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Abstract: Within the last few decades, the extended use of biodiesel and bioethanol has established
interlinkages between energy markets and agricultural commodity markets. The present work
examines the bivariate relationships of crude oil–corn and crude oil–soybean futures prices with the
assistance of the ARDL cointegration approach. Our findings confirm that crude oil prices affect the
prices of agricultural products used in the production of biodiesel, as well as of ethanol, validating the
interaction of energy and agricultural commodity markets. The practical value of the present work is
that the findings provide policy makers with insight into the interlinkages between agricultural and
energy markets to promote biodiesel or bioethanol by affecting crude oil prices. The novelty of the
present work stands on the use of futures prices that incorporate all available information and thus
are more appropriate to identify supply and demand shocks and price spillovers than real prices.
Finally, the period of study includes extremely low, as well as extremely high, crude oil prices and
the results illustrate that biofuels cannot be substituted for crude oil and protect economies from
energy volatility.
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1. Introduction

Climate change, the volatility of crude oil prices, the issue of food security, and the global economic
crisis have motivated decision-makers, industries, and economic agents involved in the biofuel sector
to expand the use and production of biofuels [1]. However, persistent low crude oil prices since 2014
seem to be an impediment to this effort.

The expansion of biofuels has established interlinkages between energy markets and agricultural
markets given that corn is used to produce biofuels and soybean is used to produce biodiesel [2].

The major objectives of a national policy for a healthy economy are food security, limitations
on GHG emissions, economic growth, and compliance with objectives set by the Kyoto protocol.
The biofuel market is an artificial market, the function of which is regulated by state [3,4]. The role of
this market has become crucial in economic growth, satisfying the priority of sustainability. On the
other hand, the alternative use of agricultural products such as corn and soybean (either for food or
to produce biofuels) is leading to indirect land use change and to a deterioration in the problem of
climate change.

Therefore, given the use of the two agricultural products in the production of biofuels, as well as
their use for food, the existing mutual interdependencies reflect the mutual market interdependencies.
Increasing prices of corn may well be attributed to the dominant conditions in the food market that
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are also providing an indication for the interdependency of corn price with biofuels [5]. The specific
relationship is related to many factors including the country, the model, and the dimension of time [6].

On the other hand, given that corn and soybean evolved into a major motor-fuel energy
source, a close relationship between corn (the major feedstock for ethanol) and soybean production
(major input in biodiesel) with crude oil, the main feedstock for gasoline production, may be an
expected result. The data used extends from late 2004 through mid-2008, when rapid expansion of
the ethanol industry was occurring, which is the reason for which the relationship has been mainly
established [2,7].

Most of issues mentioned above are reflected in the futures prices formatted on the NY stock
exchange. A study on the co–movement of futures prices of agricultural products used especially in
the production of bioenergy would be of great interest, while the role of crude oil prices seems to have
had a great impact on those prices. Natanelov et al. [8] have made a similar effort, and, according to
their results, co-movement is a dynamic concept, and economic and policy development may affect the
relationship between commodities, while they have also shown that biofuel policy has a strong impact
in the co-movement of crude oil and corn futures until the crude oil prices surpass a certain threshold.

The concept of excess co-movement among futures prices has been subject to extended study
with the assistance of different methodologies. The most widely used methodology is cointegration
implemented for different time periods and providing conflict results (Pindyck and Rodenberg [9],
Natanelov et al. [8]). Confirmation of co-movement is based on the herd behavior of financial prices [9].
Ali et al. [7], with the assistance of the partial equilibrium model, attributed the behavior of the
commodity prices to specific demand and supply conditions. On the other hand, Natanelov et al. [8]
focused on price movements between crude oil futures and a series of agricultural commodities and
gold futures by employing a comparative framework to identify changes in relationships over time.
According to their findings, co-movement is validated as a dynamic concept, while policy development
may reform the relationship between commodities and their determinants that are studied, that is,
crude oil prices.

The present study is timely, given the particularities in the evolution of crude oil prices within the
last few years. To be more specific, the global economic crisis led to extremely high values of crude
oil prices in 2010, while since 2014 the crude oil prices have tended to be persistently low, a fact that
may well lead to a high level of carbon emissions and limited substitution with renewable energy
prices. The volatility of crude oil prices has a different impact in the short term rather than in the
long term. In addition, a strand of literature developed on this specific issue focuses on the fact that
the crude oil market has significant volatility spillover effects on non-energy commodity markets,
which demonstrates its core position among commodity markets [10]. This impact and its implications
for the substitution of crude oil with other renewable or non–renewable resources seems to affect the
level of carbon emissions and vice versa [11].

Furthermore, the futures prices for each commodity reflect the market condition, as well as
the agricultural policies implemented concerning their production, market conditions, assistant aid,
or even energy policy that promotes their use to produce biomass.

The innovation of our study stands on the fact that we employ ARDL bounds cointegration to test
the crude oil–corn prices and soybean–crude oil prices. The structure of the present work is organized
as follows; Section 2 describes material and methods, Section 3 provides a brief literature review,
Section 4 provides the results and a short discussion, and Section 5 concludes.

2. Literature Review

The energy–agricultural market interlinkages have become a subject of extended study within
the last decade. The global food crises in 2007/08 and 2010/11, as well as negative environmental
and social impacts of promoting biofuels, have given governments second thoughts regarding the
promotion of biofuels.
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Since the outbreaks of biofuels industry, an abundance of manuscripts have focused on
dependency between fossil fuel, biofuel, and feedstock prices [12–15]. In a few papers and due
to data availability issues, the biofuel prices are ignored [2]. In those studies, ignoring biofuel prices
generally relies on the hypothesis that a change in the food–fuel price relationship post the outbreak of
the biofuels industry is related to the impact of biofuels.

In most of these studies, the analysis used is cointegration and/or estimation of a VECM,
or one of its generalized nonlinear versions. For the case of US, cointegration is validated between
agricultural prices and energy prices, while energy prices are considered to drive the feedstock
prices [12,16,17] (Saghaian 2010; Serra et al. 2011a; Wixson and Katchova 2012). The works conclude
that the interlinkages are attributed to the existence of biofuel markets. Only Zhang et al. [14]
confirm no evidence of cointegration between energy and agricultural commodity prices. Furthermore,
only Serra et al. (2011) [12] and Rajcaniova and Pokrivcak (2011) [18] confirm that biofuel markets may
shape fossil fuel prices.

In general, in most cases it is concluded that energy prices drive long-run world agricultural price
levels [2]. In global terms, Nazlioglu and Soytas [19] appraise the link between world crude oil prices,
USD exchange rates, and a long list of world agricultural commodity prices. In addition, Nazlioglu [20]
finds evidence of cointegration between corn, soybean, and wheat with oil prices, especially in recent
years. In another work, Yu et al. [21], focusing on the relationship between crude oil and edible oil
prices, find no evidence of energy prices driving food prices.

The methodology of autoregressive distributed lag models (ARDL models) has been employed in
many works [22–24].

To be more specific, Cooke and Robles [22] confirm that recent increases in world corn,
wheat, rice, and soybean prices are strongly affected by oil prices. Chen et al. [23] find evidence
of positive short-run links between crude oil and grain prices, while Esmaeili and Shokoohi [24]
investigate co-movement of world food prices, oil prices, and different macroeconomic variables.
According to their findings, crude oil prices affect food prices only indirectly through the food
production index.

Global data, with a time period including peaks of crude oil prices and persistent low prices
with the assistance of ARDL cointegration approach, and the futures prices that are considered more
informative than real prices, constitute the innovation of the present manuscript.

3. Material and Methods

The data employed in the present work are monthly futures prices of crude oil (CME NYMEX
WTI Crude Oil Futures in US dollars per ton), corn, and soybeans (CME CBOT grain futures), derived
by Bloomberg [25]. The study period is from July 1987 until February 2015. To account for the
problem of comparing disparate price units, the data is indexed based on the price of August 1999 for
each commodity.

Trend analysis of the data used for empirical investigation on the selected variables can be seen in
Figures 1 and 2. To be more specific, Figure 1 illustrates the evolution of futures prices of crude oil,
Figure 2 illustrates the evolution of corn futures prices, and, finally, Figure 3 illustrates the evolution of
soybean futures prices.

Evidently, an increasing trend is validated for the case of crude oil prices with two structural
breaks observed in 1999 and 2008 that will be further investigated with the assistance of a break unit
root test.

On the other hand, for the case of the corn futures prices, Figure 2 presents a series of peaks that
document the necessity of a break unit root test to examine the stationarity. Similar behavior can be
seen for the case of soybean, since similar peaks are observed for the same time periods, as can be seen
in Figure 3.
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Figure 1. The evolution of futures crude oil prices in US dollars per barrel (in logarithmic form). Source:
Bloomberg, [25].

Figure 2. The evolution of futures corn prices in USD per ton (raw data). Source: Bloomberg, 2015 [25].

Figure 3. The evolution of futures soybean prices USD/ton (raw data). Source: Bloomberg [25].

3.1. Model Specification

We employed ARDL bounds cointegration process to estimate the relationship between the prices
of the two agricultural commodities and crude oil prices. This relationship involves futures prices for
soybean and corn, with crude oil prices as formatted in NY stock exchange. The advantage for the use
of futures prices is that they represent not only the supply and demand conditions in the agricultural
market but also a trend in the global economy (including economic crises, changes in exchange rates,
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etc.). Therefore, significant events that have an impact either on crude oil prices or on the agricultural
commodities or changes in the major lines of energy policy (biofuels, issue of food security, and others)
should be reflected in the estimated model in order for useful conclusions to come out.

The relationship to be examined for the case of corn is specified as follows:

Z1t = f (Pco, Ptc) (1)

In addition, in the case of soybean, the bivariate relationship to be surveyed is the following:

Z3t = f
(

Psoy, Pc
)

(2)

3.2. Theoretical Econometric Framework

The methodology implemented is the ARDL bounds cointegration, given the limited data
available [26]. Prior to the empirical investigation of co-movement among the variables under
review with the assistance of ARDL cointegration approach, in order to check stationarity in the
data, it is necessary to employ a unit root test. The unit root test used is the Augmented Dickey Fuller
(ADF) break unit root test, given the structural breaks observed in the variables studied. The specific
test involves a two-step procedure. In the first step the intercept, trend, and breaking variables are
used to detrend the series with the assistance of ordinary least squares (OLS), and in the second step
the detrended series are employed to test the existence of a unit root with the assistance of a modified
Dickey-Fuller regression [27]. The first model may involve non-trending data with intercept break,
trending data with intercept break, trending data with intercept and trend break, and finally trending
data with trend break. The results refer either the trend specification (trend, intercept, or both) or to
the break specification (trend, intercept, or both).

The problem of selecting an appropriate method of unit root test may well lead to misspecifications.
For that reason, in the present manuscript, we have adopted the sequential procedure proposed
by Shrestha and Chowdhury [28] in selecting the optimal method and model of the unit root test.
The Shrestha-Chowdhury general-to-specific model selection procedure has been presented subtly in
the work of Shrestha and Chowdhury [28].

The main objective of the particular test is to ensure that the time series employed are not I(2),
a condition that implies robustness for the results derived by the ARDL bounds cointegration test.

Having validated the existence of cointegration, we estimate the Unrestricted Error Correction
Model (UECM). The lag selection through which the data generating process is captured is based on
the general-to-specific framework [29].

The ARDL model employed is, however, slightly modified in an appropriate way in order residual
serial correlation and endogeneity problems to be corrected simultaneously [30]. The following UECM
is used for our purpose.

The ARDL model employed is modified in an appropriate way in order for residual serial
correlation and endogeneity problems to be corrected simultaneously [30]. The following UECM is
used for our purpose.

lnYt = c1+ + c2T + β1 ln(Xt) +
p

∑
i=1

β2∆ ln(Xc) +
p

∑
i=1

β3∆ ln(Yt−1) + ut (3)

in which Yt demotes the dependent variable and Xt denotes the independent variable in every
individual case.

In Equation (3), we may identify the long term as well as the short-term parameters. To be more
specific, β1 represents the long-term parameter while rejecting the null hypothesis, and β1 = 0
(equivalent to no cointegration) against the alternate, according to which β1 6= 0 (which implies
that the variables are cointegrated), The test for cointegration is based on the computed F-statistic
compared to the values of the tabulated critical bounds. The upper critical bound (UCB) is employed
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under the condition that the regressors are I(1) or I(0), while the lower critical bound is used only
under the condition that they are I(0). The potential results of the test are the following:

(1) If the F statistic exceeds the Upper Critical Bound, cointegration is confirmed;
(2) In case the F statistic is less than the lower Critical Value, the null hypothesis of no cointegration

is confirmed;
(3) An area of uncertainty is determined within the two critical bounds, a case in which our decision

relies on the lagged error correction term for a long run relationship.

The validity of the existence of a long run relationship allows the estimation of the error correction
model (short run dynamics are surveyed), for which also sensitivity test, parameter stability, and
goodness of fit using cumulative sum of squares of recursive residuals (CUSUM) is implemented.

The error correction model estimated for each bivariate relationship examined for the variables
under review is provided by Equation (4).

(1− L)

 lnYt

ln(X)t

 =

 ϕ1

ϕ2

+
p
∑

i=1
(1− L)

 α11i a12i a13i

b21i b22i b23i

δ31i δ32i δ33i

+

 β

γ

ϑ

 ECMt−1 +

 η1i

η2i

η3i

 (4)

L denotes the lag operator, and ECM denotes the error correction term generated by the cointegrating
equation, while the η terms are serially independent random error terms. The F statistic for the
parameters of first differences validates the short run causality, while on the other hand the statistical
significance of ϕi coefficients with the assistance of t statistics provides evidence for the long
run causality.

4. Results–Discussion

According to our findings provided in Table 1, with the assistance of a breakpoint ADF unit root
test, all the variables employed are I(1), a result that allows us to bounds test.

Table 1. Results of breakpoint ADF unit root test.

Variables Trend/Break Specification t-Statistic Critical Values (5%) Break Date

pc Both/trend −4.001 −4.859 November 1995
pco Both/both −4.082 −5.175 January 2003

psoy Both/intercept −4.129 −4.859 March 2005
∆pc Both/Intercept −19.75 *** −4.859 November 1987

∆pco Both/Intercept −16.079 *** −4.859 April 2008
∆psoy Both/Intercept −21.006 *** −4.859 January 2007

*** denotes reject of unit root hypothesis in 1% level of significance.

The second stage in our methodology involves the bounds testing to confirm or reject cointegration.
The results are provided in the following Table 2.

Table 2. The results of bounds testing to cointegration.

Estimated Models F-Statistics

Fc (pco/pc) 4.229 ***
Fc (psoy/pc) 5.659 ***

Critical Value Bounds for 10%, 5%, 2.5%, and 1% are for Io Bound 2.44, 3.15, 3.88, and 4.81, and for I1 Bound 3.28,
4.11, 4.92, and 6.03, respectively. *** reject of no cointegration in 1% level of significance.
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The next Table 3 provides the estimated results on the long run relationships.

Table 3. Results of long run relationships.

Dependent Variable Pco

Corn–crude oil
Variable Coefficient

pc 1.449 ***

Dependent Variable Psoy

Soybean–crude–oil Variable Coefficient
pc 1.640312 ***

*** denotes reject of null hypothesis of no statistic significance of the independent variable in 1% level of significance.

According to our findings, the results derived indicate the existence of interactions among
agricultural commodities and crude oil prices. This is an expected result, and it validates the
interactions of agricultural markets and crude oil markets in global terms. The specific results are
interpreted as follows: given that corn is the major input for ethanol, a substitute for crude oil prices,
the behavior of crude oil prices may well reflect the behavior of corn prices. To be more specific,
high crude oil prices lead to high ethanol prices and therefore higher corn prices. Conversely, decreases
in crude oil price will lead to a lower gasoline price, a lower ethanol price, and a lower breakeven
corn price.

Furthermore, the results derived should be free from misspecification and autocorrelation or
heteroscedasticity of the residuals. For that reason, all the tests concerning specification, autocorrelation,
and heteroscedasticity tests are presented in Table 4. According to our findings, whiteness of the
residuals for all the models, as well as no misspecification problems, were confirmed.

Table 4. Results of the diagnostic tests for the estimated models.

Corn–Crude Oil Prices

BG autocorrelation test 0.334573

BGP heter. test 1.650531
RESET test 1.2318

Soybean–Crude Oil Prices
BG autocorrelation test 0.913924

BGP heter. test 1.338892
RESET test 0.45172

The next step in our analysis involves the presentation of the short run dynamics of the error
correction model estimated in order to examine the interactions among the corn prices and the crude
oil prices in the short run and to highlight the differences with the results derived in the long run.
These results are provided in Tables 5 and 6. According to our findings, the results are not different
from those derived in the long run. To be more specific, in the short term crude oil prices do not seem
to have a statistically significant impact on the formation of a future’s price of an agricultural product,
i.e., corn. The return to the steady state is statistically significant, with a speed of 6% per month.

Table 5. Short run dynamics of the corn–crude oil prices relationship.

Regressor Coefficient St. Error t-Statistic Probability

D(PC1(-1)) −0.0125 0.0536 −0.234 0.815
D(PC1(-2)) 0.181 0.0532 3.406 0.0007
ECM(-1) * −0.060 0.017 −3.572 0.0004

Diagnostic Test Statistics; Rsquared = 0.05; Cointeq = PC1 − (1.4494 * PCOP1 − 0.6718).
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Table 6. Short run dynamics of the soybean–crude oil prices relationship.

Regressor Coefficient St. Error t-Statistic Probability

D(PSOY1(-1)) −0.001270 0.053900 −0.023555 0.9812
D(PSOY1(-2)) 0.138412 0.053465 2.588835 0.0101
D(PSOY1(-3)) −0.098150 0.053946 −1.819404 0.0698

ECM(-1) * −0.056283 0.016705 −3.369328 0.0008

Diagnostic Test Statistics; Rsquared = 0.05; Cointeq = PSOY1 − (1.6403 * PCOP).

Regarding the last step in our analysis, the parameter stability of the estimated model is conducted
with the assistance of the CUSUM of squared residual test.

Evidently, based on Figure 4, the graph of the corn–crude oil prices remains partially between the
lines, a result indicating limited stability of the estimated coefficients for the period studied.

Figure 4. Results of CUSUM of squared residual test for crude oil–corn price relationship.

On the other hand, for the case of soybean crude oil prices relationship as illustrated in Figure 5,
the CUSUM test of squared residuals confirms parameter stability.

Figure 5. Results of CUSUM of squared residual test for crude oil–soybean price relationship.

Limited parameter stability is validated for the estimated model according to Figure 5.
The findings based on our data indicate a long run relationship for both bivariate relationships,
though in the short run no relationship is validated. This is an expected result given that the interaction
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between energy and agricultural market has evolved in the long run and not in the short run. This result
is in line with that of Natanelov et al. [8], while the policies under the condition of the assumption of
the long-run presence of a certain degree of linkage between energy markets and the market of food
products that substitutes for other food products used as energy feedstock, and between food products
used as energy feedstock and their substitutes for food exhibiting strong seasonality in production,
would need to be flexible to be effective. The periodical shocks in the supply and demand of these
agricultural commodities should be taken into consideration given that they may have a severe impact
on the market interlinkages between different production periods.

The study of this relationship is important due also to the changes in biofuels industry. To be more
specific, global biofuel production has been growing for the decade 2005–2015 with result that in the
year 2014 ethanol production reached about 114 billion liters and biodiesel production reached about
30 billion liters [31]. The implementation of biofuel policies in global terms can expand the use of
biofuels leading to a reduction in greenhouse gas emissions, along with limitation in the dependency
on fossil fuel.

Though the interlinkages with the agricultural markets have led to high food prices, the simultaneous
increase in feedstock prices has been harmful for biofuel competitiveness in the liquid fuels market,
necessitating the need for subsidization and other protectionist policies. The solution to this problem
is the promotion of second generation biofuels for which no food crops are used, since it will limit the
competition for agricultural land and crops, reducing in turn the impact on agricultural prices. A final
implication of our findings (the impact of energy prices on feedstock prices) can provide the food policy
makers with a tool to forecast food prices and implement food policies with regard to the evolution of
energy prices.

5. Conclusions

The present work provides an insight into the interaction between the crude oil futures market
and the soybean and corn futures markets. The analysis of this relationship (co-movement) is based
on the ARDL cointegration approach. The prices used were the futures and not the real market
prices. The reason that we used the future prices is that they incorporate, by definition, all available
information and thus are more efficient at identifying supply and demand shocks.

The selection of the specific agricultural commodities is related to their role in the production
biofuels. An issue that is also worth mentioning is the great volatility observed within the last decade
in the crude oil market. The confirmation of interlinkages among feed prices and energy prices may
well interpret the transfer of instability from energy markets to food markets, a fact that has been
particularly intensive since the 2010 due to the global biofuels industry boom. Therefore, it is necessary
for the policies implemented to aim at limiting the linkages in order for the food crisis to be limited.
The design of these policies can become plausible if it is studied adequately at what extent biofuels can
limit the impact of extreme crude oil price changes relative to fossil fuels such as diesel or gasoline,
and as a sequence to the prices of agricultural products used for the production of biodiesel. Copula
modeling provides a plausible methodology for the study of this relationship, providing a solution to
the global problem of interlinkages between energy and agricultural markets. [2].
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