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Abstract: This paper develops a model to analyze inter-organizational technology adoption in
a supply chain. While the basic model is general, this study is motivated by several cases of
inter-organizational technology adoption in supply chains. The proposed model in this study
considers firms on both levels of the supply chain, namely, supplier firms and buyer firms.
These individual firms’ thresholds for adoption should be considered by other firms’ decisions
within a network, together with their own organizational attributes. The heterogeneity across the
population should be allowed. That is, individual firms make a decision for adopting the technology
at different times due to their different network sizes, prior beliefs, and amounts of information
observed. The main finding is that this uncertainty decreases as other suppliers adopt the technology,
and information about their experiences becomes available. In addition, at any given time, an estimate
of the benefit to a supplier depends on the number of supplier firms and on the number of buyer
firms that have already adopted the technology. Thus, we seek to capture this dependence and
analyze its effect on the adoption of a new inter-organizational technology. The next step is to
embed the firm-level adoption model into a population model. The model includes various types
of heterogeneity in the population model to capture the factors affecting the speed of diffusion.
This allows us to derive an adoption curve that is specified by the accumulated fraction of firms
that have adopted the technology in or before any given period. The population model allows us
to consider the effect of several strategies observed in practice and numerical experiments yielding
many managerial implications in this area.

Keywords: inter-organizational technology; technology diffusion; sustainable supply chain;
network effect; dynamic model

1. Introduction

Firms need to answer the following questions before deciding whether to adopt a new technology
or innovation. Should the firm adopt the new technology now? Should the firm wait to see how others
do or wait for a different advanced technology? Will the benefits of the technology outweigh the costs?
As consumers, we face similar decisions with uncertainty while purchasing a new product. In this
study, we develop a model that can be used to analyze inter-organizational technology adoption in a
supply chain. While the basic model is general, we consider the case of radio frequency identification
(RFID) adoption in supply chains. Industry experience with RFID adoption shows that some firms,
especially on the supply side in the retail industry, experience significant uncertainty while estimating
the benefits of a new technology, which influences the adoption rate of the technology in an industry.
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However, this uncertainty may decrease as other firms adopt the technology, and information about
their experiences becomes available. As more firms adopt the technology, the information they provide
reduces the uncertainty related to the adoption benefits via network effects [1]. Particularly in the
case of inter-organizational technology, the benefit to a supplier as a result of adopting a technology
is dependent on the number of buyers who have already done so, because such technologies can
yield coordination benefits with trading partners through network effects. Therefore, this study
contributes to the area of technology adoption and sustainable diffusion in supply chains with multiple
levels. In particular, today’s manufacturing companies are not striving for individual capacities, but
to achieve supply chain collaboration for effectively working with sustainability efforts like green
supply chains [2]. Such collaborative governance in supply chains plays a critical role in guiding the
whole chain to achieve its strategic goals. Wang and Ran [3] argued that such a governance framework
extends the understanding and practice of sustainable supply chain management by focusing on its
dynamic, elastic, holistic, uncertainty-handling, and future-oriented characteristics.

Here, we focus particularly on why firms adopt such technology at different times, and examine
which factors affect a firm’s adoption decision and influence the speed of diffusion within a supply
chain. We first focus on an individual supplier firm’s adoption decision in a finite-horizon model.
In this case, the firm is risk-averse. We specify a per-period utility function for the firm, and the
cost of adoption is modeled as a one-time fixed cost. At the end of each period, the firm observes
an information signal that is generated based on the number of other suppliers that adopted the
technology in the previous period. Each of these other suppliers realizes a benefit from its true
distribution. Then, the firm uses this signal to develop a posterior distribution of the benefit. We model
the firm’s adoption decision as a dynamic program. The state space in each period includes the firm’s
prior belief distribution, which depends on the number of suppliers and buyers that have already
adopted the technology. As more firms adopt, the information they provide reduces the uncertainty
about the benefits of adoption. The action space includes adoption or non-adoption in this period.
Then, using a discount factor, we specify a finite-horizon dynamic formulation.

In the next step, we embed the firm-level adoption model into a population model. Here, we
include various types of population heterogeneity in order to capture the factors affecting the speed of
diffusion. This allows us to derive an adoption curve that is specified by the accumulated fraction of
firms that have adopted the technology in or before any given period. Ramon et al. [4] argue that the
characteristics of information sharing have different impacts on value, depending on the role played
in the relationship in supply chains, and then this leads to a diffusion process by different points of
adoption time across a population. Using numerical experiments, we show how to compare any two
adoption curves such that one denotes faster adoption than the other. The population model allows us
to consider the effect of various strategies observed in practice, and the numerical experiments yield
several managerial implications.

2. Literature Review

Our model follows and contributes to a stream of literature on technology adoption. Prior studies
have shown that adoption decision rules are determined through an information-updating process
related to the uncertain benefits of the new technology. Here, the Bayesian approach has been
employed in many models to conceptualize this information integration process. Oren and Schwartz [5]
show that consumers are Bayesian in that they update their uncertainties by combining observed
outcomes with their prior uncertainty through beta-Bernoulli updating. The authors also consider
that consumers adopt a technology once they pass a risk aversion threshold. McCardle considers the
technology adoption decision of a firm using dynamic modeling, where, in each period, information
can be purchased to update the estimate of the adoption benefit [6]. He finds that a firm updates
its distribution of its belief after collecting information, which it incorporates in a Bayesian fashion.
Ulu and Smith [7] recently extended this model to consider general probability distributions of benefits
and general information signals using dynamic modeling. Chatterjee and Eliashberg [8] present a
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model that explicitly captures the effect of uncertainty on a firm’s utility and aggregate individual
firms’ decisions to produce a diffusion curve. They apply Bayesian updating for the potential adopter’s
perception of the innovation as one unit of new information is received, and introduce a stochastic
element to the diffusion process. However, the earlier work of Eliashberg and Chatterjee [9] includes
a more comprehensive treatment of stochastic models in diffusion. Such models assumed that the
firm’s adoption decision is primarily associated with its own attributes. In a network perspective,
however, Angst et al. [10] argue that the firm’s adoption is largely influenced by others’ adoption
decisions within a given network. Therefore, the individual firms’ thresholds for adoption should
be considered by other firms’ decisions within a network together with their own organizational
attributes. In another related work, Whang [11] considers the timing of adopting RFID technology in a
supply chain. However, none of these studies consider the effect of other adoptees on the availability
of information signals. The impact of buyers’ adoption decisions on suppliers’ benefits is also new to
this literature.

Most adoption models assume that all potential adopters receive an identical quantity and quality
of information from previous adopters in a population. In this case, a firm’s beliefs are driven primarily
by the attributes of individuals. For example, firms are relatively likely to adopt a technology based on
their attitude to risk. That is, firms with a low level of risk aversion are willing to adopt early, while
those with a high level will tend to wait. Given this background, we model a dynamic adoption process
based on a scale of risk aversion when firm types are drawn from a commonly known distribution.
At the beginning of each period, the number of adopters in both population groups is commonly
known. In order to track this adoption process, we show that the equilibrium is characterized by
a cutoff level for potential adopters on a scale of risk aversion. Our main result is that there exists
a unique cutoff level in each period. That is, there is only one non-adopter in the last period, after
which the cutoff level in the next period is determined by his adoption condition. Then, when a
certain number of potential adopters exist in a period, the cutoff level below which these potential
adopters remain in some period is also determined uniquely. We prove this argument by backward
induction. The result means that the attractiveness of adoption in the current period is monotonic in the
cutoff type of the current period, and thus, the remaining firm is determined uniquely. The induction
argument determines the cutoff levels back to when all firms are present in the first period, which
enables us to derive the dynamics of the distribution of the thresholds in order to determine the shape
of the adoption curve over time.

The remainder of the paper proceeds as follows. In the next section, we model an individual
firm’s adoption decision as a dynamic program. Then, in Section 4, the individual firm’s adoption
model is included in a population model to capture the diffusion process in the population, after which
we discuss the analytical results. In Section 5, we consider several important managerial implications
by numerical experiments, and in Section 6, we conclude the paper.

3. Models

We consider an individual firm’s adoption decision on two levels in a supply chain: suppliers
and buyers. The two population groups have a finite number of firms: N suppliers and M buyers.
We first focus on an individual supplier firm’s adoption decision, where there are N risk-averse firms
in the supplier population. The buyers’ adoption processes are given exogenously in a period, and are
commonly known. There is a finite number if periods t = 1, 2, . . . , T. At the beginning of each period t,
there are nt−1 firms who have already adopted prior to the beginning of period t. Then, the remaining
firms need to decide whether to adopt in period t or not, while the previous adopters enjoy a benefit
based on the network size in every future period.

We first model the individual supplier’s per-period benefit of adopting the technology. The firm’s
benefit in period t is given by

Bt = mt pt, (1)
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where mt is the number of buyers who have already adopted prior to period t, which is determined
exogenously (the total per-period benefit for the firm is linear in the number of its buyers that have
already adopted the technology), and pt is the firm’s belief about the benefit in period t. The firm’s
prior belief about the per-period benefit of adopting the technology follows a normal distribution with
an unknown mean µt and a known variance s2

t .
Next, we consider the potential adopter’s risk aversion using the following per-period utility

function when the firm adopts in time period t [4]:

u(pt) = 1− e−amt pt , (2)

where a is the firm’s type on the scale of risk aversion, [0, 1]. This per-period utility function increases
in the coefficient of risk aversion (a), the number of buyers who have already adopted (m), and the
firm’s belief about the adoption benefit (p). The curve of the per-period utility is a non-decreasing
concave function for all parameters. The per-period expected utility is expressed as follows:

Ut = E[ut] = 1− e−amtµt+[a2m2
t (σ

2+s2
t )/2] (3)

From the above, we can see that the per-period expected utility increases as µ increases and/or as
s2 decreases. In our model, the firm’s belief is updated by the information flow, which is determined
by prior adopters. That is, the variance s2 decreases as more potential adopters join a network, after
which U increases. Several studies have examined the effect of risk aversion on technology adoption.
Tsur et al. [12] found that risk aversion positively affects adoption. This is because risk-averse firms
do not want to take the risk of not trying the innovation. If this is indeed the case, then risk aversion
positively affects adoption. That is, the greater a firm’s aversion to risk, the greater is its incentive to
adopt a new inter-organizational technology.

3.1. Two-Period Model

We first derive a two-period adoption model as a finite-horizon dynamic formulation by backward
induction. The state space in each period includes the firm’s prior belief distribution, which depends
on the number of suppliers and buyers that have already adopted the technology. As more firms adopt,
the information they provide reduces the uncertainty about the benefits of adoption. The action space
includes adoption or non-adoption in each period. We assume that the cost of adoption K is a one-time
fixed cost.

The value of adoption in the last period T, VAT , is given by

VAT = UT − K + δVT , (4)

where UT = 1− e−amTµT+[a2m2
T(s

2
T+σ2)/2]. The firm’s belief is updated using information provided

by prior adopters using a Bayesian updating process [13]. Continuing on from the previous period,
the firm has a belief about the unknown mean of the per-period benefit, which is normally distributed
with mean µT−1 and variance s2

T−1. The firm observes that qT−1 firms adopted the technology in
the previous period T − 1 and that their benefit observations X1, . . . , XqT−1 are drawn from a normal
distribution with unknown mean and variance. Then, the firm updates its belief with mean µT and
variance s2

T , defined as follows:

µT =

µT−1 +
qT−1

∑
i=1

Xi(s2
T−1/σ2)

1 + qT−1(s2
T−1/σ2)

, s2
T =

s2
T−1

1 + qT−1(s2
T−1/σ2)

If the firm adopts the technology at fixed cost K in the final period T, it gains one-period utility
(expected utility after adopting in period T) and a fixed terminal value VT with discount rate δ (we
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assume that the terminal value VT can be positive or negative in the finite-horizon model). Therefore,
the optimal strategy at the beginning of the final period T is

πT(sT) = max{VAT , 0}. (5)

That is, a firm’s adoption condition in period T is simply VAT > 0. If the value of adoption in
period T is larger than zero, then the firm adopts the technology in period T. Otherwise, the firm never
adopts. Using this adoption condition, we prove that there is a threshold for the adoption decision
in the final period. There exists a threshold s∗T , such that if sT < s∗T , then the firm adopts; otherwise,
the firm never adopts (See the Appendix A).

To specify the value of adoption in period T at the beginning of period T − 1, the firm estimates
that q̃T−1 suppliers will adopt in period T − 1, which will be revealed to the firm at the beginning of
period T. The number of buyers that will adopt in this period, m̃T−1, can be also estimated, but we
still assume that this is determined exogenously. In our model, we assume that m buyers have already
adopted the technology before the beginning of period T − 1. Therefore, the predictive distribution of
the sum of the signal is normally distributed with mean q̃T−1µT−1 and standard deviation

√
q̃T−1σ.

The expected utility for adoption in period T, estimated at the beginning of period T − 1, UT−1,T �,
is given as

UT−1,T(q̃T−1) = 1− e−amµT−1+[a2m2(α(q̃T−1)s2
T−1+σ2)/2], (6)

where α(q̃T−1) =
1+(q̃T−1s2

T−1/σ2)(1/(1+(q̃T−1s2
T−1/σ2)))

1+(q̃T−1s2
T−1/σ2)

(0 < α(q̃T−1) ≤ 1, and α(0) = 1).

The value of the firm is now a function of the variable q̃T−1, which indicates the estimated number
of suppliers who will adopt in period T − 1. To clarify this, we define the function α(q̃T−1). As q̃T−1

increases, α(q̃T−1) decreases and then UT−1,T increases (See Appendix A for the proof). If the firm
adopts the technology in period T − 1, the value of the adoption over the periods is

VAT−1 = [UT−1 − K] + δUT−1,T(q̃T−1) + δ2VT

Otherwise, the value of non-adoption is

NAT−1 = δπT(sT)

where πT(sT) is the optimal strategy in the coming period T, as expressed in Equation (5). Therefore,
a firm will adopt in period T − 1 if (i) VAT−1 > 0 and (ii) VAT−1 − NAT−1 > 0. Otherwise, a firm may
adopt in the next period or never adopt based on the policy in a proposed model.

Next, we prove that the threshold is a function of the risk aversion index of the firm.
Let va = VAT−1,T(q̃T−1) = UT−1,T(q̃T−1)− K + δVT be the estimated value of adoption in period T.
In addition, suppose that vb = VAT−1 − NAT−1 = UT−1 − (1− δ)K is the difference between the
values of adoption and non-adoption in period T − 1, and that vc = VAT−1 = [VAT−1 − NAT−1] +

δVAT−1,T(q̃T−1) is the value of adoption in period T − 1.
Using these equations, the firm’s adoption conditions in period T − 1 are:

1. If va > 0, the adoption condition in period T − 1 is such that vb > 0 is sufficient. That is, adoption
condition (ii) is sufficient.

2. If va ≤ 0, the adoption condition in period T − 1 is such that vb > 0 and vc > 0. Both, conditions
(i) and (ii) need to be satisfied before adopting in this period.

Let sa be a value that solves va = 0, sb be a value that solves vb = 0, and sc be a value that solves
vc = 0. For each case below, the standard deviation can be a threshold for adoption. Let ψT−1 be a
fixed value after adopting at period T − 1, ψT−1 = VT , in a two-period model.
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3.1.1. Case I: ψT−1 > K

In this case, the terminal value VT is larger than the fixed cost of adoption. This is reasonable
when the technology is considered as an optimistic view. We can easily see that va > vb, and thus,
sa(q̃T−1) > sb. The possible values of sT−1 for adoption at the beginning of period T − 1 are sb and
below, because va > 0 and vb > 0. Then, vc > 0, by adoption condition (1). If vb is negative above sb,
we cannot satisfy adoption conditions (1) and (2). From Figure 1a, potential adopters between sa(q̃T−1)

and sb will wait and adopt in period T. As q̃T−1 increases, we expect that more firms will adopt in the
next period. Firms above sa(q̃T−1) never adopt the technology. Therefore, the threshold for case I is sb.
A firm below sb will adopt in period T − 1, where the threshold does not depend on q̃T−1.

3.1.2. Case II: ψT−1 ≤ K

In this case, the terminal value VT is less than the fixed cost of adoption. Here, there may be
a significant investment required to introduce the new technology or a less optimistic view of the
technology owing to the high level of uncertainty of the benefit.

When no one adopts in period T − 1, q̃T−1 = 0 and va < vb can be verified easily, in which case
sa(q̃T) < sb. Here, possible values of sT−1 for adoption are sa(q̃T−1) and below because va > 0 and
vb > 0, by adoption condition (1). As q̃T−1 increases, sa(q̃T−1) increases. Then there exists a point
where sa(q̂) = sb at some critical point q̂, as shown in Figure 1b.

If q̃T−1 < q̂, there exists a threshold sc(q̃T−1) that is solved for vc = 0. Possible values of sT−1 for
adoption are above sa(q̃T−1), where va < 0 and vb > 0, and vc > 0 can be satisfied to enable adoption
in this period using adoption condition (2) (If va ≤ 0, the conditions for adopting in period T − 1
are vb > 0 and vc > 0). Thus, to adopt in this period, the possible values of sT−1 should be sc(q̃T−1),
or below. That is, firms between sa(q̃T−1) and sc(q̃T−1) will adopt in period T − 1. Firms above the
threshold, max{sa(q̃T−1), sc(q̃T−1)}, never adopt because the estimated value of adopting in period T
is negative (va < 0), regardless of the value of vb. Thus, in the case of q̃T−1 < q̂, a firm’s only decision
is whether or not to adopt. No firm waits for the coming period to make its adoption decision if the
estimated number of adopters will not reach the critical point of q. Figure 1b shows there is no area
in which firms can wait in this period. Either sa(q̃T−1) or sc(q̃T−1) is determined by q̃T−1. As q̃T−1

increases to the critical point q̂, both sa(q̃T−1) and sc(q̃T−1) increase. Then, more potential adopters will
adopt in period T − 1. Thus, the threshold value is max{sa(q̃T−1), sc(q̃T−1)} in the case of q̃T−1 < q̂.
If the firm’s sT−1 is below the threshold, it will adopt. Otherwise, it never adopts the technology
because it expects more adopters (at least q̂) for the adoption decision in the next period.

If q̃T−1 > q̂, then this case becomes case I. We no longer need sc(q̃T−1) to make an adoption
decision. The threshold value is sb, as shown in case I, and firms below this threshold will adopt.
Although the fixed cost is large, firms between sa(q̃T−1) and sb will wait and adopt in period T. This is
because they expect a critical number of adopters in period T − 1, such that it will become sufficiently
large to compensate for the fixed costs. Thus, potential adopters expect adoptions in the following
period. Firms above sa(q̃T−1) never adopt the technology. Figure 1b shows the adoption conditions for
Case II. As shown in the figure, the adoption area for case II is smaller than that for case I. Thus, more
potential adopters may be pessimistic, owing to huge investments, or they may expect a low relative
terminal value owing to the high level of uncertainty related to the benefit. As a different aspect in this
case, if the terminal value is too small, the critical point q̂ increases and the tolerance for uncertainty
decreases. Then, few or no firms will adopt in this period. However, because the expected number of
adopters is larger, the estimated future benefit will be increased by network effects, after which more
potential adopters expect to adopt in the next period.
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Theorem 1. There exists a threshold s∗T−1 for each case, such that if sT−1 < s∗T−1 then the firm adopts; otherwise,
the firm never adopts. Here, s∗T−1 is a non-decreasing function of q̃T−1 (See the Appendix A).

1. If ψT−1 > K, s∗T−1 = sb.
2. If ψT−1 ≤ K,

a. q̃T−1 < q̂, s∗T−1 = max{sa(q̃T−1), sc(q̃T−1)}, and
b. q̃T−1 ≥ q̂, s∗T−1 = sb. (same as case I)

3.2. Multi-Period Model

Here, we extend the two-period model above to a multi-period model. In this model, the firm’s
choices are slightly different from those of the previous model. In the multi-period model, the possible
choices for the adoption decision at some point are adopting, waiting and adopting in the next period,
and waiting a few more periods, rather than never adopting.

If the firm adopts the technology in any period t, the value of adoption is given by

VAt = [Ut − K] + δUt,t+1(q̃t) + δ2ψt,

where: ψt = δT−t−1VT +
T−t−1

∑
i=1

δi−1Ut+i+1(q∗t+i).

The fixed value of the benefit after adopting in period t is the sum of the discounted value
of utility in any subsequent periods and the terminal value in the final period. The value of the
utility in subsequent periods is determined by the set of equilibria q for each subsequent period,{

q∗t+1, q∗t+2, · · · q∗T−1
}

, which are found by mapping with s(q) using backward induction through
dynamic modeling. The value of non-adoption is

NAt = δπt+1(st+1) = δmax{VAt+1, δπt+2(st+2)},

where πt+1(st+1) is the optimal strategy in the coming period, as expressed in Equation (5). The firm
will adopt in period t if (i) VAt > 0 and (ii) VAt − NAt > 0. Otherwise, a firm may adopt in the next
period, or wait a few more periods based on the policy in a proposed model.

Next, we prove how the threshold changes as a function of the risk aversion index of the firm.

Let va = VAt,t+1(q̃t) = Ut,t+1(q̃t) − K + δψt, where ψt = δT−t−1VT +
T−t−1

∑
i=1

δi−1Ut+i+1(q∗t+i) is the

fixed value of adopting in period t. Then, U2, · · · , UT are determined by the set of equilibria q for
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subsequent periods, vb = VAt − NAt = Ut − (1− δ)K, and vc = VAt = [VAt − NAt] + δVAt,t+1(q̃t).
In addition, suppose that sa is a value that solves va = 0, sb for vb = 0, and sc for vc = 0. In each case
below, the standard deviation can be a threshold for deciding to adopt in period t.

Using va, vb, and vc, the firm’s adoption conditions in period t are as follows:

1. If va > 0, the adoption condition in period t is that vb > 0 is sufficient (i.e., adoption condition (ii)
is sufficient).

2. If va ≤ 0, the adoption condition in period t is that vb > 0 and vc > 0. Thus, conditions (i) and (ii)
should both be satisfied before adopting in this period.

Theorem 2. There exists a threshold s∗t for each case such that if st < s∗t , then the firm adopts; otherwise,
the firm will wait longer or never adopt. Here, s∗t is a non-decreasing function of q̃t (See Appendix A).

1. If ψt > K, s∗t = sb.
2. If ψt ≤ K,

a. i f q̃t < q̂, then s∗t = max{sa(q̃t), sc(q̃t)}, or
b. i f q̃t ≥ q̂, then s∗t = sb (same as case I).

When t = 0, we assume that the initial mean benefit is zero, µ = 0, and the standard deviation is
the largest value, s = s, at the beginning of period 0. This is reasonable because firms have no positive
signals about the benefit of adoption at this decision point, and so the uncertainty level may be too
high without any prior adopters. In addition, the assumption that all buyers have already adopted the
technology remains the same.

4. Population Model

The next step is to embed the individual firm’s adoption model into a population model. To begin
with, we first model the population of supplier firms as heterogeneous in risk-aversion and identical
in all other respects. We further assume that each supplier is linked with all buyers.

We consider a population that is uniformly distributed along an axis s, representing the standard
deviation of the unknown mean of the belief in period T − 1, s ∼ [s, s]. Analytically, firms at or below a
threshold s∗ will adopt in the period, and firms above s∗ will wait and either adopt later or never adopt.
We define F(s∗) as the fraction of adopters in the period and f as the density function. The possible
number of adopters in the period is at most q̃ = bF(s∗) · Nc, where N is the population size.

We show that the number of adopters in period T − 1 is a fixed point of the mapping of q̃T−1 and
s∗T−1. As shown in Figure 2, s(q̃) is a non-decreasing function in q̃, where q̃ is a discrete variable that
increases stepwise by s(q̃). In addition, F(s) is continuous and non-decreasing in s. Using graphical
observations, we find that cases I and II both have a unique equilibrium of q for any distribution of
s. As the threshold increases (moves to the right on the horizontal axis), the equilibrium point also
increases in both cases. Thus, we prove the following.

In any period, there always exists an equilibrium q, which is a fixed point of the mapping of q
and s∗.

Case I. Threshold s∗ is constant over q. As shown in Figure 2, the equilibrium is the point at which
F(s) crosses the threshold line. Therefore, there is a unique equilibrium of q for any distribution of s.

Case II. The threshold is increasing in q until the critical point of q̂. If a threshold s∗′ exists in
the interval [0, q̂), a critical point q mapped on the curved threshold level s(q) is less than that on the
straight threshold level s∗ (q̃′ < q̃), as shown in Figure 2. For q̂, the threshold is constant, as case I.
Therefore, there is a unique equilibrium q for any distribution of s.
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This is very important, because we can determine s based on this fixed point q across periods.
That is, in each period, a critical level on the risk aversion index exists, such that all firms at or below
that level will adopt the technology, and all firms above that level will choose to wait rather than
adopt. This allows us to derive an adoption curve in terms of the accumulated fraction of firms that
have adopted the technology in or before any given period. Supposing Aτ , τ ∈ {T − 1, T} is the
fraction of adopters in period τ, {AT−1, AT} represents an adoption curve in a two-period model as a
cumulative distribution function. We extend the model to a multi-period model. We also consider the
case in which there is a cost for observing information, as well as the possibility that the information is
not truthful.

In the following section, we show how to compare any two adoption curves using numerical
experiments such that one denotes faster adoption than the other.

5. Numerical Analysis of the Model

The set of experiments focuses on how the adoption curve of the two-period model changes
with different parameters. There are at least two important metrics inherent in the adoption curve:
the fraction of the total population that joined in both periods, and the percentage of these that were
early adopters. These metrics provide the coverage and the speed of adoption, respectively. Here, we
examine what happens to the adoption curve in a series of scenarios.

We begin by considering three cases of the spread of the population along the s-axis. First, we
examine the effect on the adoption curve with different ranges of the population scale and with the
same s. If firms in a population spread within a small range of the population scale with the same s,
these firms are more willing to take the risk than are those that spread within a large range, because a
smaller s denotes a greater number of risk-takers. Based on our numerical experiment, if the spread of
the population increases, the number of adopters decreases across periods in both case I (VT > K) and
case II (VT < K) as shown in Figure 3. Second, we examine the effect on the adoption curve when the
range of the population scale remains the same, but the means of s vary. That is, each population group
has different values of s and s. The results show that if the mean of s increases, the number of adopters
decreases across periods in both cases as shown in Figure 4. Lastly, we test the effect of populations
with different scales, but with the same mean s. That is, each population group has different s and
s, but all have the same mean s. If a population has a smaller s, then it has a larger s. In contrast, if
a population has a larger s, then the range of the scale is smaller because it must have a smaller s in
order to have the same mean s. The results show there is no effect on the two adoption curves.
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Second, we test the effects of fixed adoption costs and terminal values in the finite-horizon model.
The results are shown in Figures 4–6. As the adoption costs increase with fixed terminal values,
the number of adopters decreases across periods, and the number of firms waiting in period T − 1
decreases in both cases. As the terminal values increase with fixed costs, the number of adopters in
period T − 1 does not change across periods. However, the number of firms waiting in period T − 1
increases in both cases. As a result, the total number of adopters in the population increases.Sustainability 2018, 10, x FOR PEER REVIEW  11 of 15 
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Third, the type of risk aversion affects the adoption rates of the technology significantly. Firms with
a lower degree of risk aversion are more optimistic in terms of adopting the technology. In contrast,
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those with a higher degree of risk aversion are more pessimistic, and so are less willing to adopt or
would prefer to wait. As shown in Figure 7, as the risk aversion index increases, the number of firms
that wait in this period and that will adopt in the next period decreases. Therefore, the total number of
adopters in the population decreases.
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Fourth, we examine the effects of the prior mean of the benefit of adoption. As the mean increases,
both the number of adopters and the number of firms waiting in period T − 1 increase. Therefore,
the total number of firms that wait also increases, as shown in Figure 8.
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Lastly, we consider the effect of the adoption patterns in the other population group, that is,
the effects of buyers’ behavior in the two-level supply chain. We consider two scenarios: the effect of
the number of prior adopters in a buyer population, and the adoption speed in a buyer population.
First, as the number of adopters in a buyer population increases, both, the number of adopters
and the number of firms that choose to wait in period T − 1, decreases. This is counterintuitive.
Since we may expect buyer firms that have adopted to stimulate suppliers to adopt the technology,
the effect of the number of buyers that have adopted should be positive in the rate of adoption in the
supplier population.

The results of this experiment show that a supplier’s expected utility decreases on the s-axis for
both tests. In the first case, there are two adopters in the buyer population. In the second, there are at
least three adopters in the buyer population. The higher the degree of risk faced by a firm, the lower is
its expected utility. That is, firms that face greater risk are not affected by the number of buyers that
have already adopted in the past. Rather, the effect of such firms is negative. We next examine the case
of buyers adopting slowly, for example, some buyers adopt at the beginning of the period, and the
remainder adopt in period T. This is known to suppliers. We numerically test the effect of buyer
adoption speed using two test groups. In the first, all buyers have already adopted before processing
the model. In the second, some buyers adopt in the next period, which is determined exogenously,
by our assumption. The results show that in the first case, more suppliers adopt in the next period,
even though there, we have the same number of adopters in the first period for case I (VT > K) and
case II (VT < K). See Figures 9 and 10.
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6. Conclusions

In this study, we develop a model to analyze inter-organizational technology adoption in a supply
chain. To develop the dynamic mechanism that influences the level of uncertainty, we model a firm’s
adoption decision as a dynamic program. The state space in each period includes the firm’s prior
belief distribution, which depends on the number of suppliers and buyers that have already adopted
the technology. The action space includes adoption or non-adoption in this period. As more firms
adopt, the information they provide reduces the uncertainty related to the adoption benefits via
network effects.

Based on the suggested finite-horizon dynamic formulation, we develop a population model
that includes heterogeneity in the population to capture the factors affecting the speed of diffusion.
This allows us to derive an adoption curve that is specified by the accumulated fraction of firms that
have adopted the technology in or before any given period. Using numerical experiments, we use
the population model to consider the effect of several strategies observed in practice. We also discuss
the conditions under which such an action is useful to the firm. First, in practice, technology in a
supply chain is often adopted by large retailers (buyers), which then mandate that suppliers do so as
well. For example, in recent years, several large retailers and government agencies have required that
suppliers label shipments with RFID tags. In this case, the choices available to a supplier are to adopt
the technology or to stop being a supplier or partner. That is, the market power of the mandating
entities is such that suppliers overwhelmingly comply with the requirement. However, such mandates
may stimulate the speedy diffusion of the technology within a supply chain. We capture this in our
model using combinations of numbers of buyers and suppliers that have adopted at time zero or at
an earlier time. We also provide insight into the combinations and the timing of mandated adoption
that are effective in achieving a faster adoption curve. Second, many firms invest in pilot programs to
better estimate the benefit of adopting a technology. Here, a small proportion of firms are part of a
pilot testing stage. Interestingly, many firms in this case research the potential of the technology and
consider being part of the pilot program in order to reduce the uncertainty related to the benefits of
adoption. Here, we analyze the effect of pilot testing on the adoption curve by introducing another
possible action for the firm, that is, a reduction in the standard deviation of the prior can be obtained
at a fixed cost.
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The first limitation of this study is that we restrict our analysis to a two-level supply chain only,
and do not develop the model precisely for extended cases. Other scenarios that can be examined in
future research include the following: (1) a buyer is dominant; (2) a supplier is dominant; and (3) the
supply chain system is under centralized control. Furthermore, a game-theoretic approach can be
used to determine an equilibrium strategy for the adoption decision under each scenario. Second,
the proposed model describes a simple per-period cost-benefit utility function for the adoption of
a new inter-organizational technology. A more explicit structure used to explain the benefits and
costs of adoption will enable a more precise technology adoption model. Lastly, we consider only
costless information from previous adopters within the same population group. However, firms
receive information from various sources, including adopters within the same group, and may pay
significant costs for such information. In this case, the model will change significantly if we consider
the weighted value of information instead of the amount of information. These issues can be resolved
by developing a model based on economic theory.
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Appendix A

Proof of the expression of UT−1,T : �

UT−1,T = U′ = 1− e−amµ′+ a2m2(σ2+s′2)
2 ,

where µ′ =
µ+

q
∑

i=1
Xi(s2/σ2)

1+q(s2/σ2)
and s′2 = s2

1+q(s2/σ2)
.

Given a belief q, the distribution of µ′ is determined by the distribution of the sum of X, which
follows a normal distribution with mean qµ and variance qσ2. Therefore, µ′ follows a normal

distribution with mean µ+qµ(s2/σ2)
1+q(s2/σ2)

and variance
(

s2/σ2

1+q(s2/σ2)

)2
qσ2.

Now, we use U′ to obtain EU′:

EU′ =
w ∞

−∞

[
1− e−amµ+ a2m2(σ2+s2)

2

]
N(x; µ, s)dx.

We know that
r ∞
−∞ ecxn(x; mean, SD)dx = ecmean+ c2SD2

2 . Thus,

EU′ = 1− e−amµ+
a2m2( s2/σ2

1+q(s2/σ2)
)
2

qσ2

2 + a2m2(σ2+s′2)
2 = 1− e−amµ+

a2m2( qs′4

σ2 +σ2+s′2)
2

qs′4

σ2 + s′2 =

(
qs′2

σ2 + 1

)
s2

1 + q(s2/σ2)
=

1 + q
σ2

(
s2

1+q(s2/σ2)

)
1 + q(s2/σ2)

s2 =
1 + (q′/(1 + q′))

1 + q′
s2 = α(q)s2,

where q′ = q(s2/σ2). Thus,

EU′ = 1− e−amµ+
a2m2(σ2+α(q)s2)

2 .

As qT increases, q′ increases and, thus, α(q) decreases. Therefore, UT increases. Note that
α(0) = 1+(q′/(1+q′))

1+q′ = 1 when q = 0. This yields the same estimate as that of the prior period.
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We define ψt as follows. Let ψt be the fixed value of the benefit of adopting in period t. Then,

ψT−1 = VT
ψT−2 = UT(q∗T−1) + δψT−1 = UT(q∗T−1) + δVT
ψT−3 = UT−1(q∗T−2) + δψT−2 = UT−1(q∗T−2) + δUT(q∗T−1) + δ2VT
. . .

ψt = Ut+2(q∗t+1) + δψt+1 = Ut+2(q∗t+1) + δUt+3(q∗t+2) + · · ·+ δT−t−2UT(q∗T−1) + δT−t−1VT

= δT−t−1VT +
T−t
∑

i=2
δi−2Ut+i(q∗t−1+i)

= δT−t−1VT +
T−t−1

∑
i=1

δi−1Ut+i+1(q∗t+i)

. . .
ψ0 = U2(q∗1) + δψ1 = U2(q∗1) + δU3(q∗2) + · · ·+ δT−2UT(q∗T−1) + δT−1VT

= δT−1VT +
T
∑

i=2
δi−2Ui(q∗i−1).

In the initial period (t = 0), if the firm adopts the technology in any period 0, the value of adoption
is given by

VA0 = [U0 − K] + δU0,1(q̃0) + δ2ψ0,

where ψ0 = δT−1VT +
T−1
∑

i=1
δi−1Ut+1(q∗i ).

Then, the value of non-adoption is

NA0 = δπ1(s1) = δmax{VA1, δπ2(s2)}.

There exists a threshold s∗0 for each case such that if s0 < s∗0 , the firm adopts; otherwise, the firm will wait
or never adopt. Here, s∗0 is a non-decreasing function of q̃0.

1. If ψ0 > K, then s∗0 = sb.
2. If ψ0 ≤ K, then

a. i f q̃0 < q̂, then s∗0 = max{sa(q̃0), sc(q̃0)}, or
b. i f q̃0 ≥ q̂, then s∗0 = sb (same as case I).
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