicates. H, the Classified
Forest Management policy; NCH, the Commercial Harvest Exclusion policy; LT, mitigation management.

At the individual species level, the biomass of most tree species increased from 2010 to 2100
irrespective of management scenarios, except for the biomass of maple and white birch, which decreased
on average (Figure 4). The biomass for the rare and protected tree species was the highest in the
H scenario and the lowest in the NCH scenario. Most timber species had the largest biomass in the
NCH scenario, especially white birch. Differences in biomass by tree species among three scenarios
increased significantly over time (p < 0.05).

At the land-type level, aboveground forest biomass also showed increasing trends (Figure 5).
Aboveground forest biomass in the NCH scenario was the highest, followed by the LT and H scenarios,
regardless of terms and land types. In the land type of the northern slope with elevation higher than
600 m and latitude greater than 48◦ (i.e., Land type 2), biomass of conifer species were higher than
for hardwood species, and Korean spruce and Khingan fir showed the greatest biomass of the conifer.
In the land type of the northern slope with elevation lower than 600 m and latitude less than 48◦

(i.e., Land type 8), biomass of hardwood species were higher than for conifer species.
The spatial distribution of aboveground forest biomass showed similar patterns over time

regardless of management scenarios (Figure 6). In the initial year (2010), the high area value of
aboveground forest biomass was mainly concentrated in the central area (Feng Lin National Nature
Reserve). Aboveground forest biomass evidently increased in the whole region over time, especially in
the south. The larger managed area led to less area with high biomass. The area with high biomass
was the greatest in the NCH scenario, followed by the LT and H scenarios.

Abundance of forest age classes showed similar responses among the H, NCH, and LT scenarios
(Figure 7). Age classes concentrated around middle-aged cohorts at 2010 and then gradually shifted
toward the older age cohorts and reached old-growth cohorts at 2100. Old-growth forests were most
abundant in the NCH scenario, followed by the LT and H scenarios at 2100, occupying 66.7%, 61.5%,
and 51.6%, respectively. Differences in abundance of old-growth forests between the three management
scenarios increased significantly over time (p < 0.05).
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Figure 4. Changes in species’ biomass in the H, NCH, and LT scenarios over the simulation period at
the landscape level. S, M, L represent the short-, medium-, and long-term, respectively. Error bands
represent the variance among the five replicates. H, the Classified Forest Management policy;
NCH, the Commercial Harvest Exclusion policy; LT, mitigation management.

Figure 5. Aboveground biomass by tree species for different land types under the H, NCH, and
LT scenarios. Land type 2 represents the land type of the northern slope with an elevation greater
than 600 m and latitude over 48◦. Land type 8 represents the land type of the northern slope with
elevation less than 600 m and latitude less than 48◦. C, conifer species; HW, hardwood species.
H, the Classified Forest Management policy; NCH, the Commercial Harvest Exclusion policy;
LT, mitigation management.
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Figure 6. The spatial patterns of aboveground forest biomass for the years 2010, 2030, 2060, and 2100 in
the H, NCH, and LT scenarios. H, the Classified Forest Management policy; NCH, the Commercial
Harvest Exclusion policy; LT, mitigation management.

Figure 7. Abundance of each age class in the H, NCH, and LT scenarios across the simulation period
at the landscape level. H, the Classified Forest Management policy; NCH, the Commercial Harvest
Exclusion policy; LT, mitigation management.

3.2. Diversity of Tree Species and Forest Age Class

The tree species diversity index gradually increased in the short- and medium-term and then
slowed in the long-term irrespective of the management scenario, ranging from 2.47 to 2.57 (Figure 8).
Tree species diversity was highest in the H scenario and lowest in the NCH scenario during the period,
except for 2100. The differences in diversity between the three management scenarios increased at first
and then decreased over time (p < 0.05).

The forest age-class diversity index rapidly increased to a peak in 2040 and then gradually declined
regardless of the management scenario, ranging from 0.91 to 1.42 (Figure 9). Forest age-class diversity
was the highest in the LT scenario and the lowest in the H scenario at the short-term, but it was highest
in the H scenario and lowest in the NCH scenario in the medium- and long-term. The differences in
diversity between the three management scenarios increased significantly over time (p < 0.05).
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Figure 8. Changes in tree species’ Shannon–Wiener index in the H, NCH, and LT scenarios over
the simulation period at the landscape level. Error bands represent the variance among the five
replicates. H, the Classified Forest Management policy; NCH, the Commercial Harvest Exclusion
policy; LT, mitigation management.

Figure 9. Changes of forest age class’ Shannon–Wiener index in the H, NCH, and LT scenarios
throughout the simulation period at the landscape level. Error bands represent the variance among the
five replicates. H, the Classified Forest Management policy; NCH, the Commercial Harvest Exclusion
policy; LT, mitigation management.

4. Discussion

The management scenario had long-term effects on ecosystem services. Forest management not
only impacted aboveground forest carbon storage but altered tree species composition and age classes,
which subsequently impacted aboveground forest carbon dynamics [48,49]. Our results showed that
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the NCH scenario significantly increased aboveground forest biomass and abundance of old-growth
forests by banning harvest over the simulation period compared with the H scenario (Figures 3 and 7).
Because old-growth forests were able to sequester the greatest amount of carbon [50] compared with
the other age-class forests [23], the Commercial Harvest Exclusion policy improved ecosystem services.
Furthermore, the Commercial Harvest Exclusion policy favored increasing forest carbon storage,
a commitment set in the Kyoto protocol.

Forest management may have unintended impacts. Our results showed that maximizing
individual ecosystem services such as carbon storage might reduce the biodiversity of some taxa,
as reported in a prior study [22]. Although the NCH scenario had greatest aboveground forest carbon
and abundance of old-growth forests, it decreased the biomass of the rare and protected tree species
and tree species diversity compared with the H scenario (Figures 3, 4, 7 and 8). This was because
banning harvest in the NCH scenario reduced growing space, exacerbated the competition against rare
and protected tree species, and limited tree species regeneration. Additionally, we found that age-class
diversity increased in the short-term but decreased in the medium- and long-term in the NCH scenario
compared with the H scenario (Figure 9). This was because banning harvest in the NCH scenario
promoted forest shifts into older stages, and forest age classes became diverse in the short-term but
singular in the medium- and long-term. We found the LT scenario kept aboveground forest carbon
storage and abundance of old-growth forests at a high level while maintaining the rare and protected
tree species and diversity of tree species and age class. This was because the LT scenario released
growing space to promote the growth and regeneration of tree species [51–53] while simultaneously
retaining large individuals.

Our results showed that aboveground forest biomass increased regardless of management
scenarios because current forests were relatively young, recovered from the historically extensive
timber harvesting, and continued sequestering carbon [9,54]. Additionally, model parameterization
(e.g., growth rate) might also contribute to the similar forest dynamics in three management scenarios.
The predicted increase of aboveground forest biomass was lower than the other model predictions
(e.g., LANDIS II) in this region. This was because Ma et al., (2017) did not simulate harvest and different
growth rates also impacted on the increase of biomass [55]. Notably, we found aboveground forest
biomass increases were partly offset by the mortality of short-lived species (e.g., white birch and poplar).
These results reinforced the notion that succession was the dominant mechanism driving aboveground
forest biomass dynamics throughout the remainder of the 21st century [56,57], even though harvest
reduced aboveground forest biomass.

Our results showed that the effects of forest management increased over time, aligning with prior
studies that identified harvest as the major driver of change. For instance, harvest significantly altered
forest composition over time in South-Central Siberia [26] and Northeast China [58] because forest
management had cumulative effects on forest ecosystem [3,29], and repeated harvest led to changes in
forest composition and stand structure.

Our results showed that species’ ecological characteristics and disturbance (i.e., harvest) together
determined landscape heterogeneity. Since conifer tree species had good cold tolerance, they were
mainly distributed in the north and in high altitude regions. However, hardwood tree species were
mostly distributed in the south and low altitude regions. These results suggested species’ ecological
characteristics determined landscape heterogeneity. Since conifer tree species were prioritized for
harvest due to high cutting priority, the value for aboveground forest biomass in the north is lower
than that in the south. This confirmed the view that harvest could influence the spatial distribution of
aboveground forest biomass [46,48].

Our results had implications for sustainable forest management in the context of climate change.
Forest management is increasingly viewed as a central component to regional and global strategies for
climate-change mitigation and adaptation in the face of changing global conditions [59]. A recent study
showed that managing to maximize one objective (either mitigation or adaptation) may inadvertently
compromise another [6]. The NCH scenario, for instance, enhanced the mitigation for climate change
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and disturbances by causing carbon storages, while decreasing the landscape-level compositional
and structural complexity (reducing adaptation potential), represented by decrease in biodiversity.
In contrast, the H scenario showed better adaptation but less mitigation. Nevertheless, the LT scenario
with the medium-level carbon storage and biodiversity may be a feasible way to regulate the trade-off
between mitigation and adaptation in a broad array of forest systems.

Our predictions are subject to a number of uncertainties. We did not consider climate change
in our simulation. Given the recent evidence on climate change, temperature will increase and
precipitation will decrease in the future [44]. Ma et al., (2014) predicted that carbon sequestration rates
of rare and protected tree species under future climate will be higher than those under the current
climate [60]. A warming climate would increase the biomass of the rare and protected tree species
and might alleviate the negative effects of the NCH policy on them. We also did not consider fire,
windthrow, and insect outbreaks, which may increase under a warming climate and increasing drought
events. In this study, we presumed that forest management plans, management units, and stand map
would remain unchanged. However, forest management plans will adapt to change over time, and
management unit boundaries might be redrawn in response to changing management objectives and
future climate. We only tested the relative performance of management scenarios. If there was an
overexploitation scenario as baseline scenario, we could evaluate the absolute effectiveness of the
management scenarios. Although there were many limitations in this study, our results still provided
insight into sustainable forest management and the interdependence between humans, society, and the
forest ecosystem.

5. Conclusions

The forest landscape model LANDIS PRO 7.0 was capable of modeling forest dynamics under
specific management scenarios. Based on the simulated results, several conclusions can be drawn as
follows. The past Classified Forest Management policy would lead to the lowest carbon storage with
the highest biodiversity, however the current Commercial Harvest Exclusion (NCH) policy would
result in the highest carbon storage with the lowest biodiversity. There was trade-off between carbon
storage and biodiversity. Light thinning treatment was feasible to regulate the trade-off in the context
of banning commercial harvest. The NCH policy reduced the biomass of the rare and protected species,
while light thinning treatment alleviated the negative effects. We also concluded that species’ ecological
characteristics and disturbance (i.e., harvest) together determined landscape heterogeneity.
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