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Abstract: Population is one of the core elements of sustainable development. Quantifying the
estimation accuracy of population spatial distribution has been recognized as a critical and challenging
task. This study aims to evaluate the data accuracy of four population datasets in China, including
three global gridded population datasets, the Gridded Population of the World (GPW), Global Rural
and Urban Mapping Project (GRUMP), and WorldPop project (WorldPop), and a Chinese regional
gridded population dataset, the China 1 km Gridded Population (CnPop) dataset. These datasets are
assessed using a specific method based on a GIS-linked 2000 census dataset at the township level in
China. The results indicate that WorldPop had the highest estimation accuracy, estimating about 60%
of the total population. CnPop accurately estimated about half of the total population, showing a
good mapping performance. The GPW had an acceptable estimation accuracy in a few plain and basin
areas, accounting for about 30% of the total population. Compared to the GPW, GRUMP accurately
estimated about 40% of the total population. The relative estimation error analysis discovered the
disadvantages of the generation strategies of these datasets. The conclusions are expected to serve as
a quality reference for potential dataset users and producers, and promote accuracy assessment for
population datasets in other regions and globally.

Keywords: population distribution; data product; accuracy assessment; China

1. Introduction

The world population has increased dramatically from 1.6 billion in 1900 to 7.6 billion in
mid-2017, and 59.66% of those people live in Asia [1,2]. The issue of population is one of the biggest
problems in creating a sustainable society today. Adequate knowledge of population distributions
has proven to be essential in many domains, such as environmental impact assessments, disaster
prevention and mitigation, medical treatments, regional sustainable development, and climate change
evaluations [3–6]. Commonly available information on population distribution and composition largely
relies on demographical data, generally counted using census tracts, blocks, postcode zones, townships,
and villages. In many cases, however, due to the defined spatial units used for data collection and
reporting, these statistical datasets have severe limitations. First of all, in statistical data, population
density in an administrative unit is a single value; hence, it does not reflect spatial distribution and
internal variation [7]. Second, over time, census tracts change along with the gradual restructuring
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of administrative systems, making long time-series analysis difficult [8]. Third, research based on
statistical population data at different scales may significantly affect spatial patterns and associations;
this is also known as the modifiable areal unit problem. Statistical units are sometimes inconsistent
with other natural and social zone systems. Thus, there is a need to convert the spatial resolution and
structure of a statistical population to facilitate data linkage and analyses.

Gridded population distribution datasets can often supplement and act as substitutes for
census data and are becoming widely used, principally due to their flexibility in integration with
other spatial datasets and summarization at any chosen level of aggregation [9]. Over the past few
decades, there has been increasing interest in creating large-area gridded population distribution datasets.
Contemporary and widely used gridded population distribution datasets include the Gridded Population
of the World (GPW) [10], the Global Rural-Urban Mapping Project (GRUMP) [11], LandScan [12], the
United Nations Environment Program’s (UNEP) Global Population Databases [13,14], the WorldPop
project (WorldPop) [15–17], and the China 1 km Gridded Population (CnPop) dataset [18]. Typical uses
of these datasets include estimating the number of people impacted by development plans and health
problems [19–21], quantifying populations threatened by infectious diseases [22–25], identifying the spatial
distribution of infant mortality [26] and child hunger [27], and assessing climate change impacts [28,29].

Regarding the above research, determining the spatial and quantitative uncertainties inherent in
gridded population distribution datasets has remained fundamental yet challenging. A theoretical
method is to conduct accuracy assessments on the estimated model and resulting datasets. This is a
difficult task because it is almost impossible to obtain sufficient true values (the exact number of people)
at the grid scale given that population distributions are highly dynamic. An alternative technique
is to compare the estimated population on the basis of the specific gridded dataset or modeling
method with the statistical population at a lower administrative level (i.e., within a census tract) [16,30].
However, owing to policy restrictions and the cost of data collection, it is difficult to get a sufficient
amount of these finer resolution boundaries and demographic data to conduct accuracy assessments,
let alone to meet the requirements of random sampling. The problem is even more difficult in datasets
with a wider coverage or higher spatial resolution.

Some studies have indirectly compared and discussed the generation methods, appropriate
applications, uncertainties, and errors of different datasets in their evaluations of gridded population
distribution datasets. Hay et al. illustrated the accuracy of UNEP/GRID, the GPW, and LandScan
in determining populations at risk of various climate suitability levels for malaria infection, and
the GPW had the highest evaluation accuracy [21]. Through assessing the four datasets—GRUMP,
LandScan, UNEP, and GPW—Tatem et al. demonstrated the effects of spatial population dataset
choice on estimates of populations at risk of falciparum malaria and their detailed country-level
assessments suggested that no one dataset was consistently more accurate than the others in estimating
at-risk populations [31]. Wang et al. assessed and compared the estimation accuracy of the GPW,
UNEP/GRID, CnPop, and LandScan at the county level in the Heihe River Basin in China, and showed
that CnPop is the most consistent with the actual data [32]. The above studies all assessed multi-source
gridded population distribution datasets, but they had some insufficiencies, in that most of them
addressed a single or special issue, thus leading to results that are not universal, and the research area
of these studies is not representative. Overall, the limited past research inadequately addresses the
accuracy and uncertainties of the current gridded population distribution datasets.

China’s population reached 1.41 billion in 2017, and the country has long been the most
populous country in the world, with a profound influence on resource and environmental issues [2].
Therefore, accuracy assessments of multi-source gridded population distribution datasets in China
have significant meaning. The objective of this study is to gain a comprehensive quantitative
understanding of the overall quality and accuracy of CnPop, GPW, GRUMP, and WorldPop in China,
which can be further used as a quality reference for relevant research and applications. In addition,
on the basis of the analysis and comparison of the error distributions of these four datasets, we will
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attempt to identify possible regions that were difficult to simulate in a grid format, which in turn can
help facilitate population distribution modeling for demographic geography.

2. Materials and Methods

2.1. Vector Boundary and Census Data at the Township Level

The administrative divisions of China are officially organized into five levels. From top to bottom,
they are as follows: (1) provinces (Sheng), autonomous regions (Zizhiqu), municipalities (Zhixiashi),
and special administrative regions (Tebiexingzhengqu); (2) prefectures (Shi, Diqu, Meng, and Zhou);
(3) counties (Xian, Qu, and Qi); (4) townships (Xiang, Zhen, Jiedao, and Sumu); and (5) villages
(Cun, Shequ, and Gacha). The spatial scale of the accuracy assessment used in this study is at the
township level, which is also the finest cell for which census data can be publicly accessed in China.
Xiang, Zhen, and Jiedao are three types of township: Xiang and Zhen are found in rural areas, while
Jiedao are found in urban areas.

The vector boundary data at the township level were obtained from the Data Sharing Platform of Earth
System Science of the National Science and Technology Infrastructure of China (http://www.geodata.cn/).
The original boundary datasets were manually digitized from township division maps collected in
2000 at a scale of 1:250,000 in the different provinces of China. Data from Heilongjiang, Guangxi,
Xinjiang, and Gansu provinces were unavailable; thus, the vector boundary data at the township level
used in this study covered 27 provincial regions, including Liaoning, Jilin, Inner Mongolia Autonomous
Region (part), Beijing, Tianjin, Shanghai, Hebei, Henan, Shaanxi, Shanxi, Ningxia, Shandong, Anhui,
Jiangsu, Hunan, Hubei, Jiangxi, Zhejiang, Fujian, Guangdong, Hainan, Yunnan, Guizhou, Sichuan,
Chongqing, Qinghai, and the Tibet Autonomous Region, as shown in Figure 1. The Hong Kong Special
Administrative Region, Macao Special Administrative Region, and Taiwan province are not included
in this study.

Census data were obtained from China’s fifth census dataset for 2000 at the township level (Xiang,
Zhen, and Jiedao), which was released by the National Bureau of Statistics (http://www.stats.gov.cn/).
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To ensure that the vector boundary data and census datasets could be spatially and correctly joined,
several pre-processing steps were performed, such as geo-referencing, boundary adjustments, geocoding,
and topology error checks. The final population spatial dataset at the township level contained 33,631 spatial
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units with a total population of 1,103,880,920, which accounted for 87.21% of the total population of China
in 2000. The total area was 6,018,171.42 km2, representing 62.69% of the area of mainland China. The mean
spatial resolution (which is equal to sqrt (area/number of units)) [11] of the township units was 13.4 km.

2.2. Gridded Population Distribution Datasets and Pretreatment

Table 1 presents the general characteristics of the four gridded population distribution datasets
being assessed in this study.

Table 1. The four gridded population distribution datasets and their characteristics.

Dataset CnPop GPWv3 GRUMPv1 WorldPop vα

Publication year 2002 2005 2011 2013

Years of estimation 2000 1990, 1995, 2000 1990, 1995, 2000 2000, 2010

Number of input
units in China 2869 2370 2370 Unknown

Chinese population
in 2000 1,265,830,000 1,275,130,000 1,275,130,000 1,269,975,000

Demographic data
source China 5th Census United Nations United Nations National Bureau of

Statistics, China

Time of survey 1 November 2000 1 July 2000 1 July 2000 1 July 2000

Modeled inputs Land use None Urban areas Land cover,
settlement

Spatial extent Chinese mainland Global Global Asia

Authors RESDC, CAS,
China CIESIN & CIAT

CIESIN & IFPRI &
World Bank &

CIAT

Andrea E.
Gaughan et al.

Gridded surface
resolutions 1 km 2.5′ (~5 km) 30” (~1 km) 3” (~100 m)

The CnPop dataset was obtained from the Data Sharing Platform of Earth System Science of National
Science and Technology Infrastructure of China. It is a national-scale dataset that covers mainland China
with a spatial resolution of 1 km using census data at the county level and land use data at a scale of
1:100,000 as inputs [18]. There are two steps used to generate CnPop: (1) estimate the population density of
each land use type using the least squares method in each sub-region; and (2) calculate the population in
each grid cell on the basis of the population density and area of each land use type.

The GPWv3 and GRUMPv1 were downloaded from the Center for International Earth Science
Information Network’s website (http://sedac.ciesin.columbia.edu/). The GPWv3 has a spatial
resolution of 2.5 arc minutes [10]. Using tables of population counts listed by administrative area
and spatially explicit administrative boundary data as two basic inputs, the population in each
administrative unit was allocated to the grid cells assigned proportionally to that unit using a simple
areal weighting algorithm.

The GRUMP dataset, which has a spatial resolution of 30 arc-seconds, is a ‘lightly’ modeled dataset
product based on the GPW [11]. The allocation mechanism for GRUMP builds on the GPW approach
but explicitly considers the populations of urban areas. In addition to data of statistical reporting units,
population estimates, point allocations, and footprints for urban centers of each country were collected.
Night-time satellite images were widely used to identify the urban settlements of major cities.

The WorldPop va dataset, which has a spatial resolution of 3 arc-seconds, was downloaded
from the official WorldPop project website (http://www.worldpop.org.uk/). It is modeled using
the MacDonald Dettwiler and Associates (MDA) GeoCover database and auxiliary data like
OpenStreetMap for the correction of residential and building area distribution [33]. The population
densities per land cover type were estimated by using the refined land cover layer and enumerated

http://sedac.ciesin.columbia.edu/
http://www.worldpop.org.uk/
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demographical data. Then, taking the population densities as weights, the demographical data were
redistributed across each grid cell across the entire region [33,34].

The geographical reference of the four gridded population distribution datasets and the population
dataset at the township level were unified to WGS 84, which is an internationally adopted geocentric
coordinate system, and the Albers equal area projection, which is a conic, equal area map projection that is
widely used in Asia and Europe area. For the population count layers of the GPW, GRUMP, and WorldPop,
original raster layers were converted to point layers. Then, the point layers were reprojected and clipped by
the Chinese mainland boundary data. The population density layers of the GPW, GRUMP, and WorldPop
were masked by the Chinese mainland boundary data and converted into an Albers equal area projection
using the nearest resampling technique (NEAREST), with a spatial resolution of 5 km, 1 km, or 100 m.
NEAREST performs a nearest neighbor assignment, and is the fastest of the interpolation methods.

2.3. Accuracy Assessment Method

The estimated population numbers of the four datasets in each polygon of the 33,631 township
units were counted separately using Zonal Statistics, a tool that calculates statistics on values of a
raster within the zones of another dataset, in the ArcGIS software. Then, the absolute estimation error
(AEE) and relative estimation error (REE) were calculated using Formulas (1) and (2):

AEEij = PEij − Pj (1)

REEij =
(

AEEij/Pj
)
∗ 100% (2)

where AEEij is the absolute estimation error of township j based on dataset i, Pj is the census count of
township j, and PEij is the estimated population of township j based on dataset i. When i = 1, i = 2,
i = 3, and i = 4, the dataset is CnPop, GPW, GRUMP, and WorldPop, respectively. In Formula (2),
REEij is the relative estimation error of township j based on dataset i, which is a fractional value that
has considered the population size of each township. For the convenience of mapping and in-depth
analysis, REEij was classified into five categories (Table 2).

Table 2. Classification standard for REE.

Value Range Category Abbreviation

[−100%, −50%] greatly underestimated GU
(−50%, −25%] underestimated U
(−25%, 25%] accurately estimated AE
(25%, 50%] overestimated O

(50%, 100+%] greatly overestimated GO

The estimation accuracy was evaluated using the following three steps. First, taking each township
as an entity, the average population density of the 33,631 township units was calculated and set as the
guideline for visually inspecting and comparing the mapping performance of CnPop, GPW, GRUMP,
and Worldpop. Second, the scatter plots of PEij and Pj were constructed and the correlation coefficient
(R), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE) between PEij and Pj were calculated. Third, the REEij values were classified and mapped to
identify the spatial distribution of the error and the amount and percentages of the total population
and area in each REEij range were summed for the purpose of analysis and comparison.

3. Results

3.1. Visual Inspection of Mapping Performance

Figure 2 presents the averaged population density at the township level across 27 provinces,
which shows objective and detailed population distribution characteristics at the township level in
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China. Figure 3a–d, respectively show CnPop, GPW, GRUMP, and WorldPop datasets on the basis
of each population density layer for China. In comparison to Figure 2, the four maps in Figure 3
illustrate a similar trend: dense population distributions in the east and sparse ones in the west,
although the details vary. The coastal zones, the North China plain, middle and lower reaches of
the Yangtze River, Sichuan Basin, Songliao Plain, and Weihe Valley are the main densely populated
regions. The Qinghai-Tibet Plateau, Inner Mongolia Plateau, Loess Plateau, and most areas in the
Xinjiang Uygur Autonomous Region are sparsely populated. In addition to these generally densely or
sparsely populated areas, the populations in the hilly areas, the ecotone between agriculture and animal
husbandry, and the Yunnan-Guizhou Plain are scattered with a relative medium density. In the mapping
performance, the GPW and GRUMP seem similar to Figure 2, and CnPop and WorldPop showed a
little difference compared to that figure, which was mainly caused by the different spatial resolutions.
The spatial resolutions of the averaged population density maps at the township level for 27 provinces in
China, the GPW, GRUMP, CnPop, and WorldPop, were approximately 13.4 km, 5 km, 1 km, 1 km, and
100 m, respectively. The closer the spatial resolution, the more similar the mapping effect.

Just in the mapping performance of CnPop, GPW, GRUMP, and WorldPop, visual differences
between the four population distribution maps were rather obvious. Both CnPop and WorldPop are
modeled datasets based on land use or land cover data; thus, they offer more spatial heterogeneity
details than the GPW and GRUMP. The divergence in the population distribution between rural and
urban areas and across various landscapes is accurately characterized by WorldPop and CnPop,
whether in the heavily populated southeast area or the sparsely populated northwest region.
The population density in CnPop’s grid cells documents the gradual change from high to low values
across the entire map. However, the boundaries of various population density ranges are abrupt on
the WorldPop map, because of the coarse classification effect of the MDA GeoCover dataset. The GPW
is roughly patched compared to the other three maps, which can be mainly attributed to its simple areal
weighting method and coarse resolution. GRUMP fails to represent the spatial pattern in the sparsely
populated parts of the western and northern areas. However, in the eastern and southern areas, where
the extents of urban and rural regions can be identified with night-time light images or ancillary data, the
population is considerably redistributed and the discrimination of the population density is significantly
enhanced in comparison to the GPW. In urban areas, GRUMP shows a ring pattern in which low-density
areas surround high-density ones, which is similar to the night-time light images. In sum, the ranking of
the overall mapping performance from fine to coarse is as follows: CnPop, WorldPop, GRUMP, and GPW.
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(d) WorldPop.

3.2. Statistical Analysis

Figure 4 shows the relationships between the estimated population counts and census data
in 27 provinces in China. Each point represents the estimated population count and a statistical
population number at the township level. It can be seen that the relationship between the predicted
populations and census populations is more linear for both WorldPop and CnPop than for the GPW
or GRUMP. The WorldPop dataset has the highest correlation coefficient between the estimated and
statistical values (0.906) compared to CnPop (0.772), GRUMP (0.740), and the GPW (0.499).

Table 3 shows the RMSE, MAE, and MAPE values for the estimated and demographic population
counts for each dataset. Of the three indicators, WorldPop has the lowest values, followed by CnPop,
GRUMP, and the GPW. The MAPE value for WorldPop (42.44%) is the smallest and is marginally
smaller than that for CnPop (42.77%). This suggests that WorldPop is more accurate than CnPop, GPW,
and GRUMP. However, the estimation accuracy of CnPop is close to that of WorldPop and better than
that of GRUMP and the GPW. Because GRUMP distributes large populations across major urban areas
and then uses areal weighting to allocate the remainder of the population to rural regions, while the
GPW uniformly distributes the population across each county level administrative unit, the estimation
accuracy of GRUMP is better than the GPW. It is noteworthy that the difference between the RMSE and
MAE values for all four datasets was significant, which suggests that the variances in the individual
errors were large and had the same various trends shown by the MAPE.

Table 3. Accuracy assessment results for CnPop, GPW, GRUMP, and WorldPop.

RMSE MAE MAPE (%) R

CnPop 37,990.16 12,264.92 42.77 0.772
GPW 61,606.62 19,925.40 85.93 0.499

GRUMP 41,447.49 15,402.66 60.96 0.740
WorldPop 24,262.21 9853.00 42.44 0.906
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3.3. Mapping and Analysis of Relative Estimation Error

The spatial distributions of the relative estimation errors (REEs) for the four population datasets
are shown in Figure 5. In all four sub-figures, it can be seen that there are several red and blue areas on
the Qinghai-Tibet and Inner Mongolian Plateaus, indicating that the population distribution datasets
are greatly overestimated or underestimated in these areas. In Figure 5a, green patches corresponding
to the accurately estimated township units dominate the entire map, which suggests that CnPop has a
good accuracy. Non-green spatial units mainly appear in regions with complex terrains, such as the
Hengduan Mountains, Qinling Mountains, northern farming-pastoral ecotone, the karst mountain
areas, and the hilly areas, indicating that CnPop’s modeling strategy does not simulate population
distribution patterns well in these areas. In Figure 5b, more than half of the entire map area is not green,
while small green patches are discretely located in large plain areas, such as the Huang-Huai-Hai
region, the Jianghan Plain, and the middle and lower reaches of the Yangtze River. This suggests that
the areal weight interpolation method has an acceptable accuracy for parts of the plain and basin areas
in China. The green areas in Figure 5c clearly exceed those in Figure 5b. However, it is noteworthy
that the greatly underestimated or overestimated patches in sparsely populated northern China do
not decrease, suggesting that the method used to generate the GRUMP dataset does not improve
the estimation accuracy of areas without intensive night-time light, such as the less-developed rural
areas on the Qinghai Tibet and Inner Mongolia Plateaus, and some hilly regions. In comparison to
Figure 5a–c, more green patches cover the east and south regions in Figure 5d with a remarkable
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advantage. Meanwhile, the coverage of red patches in the Hengduan Mountains regions in Figure 5d
exceeds those in Figure 5a and is almost equivalent to those in Figure 5b. This shows that the WorldPop
dataset simulates the population distribution well for the vast majority of towns in eastern and southern
China; however, there is a considerably large error level in the hilly areas such as Hengduan Mountain.
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For a better understanding of the error structure of each dataset, we calculated the total population,
total area, and corresponding percentages that fell within each REE range (Table 4). Figure 6a shows
the percentage bar charts of the datasets in different error ranges. The REE values in the range from
−25 to 25% are the township units determined to have a relatively good estimation performance.
The percentages of the total population falling within this range were more than half for both CnPop
(50.5%) and WorldPop (57.4%). The dominant range was the ‘accurately estimated’ category for
GRUMP (37.54%) and ‘greatly underestimated’ category for the GPW (30.43%) from the perspective of
total population percentage. If we divided the REE values into three simpler ranges, that is, accurately
estimated (from −25 to 25%), underestimated or overestimated (from −50 to −25% or from 25 to
50%), and greatly underestimated or overestimated (≥50% or ≤−50%), the percentages of the total
population that fell within the three ranges were, respectively, 50.5%, 26.85%, and 22.65% for CnPop;
29.23%, 24.25%, and 46.52% for the GPW; 37.54%, 28.78%, and 33.58% for GRUMP; and 57.4%, 27.04%,
and 15.56% for WorldPop. This shows that a majority of townships in the CnPop, GRUMP, and
WorldPop datasets fell within the accurately estimated category, while most townships in the GPW dataset
were in the greatly underestimated or greatly overestimated category. The second majority of townships in
the CnPop and WorldPop datasets fell within the underestimated or overestimated category, while that for
the GRUMP dataset was in the greatly underestimated or greatly overestimated category. The percentage
of town populations that fell within the greatly underestimated or greatly overestimated category in the
WorldPop datasets was 15.56%, which was the smallest value of the four datasets.
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Since China’s population is unevenly distributed, the total area and population for each REE range
in the four datasets is not proportional. The WorldPop dataset accurately estimated the population
distribution for 40.37% of the total area, while the corresponding values for CnPop, GPW, and GRUMP
were 37.81%, 26.63%, and 31.67%. The total area of the greatly underestimated or overestimated
townships accounted for more than one-third of the four datasets. In summary, the WorldPop dataset
was the most accurate among the four datasets. Both WorldPop and CnPop provided a good estimation
accuracy for more than half of the 33,631 townships, although they exhibited a low accuracy in the
sparsely populated areas, which accounted for approximately 40% of the total area. The GPW’s
estimation accuracy was barely satisfactory in most townships and was substantially improved by
GRUMP, which increased the number of accurately estimated townships and decreased the number of
greatly underestimated or overestimated townships.

Table 4. Error analyses of CnPop, GPW, GRUMP, and WorldPop.

REE Value Range [−100%, −50%] (−50%, −25%] (−25%, 25%] (25%, 50%] (50%, 100+%]

CnPop

Total population (people) 125,509,487 179,923,286 557,420,811 116,418,616 124,608,720
Percentage of total population (%) 11.37 16.30 50.50 10.55 11.28

Total area (km2) 1,245,388.12 734,952.73 2,275,487.36 587,808.42 1,174,534.8
Percentage of total area (%) 20.69 12.21 37.81 9.77 19.52

Average population density (people/km2) 100.78 244.82 244.97 198.06 106.09

GPW

Total population (people) 335,862,720 164,011,060 322,615,055 103,708,031 177,684,054
Percentage of total population (%) 30.43 14.86 29.23 9.39 16.09

Total area (km2) 472,853.9 532,821.3 1,602,648.4 642,171.13 2,767,676.7
Percentage of total area (%) 7.86 8.85 26.63 10.67 45.99

Average population density (people/2) 710.29 307.82 201.3 161.5 64.2

GRUMP

Total population (people) 223,913,755 203,927,695 414,412,191 113,818,686 147,808,593
Percentage of total population (%) 20.29 18.47 37.54 10.31 13.39

Total area (km2) 545,491.24 676,933.94 1,906,016 609,758.4 2,279,971.8
Percentage of total area (%) 9.06 11.25 31.67 10.13 37.89

Average population density (people/2) 410.48 301.25 217.42 186.66 64.83

WorldPop

Total population (people) 79,459,225 193,561,962 633,672,424 104,920,150 92,267,159
Percentage of total population (%) 7.2 17.54 57.4 9.5 8.36

Total area (km2) 333,542.24 619,301.2 2,429,326.28 685,434.02 1,950,567.73
Percentage of total area (%) 5.54 10.29 40.37 11.39 32.41

Average population density (people/km2) 238.23 312.55 260.84 153.07 47.3

To identify the unbalanced distribution pattern of the REE, the average population density
of each REE range for the four datasets was calculated as i, shown in Figure 6b. For CnPop, the
average population density was significantly lower in the greatly overestimated or underestimated
ranges, indicating that the land use/land cover model failed to redistribute the population well in
sparsely populated areas. The values of the underestimated and accurately estimated ranges were
approximately the same, which shows that the heterogeneity discernibility of CnPop needs to be
improved in densely populated areas. The values that corresponded to the GPW sharply decreased
from the greatly underestimated range to the greatly overestimated range, suggesting that the areal
weighting interpolation method cannot redistribute the population well since the average density of the
administrative units can significantly magnify the population density of sparsely populated areas and
suppress that of densely populated ones. In comparison to the GPW, the average population density of
the greatly underestimated units of GRUMP decreased by half and those of both underestimated and
greatly overestimated marginally increased, illustrating that auxiliary data such as night-time light
images could discriminate some populated areas, but a few populated areas remained unidentified
because the average population density of the greatly underestimated units was still relatively high.
The average population density of the greatly overestimated ranges was the smallest for the WorldPop
dataset, showing that this dataset greatly overestimated the population distribution over a wide
range of sparsely populated areas. Meanwhile, the average population density of the underestimated,
accurately estimated, and overestimated ranges progressively decreased, illustrating that the fixed
estimated population densities of different land cover types could not exactly conform to the real
population distribution across China. An interesting observation was that the values of the accurately
estimated ranges for the four datasets were about 200–260 people per km2, which suggests that the
areas within this population density value range are easy to characterize with a high accuracy.
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4. Discussion

The accuracy assessment and comparisons above illustrate that the simple areal weighting method
used to generate the GPW and GRUMP can lead to serious estimation errors in the Chinese context,
while the modeling strategy based on land use/land cover, which was utilized to produce CnPop
and WorldPop, is precise across most areas in southeastern China but leads to obvious estimation
errors across northwestern China. As mentioned above, these errors are not only caused by the
generation methods but also fundamentally created by the complexity of the population distribution
in China. The four datasets failed to accurately characterize the spatial pattern of the population
distribution in the less-developed northern and western China, including the Qinghai-Tibet and Inner
Mongolia Plateaus, as well as the hilly area, karst region, and farming-pastoral ecotone. We speculate
that there are three main causes for this. First, because farmland and rural settlements with small
areas are sparsely dispersed across these areas, they are too difficult to extract information from and
include in the land use or land cover data, leading to the uncertain distribution of the corresponding
population [35]. Second, the assumption that the population density per land use type or a county
is a fixed value is too coarse to reflect the heterogeneity of a real population distribution [7]. A few
studies have demonstrated that zoning before modeling and multi-source data fusion can effectively
enhance the modeling accuracy in these regions. The former involves dividing the research area into
several sub-regions in line with natural and cultural features using a zoning or clustering algorithm
initially and then constructing a prediction model for each sub-region. For example, Zeng et al.
divided mainland China into eight zones using night-time light image clustering and the shortest
path algorithm and markedly improved the modeling performance [8]. Zhuo et al. classified Chinese
counties into four types on the basis of their night-light characteristics and modeled the population
distribution both inside and outside of light patches using regression and Coulomb’s Law model.
In the Coulomb’s Law model, the distribution of China’s population is treated as a ‘field’ analogous
to an electric field. In this ‘field’, urban centres, where the population and socioeconomic activities
are highly concentrated, have impacts on the surrounding regions in the same way that point charges
exert an influence on any charged objects around them. Based on Coulomb’s Law, this paper assumed
that the magnitude of the impact (i.e., the force of attraction related to the population distribution)
of an urban centre imposed on a given point equals TDN/r2, where TDN represents the total digital
number and r represents the distance from the urban centre [19]. The latter refers to the advantage
of using multi-source environmental and geographical factors such as land use, topography, rural
settlement points, traffic network, and water system data to establish a data fusion model to simulate
the population distribution. For example, Dong et al. confirmed that elevation, slope, and aspect
strongly influence the population distribution in Guizhou province, which is one of China’s major
karst areas [36]. Liao et al. accurately transformed the population on the Qinghai-Tibet Plateau into a
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grid format with a spatial resolution of 1km using a multi-data fusion approach based on elevation,
village settlement, traffic network, land use, and water system [37]. Third, a problem worth pointing
out is that the ecological environment of these inaccurately estimated regions is fragile and responds
sensitively to climate change and human activities [38,39]. For example, several infectious diseases
such as the plague and tick-borne encephalitis primarily existed and spread in these regions [40,41].

The characterization year of both the four gridded population datasets being evaluated and the
spatial population dataset at the township level used for assessment in this study is 2000. Despite the
successive publication of several gridded population distribution datasets for China in 2010 and 2015,
this study’s assessment and comparison work for 2000 retains its unique characteristics. First, since this
study is the first to systematically and comprehensively evaluate the estimation accuracy of CnPop,
GPW, GRUMP, and WorldPop using a wide range of spatial population datasets at the township
level in China, the conclusions could deepen our spatial understanding of the four gridded datasets
and provide a clear quality reference for choosing suitable datasets for related environment and
resource research pertinent to 2000. Second, six nationwide censuses have been conducted in China
since 1949. Of these, the fifth census in 2000 was the first to release statistical population data at
the township level, while the previous four censuses only offered statistical datasets at the county
level. Despite the improvement in the resolution of statistical data, the corresponding vector boundary
data on the township scale are still difficult to access owing to policy restrictions and expenses,
indicating that fine-scale population geography research in China has remained inadequate over the
past decades. The pioneering attempt of this study, which constructed a GIS-linked 2000 census dataset
at the township level covering 27 provinces, can serve as a basic and updatable dataset for fine-scale
population geography research in China [42].

5. Conclusions

This study performed estimation accuracy assessments and a comparison of CnPop, GPW,
GRUMP, and WorldPop over 27 provinces in China, using boundary and census data at the township
level. The results showed that the estimation accuracy, error structure, and mapping performance
of these four gridded population datasets varied within each dataset and between different datasets.
WorldPop had the highest estimation accuracy with 60% of the population classified under the
accurately estimated category. Second was CnPop, which accurately simulated the distribution of half
of the population; it also showed the best mapping performance. The GPW had the lowest estimation
accuracy and worst mapping performance because it only had an acceptable estimation accuracy in
some plain and basin areas. The estimated accuracy and mapping performance of GRUMP were
significantly better than those of the GPW because it had a higher percentage in the accurately estimated
category and a lower percentage in the greatly underestimated or overestimated category. However, all
four datasets failed to characterize the population distribution in northwestern China, mainly on the
Qinghai-Tibet and Inner Mongolia Plateaus. In addition, there were relatively large estimation errors
in regions with complex terrains such as the hilly area, karst region, and farming-pastoral ecotone in
the four gridded datasets.

Thus, future work should focus on updating and constructing time-series boundary and census
datasets at the township level for China in 2000 and 2010. Utilizing fine-scale geospatial population
data, two sequential gridded population datasets will be produced with a high spatial resolution on
the basis of the areal weighting method and data fusion method using accessibility and night-time
light data. Finally, village-level boundary and demographic data are expected to be collected for the
sake of calibration and validation.
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