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Abstract: In the last few years, researchers have paid increasing attention to improving the accuracy
of wind speed forecasting because of its vital impact on power dispatching and grid security.
However, it is difficult to achieve a good forecasting performance due to the randomness and
intermittency characteristics of wind speed time series. Current forecasting models based on neural
network theory could adapt to various types of time series data; however, these models ignore the
importance of data pre-processing and model parameter optimization, which leads to poor forecasting
accuracy. In this paper, a new hybrid model is developed for short-term multi-step wind speed
forecasting, which includes four modules: (1) the data pre-processing module; (2) the optimization
module; (3) the hybrid nonlinear forecasting module and (4) the evaluation module. In order to
estimate the forecasting ability of the proposed hybrid model, 10 min wind speed data were applied
in this paper as a case study. The experimental results in six real forecasting cases indicate that
the proposed hybrid model can provide not only accurate but also stable performance in terms of
multi-step wind speed forecasting can be considered an effective tool in planning and dispatching for
smart grids.

Keywords: wind speed multi-step forecasting; data pre-processing; modified optimization algorithm;
neural networks

1. Introduction

Wind energy, as one of the most promising renewable energy resources (RESs), has gradually
become a remarkable alternative resource to fossil energy due to being non-polluting, environmentally
friendly cost effective [1]. In the past few decades, as a result of policy-driven environmental and energy
security concerns, it has become the fastest-growing RES for power generation and has attracted more
and more attention worldwide [2]. In late 2016, the Global Wind Energy Council (GWEC) reported
that more than 54.6 GW of global wind power capacity was added in 2016, which represents a growth
rate of 11.8% and means that the global installed capacity of wind turbines can generate approximately
5% of electricity demand worldwide [3]. However, due to the intermittency and uncertainty inherent
to wind sources, the wholesale integration of wind power into the traditional grid system presents a
significant challenge in terms of reducing cost and improving reliability in power system operation [4].
Therefore, with the goal of moderating the negative impacts and increasing the utilization efficiency of
wind power conversion, it is necessary to increase the accuracy of wind speed forecasting [5].
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During recent years a number of technologies have been proposed in the literature for increasing
the accuracy of wind speed forecasting, which can be classified into four categories: physical
models, statistical models, spatial correlation models, artificial intelligence models [6]. The physical
forecasting models are generally based on terrain features, atmospheric pressure, ambient temperature,
other meteorological information to obtain an evaluation of the considered site’s wind speed forecasting.
These models are very effective for medium-term and long-term wind speed forecasting because of
the many relevant variables they include [7]. However, these physical-based approaches require
considerable observed data with a limited simulation scale always have a higher cost [8]. In contrast,
statistical forecasting models, which include the Auto Regressive Moving Average (ARMA) [9],
Auto Regressive Integrated Moving Average (ARIMA) [10], Generalized Autoregressive Conditional
(GARCH) [11], are more suitable for handling time series forecasting are simple to implement
by utilizing a set of historical data. This makes these techniques time saving in building models.
However, statistical models cannot deal with the non-linearity that exists in wind speed time series
because of their linear correlation structure [12]. Typically, spatial correlation models primarily utilize
the spatial relationships between wind speeds at different sites. In some cases, they can achieve
satisfactory prediction accuracy [13]. However, their information requirements, including wind speed
and delay times, add complexity and cost to their implementation [6]. With the rapid development of
soft-computing techniques, some artificial intelligence approaches are widely used for wind speed
forecasting in various fields [14,15], such as artificial neural networks (ANNs), support vector machines
(SVMs), fuzzy logical based models [6]. Among these approaches, the most prevalent intelligent wind
speed forecasting models are based on ANNs, which including the back propagation (BP) neural
network [16], general regression neural network (GRNN) [17], radial basis function neural network
(RBFNN) [18] and deep belief network (DBN) [19], among others. These models possess the ability
to structure the relationship between input data and output data with higher data error tolerance
perform well in non-linear time series forecasting [16]. Nevertheless, the main drawbacks of individual
artificial intelligence models are that they may easily get into local optimum and exhibit a relatively
low convergence rate due to the random network initial weights and thresholds [19]. From the above
discussion, it can be seen that each model has its own specific benefits and drawbacks we summarize
the merits and demerits of the four types of wind speed models in Table 1.
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Table 1. Theoretical comparison of the strengths and disadvantages exist in present individual wind speed forecasting models.

The Type of the Model Main Methods The Features and Strengths of Each
Model The Disadvantages of Each Model

Physical models
Mesoscale numerical model;

Computational fluid dynamics
method [7]

Obtaining good performance in the
long-term forecasting;

Having a high parallel efficiency [7].

Requiring considerable observed data with
limited simulation scale;
Having higher cost [8].

Statistical models Time series approach [9–11] A wide application and cost less time to
build models [12].

Obtaining poor performance in dealing with
non-linear time series forecasting [12].

Spatial correlation models Spatial correlation models [13]

Obtaining a satisfactory wind speed
forecasting by vast quantities of

information that need be considered and
collected [13].

Requiring wind speed measurements from
multiple spatial correlated sites so that the
implementation has difficulty due to the
measurements and their time delays [6].

Artificial intelligence models
Neural network approach;
Support vector machine;

Fuzzy and clustering approach [6,15–19]

Having a high ability of fault tolerance
do not require accurate mathematical

models with each
man-machine interaction;

Obtaining a satisfactory performance in
non-linear time series forecasting [18]

Easily getting into local optimum, over-fitting and
exhibiting the relatively low convergence rate;
Having a relatively low accuracy and lack for

systematization [19].
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Due to the inherent weaknesses of each model, as well as the intermittency and complex
fluctuations of wind speed, individual forecasting models cannot always capture the characteristics of
a time series, especially when it comes to the non-linear traits of wind speed. Thus, in order to obtain
more accurate wind speed forecasting, as well as overcome the shortcomings in the individual models,
some hybrid models which incorporate the individually superior features of various algorithms have
been developed. In recent years, with the aim of obtaining promising forecasting results, many hybrid
models for wind speed forecasting have been successfully developed and have improved the accuracy
of forecasting to some degree. For instance, Cadenas et al. [20] proposed a hybrid model, which
consists of ARIMA models and ANN models for wind speed forecasting. The results showed that
the forecasting achieved with this hybrid outperformed the individual ARIMA and ANN models
in three experimental sites in Mexico. Liu et al. [21] developed a hybrid model for wind speed
forecasting based on the theories of wavelet, wavelet packet, time series analysis artificial neural
networks. The results of three simulation cases indicated that the proposed hybrid model achieved a
satisfactory performance in wind speed forecasting. Du et al. [22] developed a wind speed forecasting
model based on certain confidence and fluctuation characteristics for 10 min wind speed forecasting at
three wind farms in Penglai Shandong Province, eastern China. The experiments indicated that the
developed hybrid model can obtain more accurate forecasting results compared with other alternative
models. Ma et al. [23] proposed a model based on a de-noising approach with a dynamic fuzzy neural
network to improve the accuracy of wind speed forecasting. Three experimental results demonstrated
that the model satisfactorily approximated the observed wind speed value. Wang et al. [24] developed
an ensemble empirical mode decomposition (EEMD), genetic algorithm (GA), BP neural network for
wind speed forecasting. In this proposed hybrid model, the EEMD is employed to analyze and de-noise
the nonlinear stochastic signals the BP neural network, optimized by GA (GA-BP), is developed for
dealing with each of the decomposed sub-series. The experimental results from a wind farm in Inner
Mongolia, China, indicated that the proposed hybrid model can provide more accurate wind speed
forecasting than a traditional wavelet neural network, including both the GA-BP and GA-BP with EMD
(EMD-GA-BP) models. Ren et al. [25] developed hybrid wind speed forecasting by integrating EMD
and a support vector machine (SVR). Several intrinsic mode functions (IMFs) and a residue handled
by EMD were separately generated to train the SVR. The case studies showed that the proposed
EMD-SVR model outperformed other alternative models involved in their research with respect to
computational complexity and accuracy. Zhang et al. [26] presented a hybrid model based on EMD,
feature selection with ANN and SVM yield for short-term wind speed forecasting. The results of their
study demonstrated that the proposed hybrid approach achieved a satisfactory performance in dealing
with wind speed forecasting using three real datasets in China. Zhang et al. [27] developed a hybrid
model which combined an extreme learning machine (ELM), based on feature selection parameters
optimized by using a hybrid backtracking search algorithm (HBSA). The developed hybrid model
was applied to data from two wind farms in Inner Mongolia, China, Sotavento Galicia, respectively.
The experimental results indicated that the hybrid model was able to capture the non-linear features of
a wind speed series and thus achieve a more promising forecasting performance.

The previous research indicates that there is still no one approach that can provide an elegant
solution to wind speed forecasting. Model performance under specific circumstances should be
analyzed and understood then incremental improvements should be made based upon the knowledge
that is gained [28]. Thus, obtaining a satisfactory wind speed forecasting performance is still a difficult
and challenging task it is necessary to further exploit more efficient and accurate models in the
field of wind speed forecasting. Due to these factors, a novel wind speed forecasting model which
combines wavelet de-noising (WD), a modified ant colony optimization algorithm, BP neural networks
(WD-APSOACO-BP) is developed in this paper. The developed hybrid model consists of four modules:
a data pre-processing module, an optimization module, a forecasting module, a comprehensive
evaluation module. In the data pre-processing module, the WD technique is employed to extract the
basic characteristics from the non-stationary wind speed time series fractal extrapolation is used to
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handle the missing data. The optimization module includes use of a modified adaptive particle swarm
optimization algorithm-based ant colony optimization algorithm (APSOACO), which is adopted to
optimize the weights and thresholds of individual BP neural networks and overcome the drawbacks
of the BP algorithm in terms of converging on a local optimum when the training surface has a
multimodal distribution. In this way, we aimed to further improve the forecasting accuracy. In the
forecasting module, the hybrid forecasting APSOACO-BP model is established as a forecasting engine
for wind speed forecasting. After completing the steps above, the evaluation module is adopted to
synthetically assess the developed hybrid wind speed forecasting system. This module consists of the
evaluation criteria, forecasting validity, a population stability index four experiments designed in six
wind speed sites using time series from the Shandong province of China as well as a comprehensive
analysis of these experiments. The significant contributions of this study are summarized as follows:

(1) Given that the wind speed exhibits uncertainty and randomness, a valid mathematical data
preprocessing module, which was derived from the theory of signal time-frequency localization,
is adopted to decompose the original wind speed time series into a number of sub-series.
This module can effectively de-noise and fully extract the main features of a wind speed time
series thus improves the forecasting accuracy.

(2) A novel modified optimization algorithm, the APSOACO, is proposed to optimize the initial
weights and thresholds of the BP neural network, due to its better convergence performance
and lower number of required iterations compared with individual traditional optimization
algorithms. This module not only provides a new option for solving problems such as
computational complexity and easy trapping into a local optimal solution that traditional
forecasting engines may encounter also makes a contribution to improving the accuracy of
wind speed forecasting.

(3) In order to estimate the overall performance of the developed hybrid model, a more scientific and
comprehensive evaluation module is developed in this paper. This module not only sufficiently
analyzes both the accuracy and stability of forecasting results also discusses the effectiveness of
the proposed model in terms of the performance of the employed optimization algorithm and
wavelet function.

(4) With the aim of improving the quality of wind speed data and further enhancing the forecasting
accuracy, an effective data interpolation technique and a rolling mechanism were also adopted in
this paper. These techniques possess the capacity to enrich and improve the information of wind
speed observations, which can in turn provide more accurate and stable wind speed forecasting.

The rest of this paper is organized as follows: Section 2 presents a brief description of related
methodology. Section 3 describes the back propagation neural network optimized by different heuristic
algorithms and describes the structure of the proposed integrated forecasting framework. Six real
experiments and their corresponding results are presented in Section 4. The forecasting validity of the
proposed hybrid model is discussed in Section 5. Finally, the conclusion of this research is given in
Section 6.

2. Methodology

Before utilizing the proposed hybrid model for wind speed forecasting, it is necessary to introduce
some of the significant components. Therefore, some operating theories—including the wavelet
de-noise algorithm, the fractal interpolation the single nonlinear neural network—are concisely
introduced in this section.

2.1. The Wavelet De-Noise Technique

The wavelet transform is a time-frequency representation of a signal. It can be used for noise
reduction, feature extraction, or signal compression, for example [29]. It is an essential tool for data
pre-processing and has been widely utilized in de-noising and for extracting the basic characteristics
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from a non-stationary time series. This type of algorithm can be divided into two categories: continuous
wavelet transforms (CWTs) and discrete wavelet transforms (DWTs).

In continuous wavelet transforms, a given signal of finite energy is projected onto a continuous
family of frequency bands (or similar subspaces of the Lp function space L2(R)). For instance,
the signal may be represented on every frequency band of the form [f, 2f ] for all positive frequencies
f > 0. Then, the original signal can be reconstructed by a suitable integration of all the resulting
frequency components.

The frequency bands or subspaces (sub-bands) are scaled versions of a subspace at scale 1.
This subspace is in most situations generated by the shifts of one generating function ψ in L2(R),
the mother wavelet. For the example of the scale 1 frequency band [1,2] this function is:

ψ(t) = 2 sin c(2t)− sin c(t) =
sin(2πt)− sin(πt)

πt

In discrete wavelet transforms it is computationally impossible to analyze a signal using all the
wavelet coefficients, so one may wonder if it is sufficient to pick a discrete subset of the upper halfplane
to be able to reconstruct a signal from the corresponding wavelet coefficients. One such system is the
affine system for some real parameters a > 1, b > 0. The corresponding discrete subset of the halfplane
consists of all the points (am, namb) with m, n in Z. The corresponding child wavelets are now given as:

ψm,n(t) =
1√
am

ψ(
t− nb

am )

A sufficient condition for the reconstruction of any signal x of finite energy is given by the formula:

x(t) = ∑
m∈z

∑
n∈z
〈x, ψm,n〉

in which the functions {ψm,n: m, n∈ z} form an orthonormal basis of L2(R).
This separates the signal into components at various scales corresponding to successive

frequencies. It can be noted that the DWT corresponds to the multi-resolution approximation
expressions, which can analyze a signal in a number of frequency bands (or at a number of
scales) [30,31].

2.2. The Artificial Neural Network Model and Fractal Representation

Backpropagation is a method used in artificial neural networks to calculate a gradient that is
needed in the calculation of the weights to be used in the network, which is a powerful algorithm
for apportioning error responsibility through a multi-layer network was formulated in the form of
the backpropagation algorithm. The backpropagation algorithm employs the Delta Rule, calculating
error at output units in a manner to that used in structure of neural network, while error at neurons
in the layer directly preceding the output layer is a function of the errors on all units that use its
output. The effects of error in the output node(s) are propagated backward through the network
after each training case. The essential idea of backpropagation is to combine a non-linear multi-layer
perceptron-like system capable of making decisions with the objective error function of the Delta
Rule [32]. As a result, BP neural network is selected as a forecaster to integrate the hybrid model in this
study. It is based on a gradient descent method that minimizes the sum of the squared errors between
the actual and desired output values. The transfer function is of the neuron type (commonly referred
to as the activation function [33]). The output function is between 0 and 1 and can transform input to
output for continuous nonlinear mapping.

Definition 1. Neural network models in artificial intelligence are usually referred to as artificial neural networks
(ANNs). These are essentially simple mathematical models defining a function f: XY or a distribution over
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X or both X and Y sometimes models are also intimately associated with a particular learning algorithm or
learning rule.

In order to eliminate the difference of each variable, the input and output data of the neural
network should be normalized the normalization formula is as follows:

X′ = 2× Xi − Xi,min

Xi,max − Xi,min
− 1, (i = 1, 2, · · · , n) X′ ⊂ [−1, 1]

where X′ is the normalized data. Xi,min and Xi,max are the minimum and maximum value of actual
data vectors and Xi denotes the actual data.

Step 1. Calculate outputs of all hidden layer nodes.

yj = f
(

∑
i

ωjixi + bj

)
= f (netj) (i = 1, · · · , n; j = 1, · · · , 2n)

netj = ∑
i

ωjixi + bj (j = 1, · · · , 2n)

where the activation value of node j is netj, ωji represents the connection weight from input node i to
hidden node j, bj represents the threshold of neuron j, yj represents the output of hidden layer node j. f
is the activation function of a node, which is usually a sigmoid function.

f (x) =
1

1 − e−x

Step 2. Calculate the output data of the neural network.

O1 = f
(

∑
i

ωojyi + bo

)
(i = 1, · · · , n; j = 1, · · · , 2n)

where ωoj represents the connection weight from hidden node j to the output node, bo represents the
threshold of the neuron, O1 represents the output data of the network. fo is the activation function of
the output layer node.

Step 3. Minimize the global error via the training algorithm.

Mean square error =
1
t ∑ (O1 − Rt)

2

where Rt is the real output of the training data in Equation.

2.3. Fractal Interpolation

The fractal interpolation technique was developed by Barnsley and Harrington and provides
benign deterministic representation for complicated phenomena [34]. The fractal interpolation function
is defined as fixed points of the map between function spaces using iterated function systems (IFSs).
The details of the fractal interpolation is as follows:

Theorem 1. Let [x0, xN] ⊂ R be an interval and x0 < x1 < . . . < xi−1 < xi < . . . < xN be a subdivision of this
interval (N ≥ 2). Let Fi ∈ R (i = 0, 1, ..., N) be some arbitrary value attached to the point xi which is to be
interpolated over the interval [x0, xN] by a continuous function f: [x0, xN]→ R with f(xi) = Fi (i = 0, 1, . . . , N).

Let ui: [x0, xN]→[xi−1, xi] be the invertible maps:

ui(x) =
xi − xi−1

xN − x0
x +

xN xi−1 − x0xi
xN − x0

(i = 0, 1, ..., N)
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Let αi ∈ R (i = 0, 1, . . . , N) be any given number (called the vertical scaling factors) with 0 < |αi|
< 1 and hi: [x0, xN]→R be the linear functions.

hi(x) = (
Fi−Fi−1

xN − x0
− αi

FN − F0

xN − x0
)x +

xN Fi−1 − xN Fi
xN − x0

αi
xN F0 − FN

xN − x0
(i = 0, 1, ..., N)

For i = 0, 1, . . . , N.
Then there exists a unique continuous function f : [x0, xN]→R with f (xi) = Fi (i = 0, 1, . . . , N) such

that the following condition holds true:

f (ui(x)) = αi f (x) + hi(x) for x ∈ [x0, xN ] and i = 0, 1, . . . , N

Proof. Let F = {g: [x0, xN]→R be continuous with g(x0) = F0, g(xN) = FN}. F is a complete metric space
with the maximum metric. Define the operator T: F→F piecewise by:

T(g)(y) = αig(u
−1
i (y)) + hi(u

−1
i (y)) for x ∈ [x0, xN ] and i = 0, 1, ..., N

Then, T(g) is well defined and T(g)(xi) = Fi i = 0, 1, . . . , N. This operator is a contraction and its unique
fixed point is the function f.

2.4. Rolling Mechanism Based Multi-Step Forecasting

The Rolling Mechanism (RM), which inspired the metabolic technique that updates the input
data by discarding old data for each loop in the BP neural network, can be applied to perform the
forecasting. The Rolling Mechanism forecasting steps are shown below.

(a) 1-step ahead forecasting: The forecasting value x f orecast
N+1 is calculated based on the historical

values, where N is the sample of training.

(b) 2-step ahead forecasting: The forecasting value is x f orecast
N+2 calculated based on the historical values

and the previous forecasting value x f orecast
N+1 .

(c) 3-step ahead forecasting: The forecasting value x f orecast
N+3 is calculated based on the historical values

and the previous forecasting value {x f orecast
N+1 , x f orecast

N+2 }.

2.5. Adaptive Particle Swarm Optimization

An adaptive particle swarm optimization (APSO) is presented that features better search efficiency
than classical particle swarm optimization (PSO). More importantly, it can perform a global search
over the entire search space with a faster convergence speed. The APSO consists of two main steps.
First, by evaluating the population distribution and particle fitness, a real-time evolutionary state
estimation procedure is performed to identify one of four defined evolutionary states in each generation;
exploration, exploitation, convergence, jumping out. It enables the automatic control of the inertia
weight, acceleration coefficients, other algorithmic parameters at run time in order to improve the
search efficiency and convergence speed. Then, an elitist learning strategy is performed when the
evolutionary state is classified as the convergence state. This strategy will act on the globally best
particle to jump out of the likely local optima [35].

3. Back Propagation Neural Network Optimized by Hybrid Optimization Algorithm

In order to optimize the initial weights and thresholds of the BP neural network, a novel
APSOACO algorithm is introduced in this section.
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3.1. Modified Ant Colony Optimization

The proposed APSOACO was inspired from the velocity update nature of particles from the
adaptive particle swarm algorithm [35] and the foraging behavior of the ant colony algorithm [36,37].
We combine the distance metric of the ant colony algorithm with the direction (velocity) metric
of the adaptive particle swarm algorithm and generate a new probability metric. The concept of
the pheromone update in the ant colony algorithm is replaced with the velocity update from the
particle swarm algorithm. A sigmoid function is used to convert distance and velocity into heuristic
values. These heuristic values are used in the probability metric with different weights (shown in
Section 4). The advantages of the hybrid algorithm include: (1) avoiding convergence to a local
optimum; (2) providing a better solution within fewer iterations (fast convergence) and (3) achieving
low computational complexity. In APSOACO, we denote the swarm population as particles (as ‘ants’
in the ant colony algorithm and ‘particles’ in the adaptive particle swarm algorithm). The basic steps
of the APSOACO algorithm are presented as follows:

Step 1: Initialize a certain number of three-dimensional particle swarms P0, P1, . . . , Pn randomly.

Step 2: Feed the parameters corresponding to each particle back into the ant colony algorithm.
Each particle corresponds to a set of parameters (α, β, ρ). Apply this group of parameters to the ant
colony algorithm, then reinitialize the pheromone in the environment. According to the resulting
solution, update the pheromone. The ant colony algorithm adopts the pheromone update method
combined with the global asynchronous and elitist strategy, which does not change the pheromone
with an increasing number of ant colony algorithm iterations. If a more adaptive solution appears,
the pheromone is updated and the path of the global optimal solution is enhanced. The pheromone
updating formula is as follows:

∆τ′ij(t) =

{
Q/Gk

0
if [i, j] is the min error

otherwise

where τ′ij represents the amount of pheromone released by the best ant with the minimum error. Q is
the total amount of pheromone; Gk is the minimum error; and ρ is the degree of volatilization of the
pheromones. The range of values is [0,1]; τij1 is expressed as the update pheromone when it is updated
by a basic updating mode and maintains the current algebra when stronger fitness is needed to solve
the pheromone quantity. The calculation formula is as follows:

τij1(t + 1) = (1− ρ)τij1(t) + ∆τij1(t)

∆τij1(t) = ∑ τk
ij(t)

where ∆τij1 is the released amount of pheromone with the error [i, j] by the kth ant in this cycle and
∆τij1 is the change of the τij1 on the error [i, j] after this cycle. In the ant-cycle model, the formula of
∆τij1 is as follows:

∆τij1(t) =

{
Q/Lk

0
the kth pass the error [i, j]

otherwise

where Lk is the error obtained by the kth ant in this cycle. In this step the pheromones are not cleared
when the particles and their corresponding parameters are changed.

Step 3: According to the results of ant colony algorithm in judging the location of particles, find and
update the optimal particle position. If the corresponding parameters of a particle are returned to the
ant colony algorithm, the ant colony algorithm can obtain the best solution, so it calls this particle the
optimal particle. A set of corresponding parameters of the optimal particle indicates the location of the
particle in the solution space; that is, the best particle position. The location of the optimal particle is
Pbest. The optimal particle location found in the whole population is Gbest. The fitness values of Gbest
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and Pbest are used to evaluate the error of the ant colony algorithm—the smaller the error, the better
the quality of the parameters.

Step 4: Update the position and velocity of the particle according to the following equations:

Vi(k + 1) = ω (k)Vi(k) + c1r1(Pbest.i − xi(k)) + c2r2(Gbest − xi(t))

xi(k + 1) = xi(k) + Vi(k + 1)

ω(k + 1) =

{
λω(t) + θ

f (Gbest)− f (xi(t))
f (Gbest)− f (xmin(t))

ω(t) >ωmin

ωmin otherwise

where ω(k) is the adaptive inertia weight, c1 is the weight that makes the particle move to its own best
position. c2 is the weight that makes the particle move to the global best position. The range of c1 and
c2 is [0,2]. r1 and r2 are two independent random numbers in the range of 0–1; λ and θ are constraint
factors in the range of 0–1; ωmin is the minimum inertia weight; f (·) is the fitness function; Vi(k) is the
velocity of particle i at iteration k; xi(k) is the position of particle i at the iteration; Pbest,i is the current
best local position of particle i at iteration k. Gbest is the global best solution of all particles.

Step 5: If the stopping criteria is satisfied (by arriving at the maximum number of iterations or particles
to achieve the minimum goal value), the algorithm will stop and return to the current global optimum
particle position. (α, β, ρ) is the best parameter combination in the ant colony algorithm. Otherwise,
return to Step 2.

When optimizing the parameters (α, β, ρ) of the ant colony algorithm by applying the particle
swarm optimization algorithm, introducing some new parameters (such as ω(k), c1, c2 and maximum
iteration) is unavoidable. The selection of the four parameters requires a certain level of experience,
however the determination of their values is relatively simple and has only a small effect on the final
solution. The ant colony algorithm will be completely called one time if the particle moves one time.
Therefore, if the number of particle is N and they move M times, the ant colony algorithm will be
called N ×M times. Each time, the ant colony algorithm will iterate dozens or even hundreds of times.

3.2. Three Different Heuristic Algorithms for Optimizing BP Neural Network

In this section, the adaptive particle swarm algorithm, ant colony algorithm and APSOACO are
applied to optimize the weights and the thresholds of the nonlinear BP neural network model by
minimizing the mean square error of the BP neural network. However, the structure of the network
is confirmed and, in order to achieve optimal parameters of the network, the fitness function and
encoding strategy should be explained.

The purpose of the forecasting model is to minimize the mean square error of the BP neural
network. According to Equation (21), the fitness value of the ith sample can be calculated as follows:

Fitness(Xi) = MSE(Xi)

The final step is to arrange the weights and the thresholds of the nonlinear BP network for each
ant. In this paper, the structure of the weights and the thresholds matrix in the BP neural network is
as follows:

Optimization matrix = [w ji, woj

]
where wji represents the connection weight from input node i to hidden node j. woj represents the
connection threshold from hidden node j to the output node. Figure 1 shows the structures of the three
different hybrid models.
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Figure 1. The structure of three different hybrid models. (a) the structure of neural network combined
with ant colony optimization algorithm (b) the structure of neural network combined with adaptive
particle swarm optimization algorithm. (c) the structure of neural network combined with hybrid
optimization algorithm (d) the structure of neural network

4. Simulation Experimentation and Forecasting Result

In this study, 10 min ahead wind speed data from January 2014 from six study sites in the
Shandong province of China were collected are employed to evaluate the effectiveness of this proposed
integrated method. In order to further improve the wind speed forecasting performance, longitudinal
data selection will be applied to construct the forecasting dataset.

4.1. Study Area and Data Description

Wind power generation turns the kinetic energy of wind into mechanical energy the mechanical
energy is then transformed into electric energy. Wind speed plays a key role in this process. To verify
the effectiveness of the proposed model, wind speed data from six observation sites were collected.
Shandong is located in the east of China and has high level of wind activity every year. The long-term
and stable distribution of wind power in the Shandong province is provided by onshore wind farms.
The main types of turbines in the Shandong province are listed in Table 1. The speed in this area
reaches 3 m/s more than 70% of the time, resulting in a good level of electricity generation. Table 2
shows the average monthly power generation distribution, where it is indicated that the distribution
from January to July has a seasonal impact. The cut-in speed reaches approximately 70–80%. It is
noted that in August the rated wind speed declines from 22% to 7%, the primary reason for which is
strong tropical cyclone activity in the summer (which is harmful for turbines). Thus, there are some
days when the wind farms cannot generate electricity in August.

According to the features of wind speed, six observation sites are used for this case study.
However, the wind speed time series is not continuous in some months and has a number of missing
data points. Specifically, for the six sites in Shandong, the number of missing data entries is 4464/48,
4464/54, 4464/66, 4464/32, 4464/18, 4464/96, respectively. We used fractal interpolation to deal with
the missing data in this study [38].
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Table 2. The main type of wind power turbines in Shandong province of China.

Type Parameter Guodian-UP82 CCWE-1500/82.DF Gamesa-G58/850 Goldwind-GW82/1500

Rated power 1500 KW 1500 KW 850 KW 1500 KW
Cut-in Speed 3 m/s 3 m/s 3 m/s 3 m/s

Rated wind speed 10.5 m/s 11 m/s 10.5 m/s 10.3 m/s
Cut-out Speed 25 m/s 25 m/s 22 m/s 22 m/s

Survival wind speed 52.5 m/s (3 s) 52.5 m/s (3 s) 52.5 m/s (3 s) 52.5 m/s (3 s)
Swept area of rotor 5384 m2 5278 m2 2642 m2 5324 m2

Rotor diameter 82.76 m 82 m 58 m 82 m

4.2. Evaluation Criteria of Forecasting Performance

To evaluate the forecasting performance, four forecasting error measures between the actual
values and the forecasting values were employed for model evaluation and comparison: the average
error (AE), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error
(MAPE) [37,38]. The smaller the values of these measures, the better the forecasting performance
obtained. The definitions of these criteria can be indicated as follows.

AE =
1
N

N

∑
i=1

(xi − x̂i).

MAE = 1
N ∑N

i=1|xi − x̂i|.

MSE = 1
N ∑N

i=1 (xi − x̂i)
2.

MAPE = 1
N ∑N

i=1

∣∣∣ xi−x̂i
xi

∣∣∣× 100%.

4.3. Experimental Process

To effectively forecast the wind speed, three forecasting experiments are implemented in this study.
Experiment I aimed to compare the performance of different single artificial neural network models in
order to select an individual model with the best performance among well-known forecasting models,
with the best structure of each neural network for wind speed forecasting at each site. Experiment II
was employed to compare the performances of the BP neural network when its parameters have been
optimized by different optimization algorithms. Experiment III analyzed the forecasting performance
offered by the proposed hybrid model in terms of multi-step ahead forecasting.

All the named algorithms were run on the platform 3.2 GHz CPU, 8.00 GB RAM, Windows 8,
MATLAB R2012a. These experiments all selected from six wind speed data sites, which were described
in Section 4.1. To evaluate the applicability, superiority, generality of the proposed novel combined
model, wind speed data with a 10 min period from three datasets in Penglai, on the Shandong
peninsula of China, were randomly assembled for multistep ahead forecasting (i.e., 1-step ahead,
2-step ahead, 3-step ahead). A large number of data points (2016) were selected from each dataset and
these observations were split into two subsets; the training set and the testing set. In this paper, the
experience proportion between the training and testing sets is 7:1. That is, the 1008 initial data points
act as the training sample and the remaining 144 data points act as the testing sample and are repeated
7 times. In other words, in each of the wind speed data sites, the first 1008 data points are used as
the training sample set and the next 1008 data points (from the 1009th to the 2016th) are used as the
testing set.

4.4. The Experiment Preparation: Data Preprocessing

In order to enhance the prediction precision of the wind speed forecasting model, a valid
mathematical data pre-processing module based on the theory of signal time-frequency localization
was adopted. In this study, the Daubechies wavelet filter of order 4 (db4) decomposed the wind
speed time series 7 levels and reconstituted the time series for each of the sites. For more detailed
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information about wavelet transforms and wavelet de-noising techniques, please refer to the research
by Authors [39–41].

4.5. Structure of the Proposed Forecasting Framework

At the beginning of this paper, fractal interpolation was used to estimate missing values of the
original wind speed time series. Then, the wavelet de-noising method was used to pre-process the
original time series. However, the wavelet de-noising need to select two parameters: the wavelet
function and the number of decomposition level. In this, the wavelet function is Daubechies and the
level is 7.

After the data pre-processing, the de-noised wind speed time series data was input into the
optimized neural network, in which the parameter of neural network were optimized by three different
optimization algorithms (APSO, ACO, APSOACO). The flowchart of the proposed model is shown in
Figure 1.

It is worth pointing out that the original wind speed time series is divided into a training set and a
testing set, which means the input data of the training data and testing data is de-noising data and the
output data of the training data and testing data is the original wind speed time series. The flowchart
of data structures of the forecasting models is shown in Figure 2.

For the Figure 2, N is the number of the training sample which is fixed according to the original
time series. For example, supposing a study the last 1008 points of the wind speed time series with
length of 2016 (N = 1008) will be forecasted.

It must be noting that there are multi-step ahead forecasting h = 1, 2, 3 of different wind speed
sites in this paper.

4.6. Experiment I: Selection of the Wind Speed Forecasting Model

There are some artificial intelligence algorithms, such as the BP NN, the Elman NN, WNN, GRNN,
ELM, that can be used to forecast the wind speed. The artificial intelligence forecasting models used
in different forecasting steps in this experiment and the flowchart of the experiment are shown in
Figure 2 and the experimental results follow in a later section.

To determine the number of neurons many experiments were conducted the best trial results were
selected [42,43]. In this experiment, the listing technique was used to determine the number of input
layers and hidden layers for the different ANN models [44]. From Figure 3 and Table 3, the following
conclusions were obtained:

(1) Table 3 shows the range of the input layer of each neural network is 3–8. With an increasing
number of hidden layers, the test accuracy is gradually improved. When the number of hidden
layers reaches a certain maximum number, the test accuracy is no longer improved.

(2) Figure 3B shows that with an increase in the number included in the training sample,
the fluctuation of testing accuracy reduces. For example, the confidence intervals obtained by the
MAPE of the BP neural network is narrower than in the other four kinds of neural networks.

From the above analysis, it can be seen that the best performance for all sites (shown in Figure 4)
among the five different neural networks is offered by the Back-propagation Neural Network.

Remark 1. Through the above-mentioned analysis, we discovered that it is hard to find the general
relationship between the nodes of the input layer and the hidden layer. Different time series have different
forecasting structures, which suggests that different time series need to construct different BP neural networks
structures. The best forecasting structure of the neural network is obtained by the enumeration method and
experimental results.
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Figure 2. The data structures of the forecasting process (the six wind speed time series were generated in the Shandong province. The actual data was pre-processed
by a wavelet de-noise. In the forecasting process, the training sample numbers 1008, the output sample numbers 144. The input data is the de-noised time series and
the output data is the actual time series).
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Figure 3. Forecasting performance by each neural network.
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Table 3. Forecasting result by different Artificial Neural Network and the best forecasting structure.

Forecasting Step One-Step Forecasting Two-Step Forecasting Three-Step Forecasting

Model Metric Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site1 Site 2 Site 3 Site 4 Site 5 Site 6

BPNN

Input 6 5 5 4 5 5 5 8 6 4 8 8 7 7 5 4 5 5
Hidden 14 18 16 17 15 14 15 13 14 15 17 14 15 16 12 14 19 12
MAE 0.4451 0.3798 0.3799 0.3817 0.3828 0.3851 0.3912 0.4360 0.4962 0.4303 0.4902 0.5915 0.5080 0.6535 0.5114 0.6485 0.5872 0.5746
MSE 0.3504 0.2315 0.2327 0.2356 0.2374 0.2418 0.3051 0.2858 0.3717 0.3469 0.2789 0.3249 0.3822 0.5174 0.3887 0.3962 0.4139 0.4504

MAPE 6.39% 6.08% 6.07% 6.09% 6.11% 6.14% 7.71% 8.56% 6.85% 7.21% 7.18% 7.80% 8.31% 9.16% 9.36% 10.51% 10.42% 10.93%

ELM

Input 5 6 3 3 6 7 7 8 3 5 4 7 7 3 3 4 6 7
Hidden 17 14 18 14 16 18 18 24 14 15 14 13 21 18 19 16 22 14
MAE 0.45 0.4927 0.4751 0.3966 0.4696 0.4952 0.4215 0.5302 0.5196 0.5486 0.4809 0.6023 0.5995 0.7258 0.752 0.7086 0.9431 0.8917
MSE 0.3661 0.4056 0.3583 0.2305 0.3787 0.477 0.3059 0.4283 0.4886 0.5111 0.3606 0.926 0.6654 0.9146 1.0531 0.9368 1.5351 1.4202

MAPE 6.81% 6.79% 9.18% 6.64% 6.88% 9.34% 7.07% 7.73% 9.66% 8.91% 7.45% 9.80% 10.04% 10.20% 13.50% 11.35% 13.60% 14.21%

Elman
NN

Input 8 3 6 5 3 5 8 6 6 3 8 6 7 4 5 6 7 3
Hidden 19 14 19 14 20 15 16 19 17 13 15 13 25 22 18 18 18 16
MAE 0.4907 0.6304 0.5416 0.4751 0.5313 0.5588 0.701 0.6651 0.8654 0.6358 0.6538 0.6746 0.7477 0.7442 1.0435 0.7758 0.9926 0.8299
MSE 0.4137 0.6411 0.5779 0.392 0.4807 0.5817 0.7878 0.7737 1.3138 0.7216 0.6604 0.8593 0.9062 0.9775 1.9776 1.1036 1.4048 1.2713

MAPE 7.99% 8.72% 9.88% 7.67% 7.98% 10.67% 9.72% 10.81% 15.14% 10.91% 9.69% 13.11% 10.26% 12.13% 18.05% 13.53% 14.62% 14.96%

GRNN

Input 3 7 4 6 3 6 4 4 5 3 8 8 6 6 7 7 6 5
Hidden 13 14 17 16 15 19 18 18 16 24 17 13 23 19 16 25 24 19
MAE 0.4609 0.5847 0.4332 0.4018 0.5263 0.7246 0.4726 0.713 0.6729 0.8537 0.8151 0.8687 0.7418 0.9813 0.9974 1.2723 0.9933 0.9972
MSE 0.3429 0.5522 0.287 0.2851 0.4496 0.9465 0.3791 0.9494 1.2302 1.3197 1.2783 1.3276 1.0239 1.6089 1.7512 2.74 1.6364 1.8682

MAPE 7.22% 8.87% 8.51% 7.35% 8.73% 14.05% 7.71% 9.57% 11.07% 12.51% 10.52% 16.83% 11.57% 12.95% 19.75% 17.68% 14.28% 18.17%

WNN

Input 4 6 7 7 5 3 7 5 4 5 3 3 6 6 4 4 5 4
Hidden 17 16 20 14 18 18 25 25 20 12 15 16 23 14 15 14 15 18
MAE 0.4521 0.514 0.5126 0.4652 0.489 0.4854 0.6458 0.7038 0.7323 0.6646 0.6708 0.6934 0.7772 0.8486 0.9113 0.8207 0.8252 0.8531
MSE 0.3821 0.4354 0.4842 0.3599 0.4219 0.4239 0.7797 0.8277 0.9881 0.7345 0.7729 0.865 1.1074 1.2171 1.4874 1.112 1.145 1.2837

MAPE 7.29% 7.58% 9.14% 7.83% 8.03% 9.30% 10.42% 9.70% 13.06% 11.18% 9.83% 13.29% 12.42% 11.60% 16.18% 13.86% 12.04% 16.34%



Sustainability 2018, 10, 1443 17 of 33

Figure 4. Best structure of BPNN for prediction result in each site.

4.7. Experiment II: Comparison of Three Optimization Algorithms to Fine-Tune the Parameters of
Hybrid Model

In order to evaluate the forecasting performance of the hybrid model optimized by three different
optimization algorithms (two traditional algorithms and APSOACO), three different optimization
algorithms are used to optimize the hidden layer and output layer weight matrix the neural network
and to optimize hidden layer and output layer parameter matrix. Two other measures (the Index
Agreement and Bias2) are also employed for model evaluation.
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The Index Agreement is a dimensionless index that measures the fitness of the model, ranging
from 0 (worst fitness) to 1 (best fitness) [45].

IA = 1− ∑T
i=1 (xi − x̂i)

2

∑T
i=1 (|xi − x̂i|+ |xi − x|)2

x̂i and xi are the forecasting and actual values of wind speed at time point i of the forecasting
horizon T, respectively. x is the mean of the actual values of the wind speed.

VAR(x̂) + Bias2(x̂) = E[x̂− E(x̂)]2 + [x− E(x̂)]2

xi is the actual data, x̂i is the forecasting data, E(x̂) = 1
N

N
∑

i=1
x̂i is the expectation value of the

forecasting data, x = 1
N

N
∑

i=1
xi is the expectation of the actual data. N is the number of the sample.

The bias-variance framework [46] is employed to evaluate the forecasting accuracy and stability of
the forecasting models. In this framework, the values of Bias2(x̂) and VAR(x̂) reflect the accuracy and
stability of the forecasting model, respectively.

10 min wind speed time series were generated from 5–18 January at each site. Figure 5 shows the
data structures of the forecasting models involved in this paper. For instance, the total sample size is
2016, data of the former seven days (sample size 1008) are the training sample. The remaining data
are the testing sample. The input of this proposed hybrid model is set as the de-noised wind speed
time series data, which is shown in Figure 2. This is achieved by employing the wavelet function
decomposed (the wavelet is Daubechies (db4) and the decomposition level is 7) to the wind speed
series. The final assessment of the 1-step ahead forecasting results is shown in Table 4.

Figure 5. Flowchart of three hybrid forecasting models.
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Table 4. The forecasting result of each site (1-step forecasting).

Forecasting Model Metric
Site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

WD-GRNN

MAE

0.3922 0.4123 0.4102 0.4220 0.4139 0.4193
WD-Elman 0.4039 0.4141 0.3913 0.3981 0.3948 0.4219
WD-BP 0.4022 0.3956 0.3896 0.4075 0.4045 0.4061
WD-WNN 0.4099 0.4112 0.4042 0.3936 0.4119 0.3903
WD-APSO-BP 0.3850 0.3886 0.4272 0.4470 0.3985 0.3818
WD-ACO-BP 0.3913 0.4123 0.4388 0.4904 0.4179 0.4025
WD-APSOACO-BP 0.3027 0.3129 0.3446 0.3535 0.3225 0.3108

WD-GRNN

MSE

0.2499 0.2603 0.3405 0.3870 0.2857 0.2811
WD-Elman 0.2573 0.2614 0.3248 0.3651 0.2725 0.2829
WD-BP 0.2562 0.2498 0.3234 0.3738 0.2791 0.2722
WD-WNN 0.2612 0.2596 0.3355 0.3610 0.2843 0.2617
WD-APSO-BP 0.2453 0.2431 0.3196 0.3531 0.2657 0.2581
WD-ACO-BP 0.2503 0.4520 0.3408 0.4159 0.3105 0.2972
WD-APSOACO-BP 0.1528 0.1618 0.2163 0.2239 0.1759 0.1753

WD-GRNN

MAPE

5.96% 5.39% 6.71% 6.85% 5.62% 6.97%
WD-Elman 6.13% 5.41% 6.40% 6.46% 5.36% 7.02%
WD-BP 6.11% 5.17% 6.37% 6.61% 5.49% 6.75%
WD-WNN 6.23% 5.37% 6.61% 6.39% 5.59% 6.49%
WD-APSO-BP 5.85% 5.03% 6.30% 6.25% 5.22% 6.40%
WD-ACO-BP 5.93% 5.28% 6.47% 6.88% 5.48% 6.72%
WD-APSOACO-BP 4.59% 4.05% 5.02% 4.89% 4.21% 5.23%

WD-GRNN

VAR(Y)

0.8028 1.0009 0.8492 1.2014 0.9451 0.8391
WD-Elman 0.8267 1.0051 0.8100 1.1335 0.9015 0.8444
WD-BP 0.8232 0.9604 0.8065 1.1604 0.9236 0.8127
WD-WNN 0.8390 0.9981 0.8367 1.1207 0.9406 0.7812
WD-APSO-BP 0.7881 0.9346 0.7970 1.0962 0.8791 0.7705
WD-ACO-BP 0.7654 1.1980 0.7964 1.0582 0.8832 0.8135
WD-APSOACO-BP 0.7101 0.9090 0.7217 0.9192 0.8009 0.7405

WD-GRNN

Bias2

1.5090 1.3165 1.3423 1.1463 1.2696 1.4001
WD-Elman 1.5538 1.3221 1.2803 1.0815 1.2110 1.4089
WD-BP 1.5473 1.2632 1.2748 1.1071 1.2406 1.3560
WD-WNN 1.5770 1.3129 1.3226 1.0693 1.2635 1.3034
WD-APSO-BP 1.4813 1.2293 1.2598 1.0459 1.1809 1.2856
WD-ACO-BP 1.4668 1.1780 1.2961 1.0065 1.2866 1.4229
WD-APSOACO-BP 1.4400 1.1852 1.2405 1.0029 1.1860 1.3891

WD-GRNN

IA

0.9443 0.8989 0.8875 0.8745 0.8878 0.8682
WD-Elman 0.9170 0.8951 0.9305 0.9269 0.9308 0.8628
WD-BP 0.9209 0.9368 0.9345 0.9054 0.9085 0.8965
WD-WNN 0.9035 0.9014 0.9007 0.9374 0.8921 0.9327
WD-APSO-BP 0.9398 0.9433 0.9196 0.9320 0.9299 0.9144
WD-ACO-BP 0.9372 0.8943 0.9177 0.9232 0.9165 0.9109
WD-APSOACO-BP 0.9619 0.9627 0.9456 0.9584 0.9545 0.9456

Note: Marked by bold is the best forecasting model.

(1) It is noted that ACO suffers from slow convergence with increasing iterations. If the APSO
algorithm falls into the local optimal points the capacity of the parameter optimization will be
affected. The APSOACO algorithm combines the global search abilities of ACO with the local
search capability of APSO, which significantly improves the parameter optimization ability of the
single optimization algorithm. The numerical experimentation results indicate that the proposed
hybrid model (WD-APSOACO-BP) outperforms the other hybrid models (WD-APSO-BP and
WD-ACO-BP) when compared with the MAE, MSE, MAPE, the variance of MAPE, IA from Site
1 to Site 6. As such, the MAPE values of the WD-APSOACO-BP are 4.592%, 4.045%, 5.021%,
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4.891%, 4.214%, 5.234%, corresponding to the Bias2 values which are 1.4400, 1.1852, 1.2405,
1.0029, 1.1860 and 1.3891 from Site 1 to Site 6, respectively. The WD-APSOACO-BP model can
obtain higher forecasting accuracy than two single hybrid models. However, the IA values are
0.9619, 0.9627, 0.9456, 0.9584, 0.9545, 0.9456 from Site 1 to Site 6, which demonstrates that the
WD-APSOACO-BP can achieve a better forecasting performance than the other hybrid models.
Thus, the WD-APSOACO-BP can precisely forecast the future changes of a wind speed time series.

(2) With regards to further analysis of the forecasting results in terms of each day (the testing sample
from Monday to Sunday), Table 5 and Figure 6A1–A4 clearly depict the forecasting values
for 0:10 a.m. to 24:00 p.m., from 12 to 18. Part A and B of Figure 6 demonstrate the MAPE
and IA from Site 1 to Site 6. The MAPE and IA of WD-APSOACO-BP are the minimum and
the maximum, respectively. Part A1 of Figure 6 demonstrates the forecasting results of three
different hybrid models and the actual wind speed series from 0:10 a.m. to 24:00 p.m., from 12 to
18 January 2014. Part A2 of Figure 6 demonstrates the 95% confidence intervals (CI) obtained by
the WD-APSOACO-BP model. It can be clearly seen that both the upper CI and the lower CI are
very close to the actual wind speed time series for Monday. Part A3 of Figure 6 is the Box-Plot of
the MAPE from 0:10 a.m. to 24:00 p.m., over the course of a week, from 12–18 January, for the
three hybrid models for Site 2. It can be seen that the performance of the WD-APSOACO-BP is
better than that of the other two hybrid models. In addition, A4 clearly displays the actual wind
speed time series compared with the forecasting results. It is obvious that the forecasting results
offered by the proposed WD-APSOACO-BP method are very approximate to the target.

Figure 6. The forecasting results of three methods for Site 2 (1-step forecasting).
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Table 5. The forecasting results of Site 2 (1-step forecasting).

Week Forecasting Model Evaluation Criteria Metric

MAE MSE MAPE VAR(Y) Bias2 IA

MON

WD-GRNN 0.4766 0.3352 7.05% 1.5263 3.9215 0.9158
WD-Elman 0.4806 0.3184 7.05% 1.4606 4.1074 0.9723
WD-BP 0.4463 0.3241 6.53% 1.5045 4.0609 0.8994
WD-WNN 0.4810 0.3325 7.05% 1.4128 4.1238 0.8925
WD-APSO-BP 0.4407 0.3153 6.43% 1.3930 3.7628 0.9758
WD-ACO-BP 0.4350 0.3243 6.20% 1.2926 3.5912 0.9748
WD-APSOACO-BP 0.3535 0.2156 5.14% 1.1289 3.5740 0.9833

Tue

WD-GRNN 0.5350 0.4052 4.71% 0.3503 1.1212 0.8379
WD-Elman 0.5395 0.3848 4.71% 0.3352 1.1743 0.8896
WD-BP 0.5010 0.3917 4.36% 0.3453 1.1611 0.8229
WD-WNN 0.5399 0.4019 4.71% 0.3242 1.1791 0.8166
WD-APSO-BP 0.4947 0.3811 4.29% 0.3197 1.0758 0.8928
WD-ACO-BP 0.4889 0.3662 4.24% 0.2824 1.0202 0.8902
WD-APSOACO-BP 0.4045 0.2567 3.49% 0.2770 0.9638 0.9302

Wed

WD-GRNN 0.3729 0.1864 5.97% 0.6996 0.0295 0.8681
WD-Elman 0.3760 0.1770 5.98% 0.6695 0.0309 0.9216
WD-BP 0.3492 0.1802 5.54% 0.6896 0.0305 0.8525
WD-WNN 0.3763 0.1849 5.98% 0.6475 0.0310 0.8460
WD-APSO-BP 0.3448 0.1753 5.45% 0.6385 0.0283 0.9250
WD-ACO-BP 0.3505 0.1828 5.54% 0.6142 0.0311 0.9209
WD-APSOACO-BP 0.2841 0.1193 4.51% 0.5835 0.0222 0.9504

Thu

WD-GRNN 0.4860 0.3579 5.35% 1.9743 1.2797 0.9029
WD-Elman 0.4901 0.3399 5.35% 1.8893 1.3403 0.9586
WD-BP 0.4551 0.3460 4.96% 1.9461 1.3252 0.8868
WD-WNN 0.4904 0.3550 5.36% 1.8274 1.3457 0.8799
WD-APSO-BP 0.4494 0.3366 4.88% 1.8019 1.2279 0.9621
WD-ACO-BP 0.4836 0.3774 5.24% 1.8477 1.1867 0.9576
WD-APSOACO-BP 0.3629 0.2237 3.90% 1.7010 1.1400 0.9754

Fri

WD-GRNN 0.3594 0.1792 6.41% 0.4739 0.2404 0.8513
WD-Elman 0.3624 0.1701 6.42% 0.4535 0.2518 0.9038
WD-BP 0.3365 0.1732 5.94% 0.4671 0.2489 0.8360
WD-WNN 0.3627 0.1777 6.42% 0.4386 0.2528 0.8296
WD-APSO-BP 0.3323 0.1685 5.85% 0.4325 0.2307 0.9071
WD-ACO-BP 0.3503 0.1930 6.08% 0.3757 0.2170 0.8904
WD-APSOACO-BP 0.2774 0.1195 4.84% 0.3301 0.2033 0.9355

Sat

WD-GRNN 0.3906 0.1894 5.27% 2.2004 0.3582 0.8230
WD-Elman 0.3939 0.1798 5.27% 2.1057 0.3752 0.8737
WD-BP 0.3658 0.1831 4.89% 2.1689 0.3709 0.8082
WD-WNN 0.3942 0.1878 5.28% 2.0367 0.3767 0.8020
WD-APSO-BP 0.3612 0.1781 4.81% 2.0082 0.3437 0.8769
WD-ACO-BP 0.4206 1.5319 5.30% 3.1669 0.0658 0.6492
WD-APSOACO-BP 0.2507 0.0977 3.33% 1.0815 0.2051 0.9764

Sun

WD-GRNN 0.3536 0.1659 4.30% 0.9602 2.1656 0.9213
WD-Elman 0.3566 0.1575 4.30% 0.9189 2.2683 0.9782
WD-BP 0.3312 0.1603 3.99% 0.9465 2.2426 0.9048
WD-WNN 0.3569 0.1645 4.30% 0.8888 2.2774 0.8979
WD-APSO-BP 0.3270 0.1560 3.92% 0.8763 2.0780 0.9817
WD-ACO-BP 0.3569 0.1884 4.38% 0.8564 2.2791 0.9770
WD-APSOACO-BP 0.2572 0.1001 3.11% 0.8115 1.9563 0.9878

Note: Marked by bold is the best forecasting model.

Remark 2. The above experimental analysis aimed to demonstrate whether the MAE, MSE, VAR(Y), MAPE,
Bias2 and IA of the proposed WD-APSOACO-BP hybrid model mean it manifests the best forecasting
performance. In brief, the proposed hybrid optimization algorithm has a better capacity for optimization
to find the optimum weights and thresholds for the Nonlinear BP Neural Network.
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4.8. Experiment III: Comparison Three Different Hybrid Models in Multi-Step Ahead Wind Speed Forecasting

To further verify the feasibility, performance, meliority of the proposed hybrid forecasting model,
the wind speed data from six sites are employed for establishing the proposed WD-APSOACO-BP
model. In addition, the proposed hybrid WD-APSOACO-BP model is compared with two other
forecasting models (WD-APSO-BP and WD-ACO-BP) for multi-step ahead wind speed forecasting.
The results are shown in Tables 6 and 7 and Figures 7 and 8. The index of agreement produced by the
proposed hybrid model for the 2-step and 3-step ahead wind speed forecasts of different sites is shown
in Part B of Figures 7 and 8.

Table 6. The forecasting result of each site (2-step forecasting).

Forecasting Model Metric
Site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

WD-GRNN

MAE

0.4743 0.4707 0.5043 0.5565 0.4999 0.4446
WD-Elman 0.4779 0.4493 0.493 0.5368 0.4972 0.4578
WD-BP 0.4772 0.4729 0.4955 0.5697 0.5156 0.4558
WD-WNN 0.4616 0.4431 0.5311 0.5221 0.517 0.4646
WD-APSO-BP 0.4442 0.4417 0.4907 0.5203 0.4789 0.4364
WD-ACO-BP 0.4631 0.4786 0.5249 0.5356 0.4879 0.4797
WD-APSOACO-BP 0.3664 0.349 0.3954 0.4127 0.3802 0.3472

WD-GRNN

MSE

0.3588 0.3625 0.4553 0.5006 0.423 0.3612
WD-Elman 0.3615 0.346 0.445 0.4829 0.4207 0.372
WD-BP 0.361 0.3642 0.4473 0.5126 0.4362 0.3704
WD-WNN 0.3492 0.3413 0.4795 0.4697 0.4374 0.3775
WD-APSO-BP 0.336 0.3402 0.443 0.4681 0.4052 0.3546
WD-ACO-BP 0.3617 0.4515 0.4927 0.4994 0.4073 0.4275
WD-APSOACO-BP 0.2309 0.2135 0.2894 0.3041 0.2547 0.2298

WD-GRNN

MAPE

0.0621 0.0707 0.075 0.0791 0.066 0.0746
WD-Elman 0.0626 0.0675 0.0733 0.0763 0.0656 0.0768
WD-BP 0.0625 0.071 0.0737 0.081 0.068 0.0765
WD-WNN 0.0605 0.0666 0.079 0.0742 0.0682 0.078
WD-APSO-BP 5.82% 6.63% 7.30% 7.39% 6.32% 7.33%
WD-ACO-BP 6.06% 7.34% 7.89% 7.56% 6.43% 7.99%
WD-APSOACO-BP 4.79% 5.25% 5.90% 5.87% 5.07% 5.79%

WD-GRNN

VAR(Y)

1.0272 0.8286 0.842 1.2089 0.9778 0.8358
WD-Elman 1.0348 0.7909 0.8231 1.1662 0.9724 0.8607
WD-BP 1.0334 0.8325 0.8273 1.2378 1.0084 0.8571
WD-WNN 0.9996 0.7801 0.8868 1.1343 1.0112 0.8735
WD-APSO-BP 0.9619 0.7776 0.8193 1.1304 0.9367 0.8205
WD-ACO-BP 0.9618 0.7818 0.8096 1.1296 0.8797 0.7911
WD-APSOACO-BP 0.9302 0.7766 0.7862 1.0212 0.8679 0.7844

WD-GRNN

Bias2

1.2105 1.4909 1.2759 1.0236 1.219 1.4092
WD-Elman 1.2195 1.4232 1.2472 0.9874 1.2124 1.451
WD-BP 1.2178 1.498 1.2536 1.048 1.2572 1.4449
WD-WNN 1.1781 1.4037 1.3437 0.9604 1.2607 1.4727
WD-APSO-BP 1.1336 1.3992 1.2415 0.9571 1.1678 1.3833
WD-ACO-BP 1.1436 1.408 1.1462 0.9694 1.145 1.3562
WD-APSOACO-BP 1.1183 1.3064 1.1245 0.9019 1.1295 1.3219

WD-GRNN

IA

0.8634 0.8592 0.8717 0.8458 0.8576 0.8828
WD-Elman 0.8571 0.9001 0.8917 0.8768 0.8623 0.8573
WD-BP 0.8582 0.8551 0.8872 0.8261 0.8315 0.8609
WD-WNN 0.8872 0.9126 0.8276 0.9015 0.8293 0.8447
WD-APSO-BP 0.922 0.9155 0.8958 0.9046 0.8952 0.8993
WD-ACO-BP 0.9149 0.8816 0.8782 0.8979 0.8924 0.8806
WD-APSOACO-BP 0.9456 0.9468 0.9301 0.9382 0.9299 0.9356

Note: Marked by bold is the best forecasting model

(1) Table 6 shows the forecasting performance for each site of the three different hybrid models in
2-step forecasting in terms of six criteria: MAE, MSE, MAPE, Bias2 VAR(Y), and IA. For 2-step
ahead forecasting, the proposed hybrid model outperforms the other hybrid models based on each
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of the evaluation criteria. For example, at Site 1, the proposed hybrid model provides a minimum
forecasting error with MAE, MSE, MAPE values of 0.3490, 0.2135 and 4.79%, respectively. The IA
and Bias2 achieved by this hybrid model are 0.9456 and 1.1183, respectively. Compared with the
2-step ahead forecasting achieved by the other hybrid models, the forecasting performance of the
proposed hybrid model is still superior.

(2) Table 7 aims to evaluate the forecasting accuracy and stability of the proposed hybrid model in
3-step forecasting. The criterion in terms of evaluating the accuracy is the minimum MAPE values
in the 1008 times experiments. This was selected to compare the accuracy of the three different
hybrid models. The Bias2 values of the 1008 times experiments are utilized for the stability test.
In terms of the accuracy testing, the WD-APSOACO-BP obtains a lower MAPE value than the
other hybrid models. The Bias2 values of the proposed hybrid model always remains the lowest
of the hybrid models. The proposed hybrid model obtains satisfactory forecasting stability and
accuracy. In terms of the value of MAPE, the proposed hybrid model has the lowest value of
MAPE among the three hybrid models. For 3-step forecasting at six sites, the proposed hybrid
model obtains the smallest values of Bias2 compared to the other two hybrid models.

Figure 7. The forecasting results of three methods for Site 1 (2-step forecasting).

Part A3 of Figures 7 and 8 shows the MAPE and box-whisker plot of MAPE for the hybrid models
of Site 3. For the 2-step and 3-step forecasting values, the proposed hybrid model obtains the lowest
MAPE value. The down arrow indicates the lowest value of MAPE in the figure. Part A3 also shows
that the performance of the hybrid model is better than that of the other two hybrid models. The MAPE
of each point for the hybrid model is not only smaller also has a small discrete degree. Part A2 shows
the 95% confidence intervals (CIs), which were obtained using the actual wind speed. The forecasting
value of WD-APSOACO-BP is closer to both the upper CI and the lower CI of the observed wind
speed time series. In addition, Part A.4 clearly displays the actual wind speed data compared with
the forecasting results for Site 3. The multi-step (2-step and 3-step) ahead forecast values from the
proposed hybrid model are closer to the target than those of multi-step (2-step and 3-step) ahead
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forecasting. The minimum criteria of MAE, MSE, MAPE are generated by the hybrid model of 2-step
and 3-step ahead forecasting from Site 3, respectively.

Table 7. The forecasting result of each site (3-step forecasting).

Forecasting Model Metric
Site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

WD-GRNN

MAE

0.5527 0.5564 0.6384 0.6555 0.7058 0.4943
WD-Elman 0.5550 0.5307 0.6023 0.6253 0.7103 0.4995
WD-BP 0.5303 0.5284 0.6166 0.6405 0.6836 0.5279
WD-WNN 0.5512 0.5482 0.5955 0.6523 0.6571 0.4994
WD-APSO-BP 0.5161 0.5222 0.5825 0.6097 0.6481 0.487
WD-ACO-BP 0.5246 0.5556 0.4497 0.6431 0.5677 0.5368
WD-APSOACO-BP 0.4071 0.4303 0.3898 0.4897 0.4514 0.3834

WD-GRNN

MSE

0.5101 0.5044 0.6909 0.6943 0.8677 0.4683
WD-Elman 0.5122 0.4811 0.6519 0.6623 0.8731 0.4733
WD-BP 0.4894 0.4790 0.6673 0.6785 0.8403 0.5002
WD-WNN 0.5087 0.4970 0.6445 0.6909 0.8077 0.4731
WD-APSO-BP 0.4763 0.4734 0.6304 0.6458 0.7967 0.4614
WD-ACO-BP 0.4839 0.5309 0.3535 0.7079 0.5793 0.5746
WD-APSOACO-BP 0.2972 0.3322 0.293 0.4373 0.3637 0.2874

WD-GRNN

MAPE

8.39% 7.33% 9.56% 9.34% 9.38% 8.34%
WD-Elman 8.42% 6.99% 9.02% 8.91% 9.44% 8.43%
WD-BP 8.05% 6.96% 9.23% 9.13% 9.08% 8.91%
WD-WNN 8.36% 7.22% 8.92% 9.30% 8.73% 8.43%
WD-APSO-BP 7.83% 6.88% 8.72% 8.69% 8.61% 8.22%
WD-ACO-BP 7.97% 7.31% 6.67% 9.23% 7.53% 9.02%
WD-APSOACO-BP 6.15% 5.71% 5.86% 6.99% 6.03% 6.43%

WD-GRNN

VAR(Y)

0.8324 1.0422 0.8965 1.0480 0.9661 0.8162
WD-Elman 0.8360 0.9940 0.8458 0.9997 0.9722 0.8249
WD-BP 0.7988 0.9897 0.8659 1.0241 0.9356 0.8718
WD-WNN 0.8301 1.0268 0.8363 1.0429 0.8994 0.8246
WD-APSO-BP 0.7773 0.9781 0.818 0.9748 0.8871 0.8042
WD-ACO-BP 0.7717 0.9787 0.8148 1.0174 0.9378 0.84
WD-APSOACO-BP 0.7328 0.942 0.803 0.9226 0.7839 0.7756

WD-GRNN

Bias2

1.3907 1.1006 1.4068 0.9545 1.1869 1.4039
WD-Elman 1.3966 1.0497 1.3273 0.9104 1.1943 1.4188
WD-BP 1.3344 1.0452 1.3587 0.9327 1.1494 1.4995
WD-WNN 1.3869 1.0844 1.3123 0.9499 1.1049 1.4184
WD-APSO-BP 1.2986 1.0329 1.2836 0.8878 1.0898 1.3832
WD-ACO-BP 1.3632 1.0703 1.0656 0.9325 1.1069 1.5875
WD-APSOACO-BP 1.2857 1.0043 1.0558 0.8645 1.0612 1.2428

WD-GRNN

IA

0.8227 0.8324 0.7818 0.7424 0.7524 0.8607
WD-Elman 0.8193 0.8727 0.8286 0.7783 0.7477 0.8517
WD-BP 0.8574 0.8765 0.8094 0.7598 0.7769 0.8059
WD-WNN 0.8250 0.8448 0.8380 0.7460 0.8082 0.8519
WD-APSO-BP 0.8811 0.8869 0.8568 0.7982 0.8194 0.8736
WD-ACO-BP 0.8734 0.8729 0.8973 0.8533 0.8514 0.8431
WD-APSOACO-BP 0.9268 0.9227 0.8993 0.907 0.9055 0.9207

Note: Marked by bold is the best forecasting model

Remark 3. From the above analysis, the best performance among the three-different hybrid forecasting models for
each site is obtained by the proposed hybrid model. The proposed hybrid model provided a satisfactory forecasting
performance between the WD-APSO-BP and WD-ACO-BP for 10 min wind speed multi-step forecasting.
The numerical experimentation results showed that more features of the actual wind speed fluctuations can be
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obtained by the proposed hybrid model, which shows a satisfactory wind speed forecasting performance at six
wind farm sites.

Figure 8. The forecasting results of three methods for Site 3 (3-step forecasting).

5. Discussion

In this section, the forecasting accuracy (as a reflection of the forecasting performance),
the forecasting results stability of the three different hybrid models are discussed. Furthermore,
the performance of each optimization algorithm is presented and discussed.

5.1. Discussion the Forecasting Accuracy of the Model

At present, the establishment of the hybrid model is mostly based on the minimum mean absolute
error, mean square error, mean absolute percentage error. Such criteria and assumptions cannot be
well reflected in the validity of the forecasting method. Thus, the feasibility and validity of the hybrid
model are verified by two-order forecasting validity. Forecasting validity is defined as follows:

The actual value is set as {xt,t = 1, 2, . . . , N}. m kinds of models are now used to forecast; xit is the
forecast value in the ith forecasting method at the jth time point (i = 1, 2, . . . , m, t = 1, 2, . . . , N); eit is the
error in the ith forecasting method at the jth time points; and Ait = 1 − |eit| is the forecasting accuracy
of the ith forecasting method at the jth time point. The formula for two-order forecasting validity is
M = E(A)(1 − σ(A)), where E(A) represents the mathematical expectation of the forecasting accuracy of
the hybrid forecasting method, σ(A) represents the standard deviation of the prediction accuracy of
the hybrid forecasting method. M is the forecasting validity. If the value of the forecasting validity is
close to 1, that forecasting model is better. Table 8 indicates that the forecasting availabilities offered by
the proposed hybrid model outperform those of the other models for all six sites in multi-step ahead
wind speed forecasting.
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Table 8. Forecasting validity of each forecasting model.

Forecasting
STEP

Forecasting Model Site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

1-step
forecasting

ARIMA 0.8022 0.8037 0.8057 0.8099 0.7317 0.8054
ARMA 0.7959 0.8314 0.8007 0.8025 0.7807 0.8046
ES(2) 0.831 0.8994 0.8392 0.8337 0.7934 0.8287

ES 0.7887 0.7888 0.7941 0.794 0.7253 0.7839
GRNN 0.8115 0.80824 0.8156 0.8174 0.8092 0.8062
WNN 0.9232 0.91915 0.9311 0.9319 0.9161 0.9271
BPNN 0.9209 0.91369 0.9226 0.9257 0.9168 0.923

ElmanNN 0.9261 0.91978 0.9284 0.9265 0.9223 0.9202
WD-APSO-BP 0.9604 0.9702 0.9645 0.9681 0.9969 0.9932
WD-ACO-BP 0.9572 0.9645 0.9587 0.9619 0.994 0.9871

WD-APSOACO-BP 0.9631 0.9681 0.9668 0.9711 0.9916 0.9886

2-step
forecasting

ARIMA 0.8056 0.8181 0.8114 0.7424 0.8026 0.795
ARMA 0.8058 0.8077 0.8292 0.8127 0.802 0.7903
ES(2) 0.8059 0.8343 0.8389 0.8009 0.8031 0.7987

ES 0.7279 0.7345 0.7988 0.7279 0.7248 0.7251
GRNN 0.8088 0.8267 0.8108 0.8111 0.8062 0.8059
WNN 0.9239 0.995 0.9298 0.9325 0.9265 0.9229
BPNN 0.9227 0.9583 0.9318 0.9229 0.9159 0.9219

ElmanNN 0.9279 0.9619 0.9317 0.9322 0.9213 0.9251
WD-APSO-BP 0.9607 0.9667 0.9703 0.9675 0.9657 0.989
WD-ACO-BP 0.9592 0.963 0.9596 0.9642 0.9633 0.9784

WD-APSOACO-BP 0.9629 0.9687 0.9654 0.9758 0.9888 0.9868

3-step
forecasting

ARIMA 0.7356 0.8041 0.8108 0.8126 0.7947 0.73
ARMA 0.7819 0.7238 0.8058 0.806 0.7902 0.7776
ES(2) 0.7936 0.8349 0.8139 0.8096 0.8287 0.789

ES 0.7278 0.7938 0.7313 0.733 0.7811 0.7246
GRNN 0.8087 0.81331 0.8166 0.816 0.8015 0.8038
WNN 0.9271 0.96123 0.9292 0.9315 0.9161 0.9199
BPNN 0.9246 0.93695 0.9282 0.9315 0.9152 0.9144

ElmanNN 0.9221 0.99082 0.925 0.9246 0.9261 0.9215
WD-APSO-BP 0.9624 0.9639 0.9631 0.9631 0.9927 0.9823
WD-ACO-BP 0.9515 0.9601 0.9589 0.9593 0.9874 0.9657

WD-APSOACO-BP 0.9645 0.9718 0.9663 0.9687 0.9805 0.9756

Note: Marked by bold is the best forecasting model

Remark 4. The two-order validity of the forecasting model, which possesses the characteristics of high
computational efficiency and less forecasting error, not only utilizes an approximate solution but also integrates
a variety of forecasting methods and thus provides a more reliable index of forecasting validity.

5.2. Verification Stability of Forecasting Results

The population stability index (PSI) is the most commonly used model stability evaluation index.
The formula of the population stability index is as follows:

PSI = ∑(Actual%− Expected%)× In(
Actual%

Expected%
)

The expected proportion (Expected%) and the actual proportion (Actual%) represent the
forecasting sample and the actual sample of the model, respectively. Generally speaking, the population
stability index is less than 0.1, which represents high stability of the model. If the population stability
index is greater than 0.1 and less than 0.25 the model stability is moderate, and if the population
stability index is greater than 0.25 the model stability is poor. The definition of the PSI guidelines is
shown in Table 9.
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Table 9. The definition of population stability index (PSI) Value guidelines.

PSI Value Inference Stability

Less than 0.1 Insignificant change The model has high stability
0.1—0.25 Some minor change The model stability is moderate

Greater than 0.25 Major change The stability of the model is poor

In Table 10 and Figure 9, by comparing the WD-APSOACO-BP with two other hybrid models,
we conclude that the proposed hybrid model has the most stable forecasting results. In addition, as the
number of forecasting steps increases, the PSI becomes larger.

Table 10. The stability of forecasting by each model in different forecasting horizons.

Sites
Stability (PSI) of 1-Step

Forecasting
Stability (PSI) of 2-Step

Forecasting
Stability (PSI) of 3-Step

Forecasting

ACO APSO APSOACO ACO APSO APSOACO ACO APSO APSOACO

Site 1 0.0190 0.0284 0.0125 0.0210 0.0397 0.0224 0.0373 0.0708 0.0256
Site 2 0.0207 0.0379 0.0192 0.0477 0.0306 0.0206 0.0551 0.0306 0.0218
Site 3 0.0287 0.0185 0.0166 0.0611 0.0488 0.0191 0.0307 0.0550 0.0252
Site 4 0.0059 0.0086 0.0019 0.0137 0.0253 0.0112 0.0253 0.0272 0.0192
Site 5 0.0536 0.0507 0.0629 0.0907 0.0795 0.0568 0.0973 0.0937 0.0511
Site 6 0.0283 0.0316 0.0232 0.0333 0.0314 0.0223 0.0495 0.0449 0.0208

Figure 9. PSI values of different models.

Table 11 and Figure 10 show the individual calculations of the PSI for each bin. The percentage of
the observations which lie in each bin are shown for both the forecasting value and the actual datasets.
The PSI column shows the calculated PSI for each bin, using the formula from above. Using the
guidelines as defined in Table 9, the value of the proposed hybrid forecasting model is much less than
0.1, indicating a minimal shift in the population between the actual data and the forecasting values.
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Table 11. The PSI of forecasting by each model in different forecasting step in Site 1.

Stability of One Step Forecasting

BinEdges Actual (%) Expected of
ACO (%)

PSI of
ACO

Expected of
APSO (%)

PSI of
APSO

Expected of
APSOACO (%)

PSI of
APSOACO

[3, 4.1] 3.17% 2.08% 0.004597 1.49% 0.012778 2.58% 0.001236
[4.1, 5.2] 20.44% 21.63% 0.000674 23.02% 0.003066 22.02% 0.001187
[5.2, 6.3] 23.02% 22.72% 3.87E-05 21.92% 0.00053 21.73% 0.000744
[6.3, 7.4] 16.96% 18.95% 0.002195 18.95% 0.002195 18.85% 0.001986
[7.4, 8.5] 9.13% 7.14% 0.004864 8.33% 0.000722 8.04% 0.00139
[8.5, 9.6] 9.03% 9.33% 9.65E-05 7.44% 0.003069 8.13% 0.00093

[9.6, 10.7] 6.35% 5.95% 0.000256 6.25% 1.56E-05 5.95% 0.000256
[10.7, 11.8] 7.34% 8.43% 0.001512 9.23% 0.004308 9.13% 0.003888
[11.8, 12.9] 4.17% 3.67% 0.000629 3.37% 0.001677 3.57% 0.000918
[12.9, 14] 0.40% 0.10% 0.004126 0.00% 0.00% 0.00% 0

PSI = 0.018987 PSI = 0.028361 PSI = 0.012534

Stability of two step forecasting

BinEdges Actual (%) Expected of
ACO (%)

PSI of
ACO

Expected of
APSO (%)

PSI of
APSO

Expected of
APSOACO (%)

PSI of
APSOACO

[3, 4.1] 3.17% 2.68% 0.000843 1.19% 0.019398 2.28% 0.002949
[4.1, 5.2] 20.44% 20.24% 1.94E-05 19.48% 0.000455 22.12% 0.001337
[5.2, 6.3] 23.02% 23.51% 0.000106 24.95% 0.001561 22.12% 0.000353
[6.3, 7.4] 16.96% 19.25% 0.002879 19.18% 0.002732 19.05% 0.002413
[7.4, 8.5] 9.13% 8.53% 0.000401 9.34% 5.1E-05 8.53% 0.000401
[8.5, 9.6] 9.03% 7.74% 0.001988 7.16% 0.004344 7.74% 0.001988

[9.6, 10.7] 6.35% 5.75% 0.000586 5.77% 0.000563 5.36% 0.001686
[10.7, 11.8] 7.34% 9.13% 0.003888 9.84% 0.007325 9.82% 0.007219
[11.8, 12.9] 4.17% 3.08% 0.003314 3.08% 0.003274 2.98% 0.004006
[12.9, 14] 0.40% 0.10% 0 0.00% 0 0.00% 0

PSI = 0.014025 PSI = 0.039704 PSI = 0.022352

Stability of three step forecasting

BinEdges Actual (%) Expected of
ACO (%)

PSI of
ACO

Expected of
APSO (%)

PSI of
APSO

Expected of
APSOACO (%)

PSI of
APSOACO

[3, 4.1] 3.17% 1.79% 0.007991 0.50% 0.049722 2.48% 0.001714
[4.1, 5.2] 20.44% 22.12% 0.001337 20.93% 0.000119 20.54% 4.8E-06
[5.2, 6.3] 23.02% 21.53% 0.000995 24.40% 0.000814 22.92% 4.29E-06
[6.3, 7.4] 16.96% 20.24% 0.005777 19.74% 0.004212 19.44% 0.003384
[7.4, 8.5] 9.13% 10.71% 0.002545 7.84% 0.001965 8.83% 9.87E-05
[8.5, 9.6] 9.03% 5.75% 0.014746 7.34% 0.003488 7.94% 0.001406

[9.6, 10.7] 6.35% 5.26% 0.002058 6.94% 0.000533 5.56% 0.00106
[10.7, 11.8] 7.34% 8.53% 0.001789 9.42% 0.005204 9.62% 0.006175
[11.8, 12.9] 4.17% 4.07% 2.39E-05 2.88% 0.004777 2.58% 0.007612
[12.9, 14] 0.40% 0.00% 0 0.00% 0 0.10% 0.004126

PSI = 0.037262 PSI = 0.070834 PSI = 0.025586

Remark 5. From comparisons among the three hybrid forecasting models, it can be seen that the PSI value of the
proposed hybrid model is lower than that of the others. It can be concluded that the proposed hybrid model can
achieve the most stable forecasting results. In addition, as the number of forecasting steps increases, the stability
of the forecasting results decreases.

Figure 10. The expect (%) and actual (%) by each hybrid model.
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5.3. Analysis of the Optimization Performance of Hybrid Optimization Algorithm

A large number of simulation experiments were undertaken for the selection of the parameters of
α, β, ρ in the proposed hybrid optimization algorithm. The parameters of the ant colony optimization
algorithm optimized by the adaptive particle swarm optimization algorithm are significantly different
in terms of forecasting accuracy (as shown in Figure 11). The performance of the hybrid wind speed
forecasting model is positively affected by the parameters in the hybrid APSOACO algorithm, which
are as follows:

(1) The inspired factor has large influence on the optimization performance and convergence of
the algorithm in the hybrid APSOACO optimization. When the inspired factor is α ∈ [1.0, 4.0],
the performance of the algorithm is better.

(2) The expectation inspired factor of the APSOACO algorithm has notable influence on the
performance of the algorithm and the convergence speed of the algorithm. When the expectation
inspired factor is β ∈ [3.0, 5.0], the performance of the algorithm is better.

(3) The pheromone volatilization factor of the APSOACO algorithm affects the convergence of
the algorithm. 1 − ρ is a residual factor, and when ρ ≈ 1–0.5 (i.e., p ≈ 0.5), the stability and
performance of the algorithm is maximized. For example, in Table 12, the application of the
adaptive particle swarm optimization algorithm is employed to obtain the three parameters
α = 1.031792, β = 4.483219, ρ = 0.491852, and these values are fed back to the parameters of the
ant colony optimization algorithm. Then, the neural network is optimized for Site 1.

Figure 11. The performance of three different optimization algorithms.

Table 12. The optimal parameter of hybrid optimization algorithm and the optimal solution for
each Site.

Sites Inspired
Factor: α

Expectation
Inspired Factor: β

Pheromone
Volatilization Factor: ρ

Optimal
Solution

Operation
Time

Site 1 1.031792 4.483219 0.491852 10.23075 79.92981
Site 2 1.094882 4.732991 0.502478 7.876175 70.2076
Site 3 1.103479 4.325773 0.47952 16.56985 70.57872
Site 4 3.49668 4.759632 0.485673 9.26648 71.67526
Site 5 1.009887 4.298647 0.496773 7.5706 72.82799
Site 6 3.206893 4.978935 0.47955 7.513742 74.70964
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Remark 6. Through a large number of simulation experiments, the parameters of the different forecasting
models are solved by the hybrid optimization algorithm. This shows that the new optimization algorithm has
a higher optimization performance. It is also shown that the hybrid optimization has the ability to adaptively
adjust the parameters and obtain the approximate optimal solution of the forecasting problem.

6. Conclusions

Accurate wind speed forecasting not only plays an important role in the efficient and safe
integration of wind energy into the power system, but also has benefits for the environment, economics,
and social development. However, frequent fluctuations, autocorrelation, and stochastic volatility in
wind speed make it difficult to obtain a satisfactory forecasting performance. In this study, a hybrid
WD-APSOACO-BP model for multi-step ahead short-term wind speed forecasting is presented to
overcome these problems. A data pre-processing module is exploited to eliminate the stochastic
volatility and fully extract the main features of wind speed by removing small fluctuations and
retaining only useful information, as well as creating conditions for improvement of the forecasting
accuracy. A hybrid APSOACO algorithm which avoids the limitations caused by subjective setting
parameters is utilized to tune and optimize the parameters of the BP neural network in the optimization
module. Then, a set of high quality parameters is calculated and applied to optimize the parameters
of the BP neural network in the forecasting module. In the evaluation module, experiments from
six wind speed data sites in China clearly indicate that the proposed hybrid model is superior to the
other alternative models that were explored in this paper. In addition to single-step ahead forecasting,
multi-step ahead wind speed forecasting is also adopted and discussed in this paper. The obtained
testing results with respect to different forecasting horizons suggest that the developed hybrid wind
speed forecasting approach based on the BP neural network integrated with the APSOACO algorithm
has the ability to yield satisfactory wind speed forecasting accuracy.
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Nomenclature

RESs renewable energy sources
GWEC global wind energy council
ARMA auto regressive moving average
ARIMA auto regressive integrated moving average
GARCH generalized autoregressive conditional heteroscedasticity
ANN artificial neural networks
BP back propagation
GRNN general regression neural network
RBFNN radial basis function neural network
DBN deep belief network
EEMD ensemble empirical mode decomposition
GA genetic algorithm
EMD empirical mode decomposition
SVR support vector machine
IMF intrinsic mode function
WPD wavelet packet decomposition
COA crisscross optimization algorithm
ELM extreme learning machine
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HBSA hybrid backtracking search algorithm
WD wavelet de-noising
ACO ant colony optimization
ACO ant colony optimization
APSO adaptive particle swarm optimization

APSOACO
a modified adaptive particle swarm optimization algorithm based ant colony
optimization algorithm

WTT wavelet transforms technique
CWT continuous wavelet transforms
DWT discrete wavelet transforms
IFS iterated function system
RM rolling mechanism
AE average error
MAE mean absolute error
MAPE mean absolute percentage error
BPNN back propagation neural network
Elman NN Elman neural network
WNN wavelet neural network
ES exponential smoothing
dbN N-order Daubechies wavelet
IA Index Agreement
CI confidence interval
PSI population stability index
ELM extreme learning machine
ACO ant colony optimization
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