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Abstract: These days, technological advances are being made through technological conversion.
Following this trend, companies need to adapt and secure their own sustainable technological
strategies. Technology transfer is one such strategy. This method is especially effective in coping
with recent technological developments. In addition, universities and research institutes are able to
secure new research opportunities through technology transfer. The aim of our study is to provide
a technology transfer prediction model for the sustainable growth of companies. In the proposed
method, we first collected patent data from a Korean patent information service provider. Next,
we used latent Dirichlet allocation, which is a topic modeling method used to identify the technical
field of the collected patents. Quantitative indicators on the patent data were also extracted. Finally,
we used the variables that we obtained to create a technology transfer prediction model using the
AdaBoost algorithm. The model was found to have sufficient classification performance. It is expected
that the proposed model will enable universities and research institutes to secure new technology
development opportunities more efficiently. In addition, companies using this model can maintain
sustainable growth in line, coping with the changing pace of society.

Keywords: technology transfer; prediction model; latent Dirichlet allocation; technology topic;
ensemble model

1. Introduction

Technology is a very important tool in the today’s information society. Especially in recent years,
as innovation is emphasized, the importance of technology is being recognized again. Technological
innovation consists of the creation and application of knowledge, and it is an important factor in
sustainable growth [1,2]. In the past, companies operated independently in the areas of research
and development, management, and marketing. As mentioned above, however, as the importance of
technology is emphasized, companies are pursuing the concept of technology management (TM), which
considers technology and management together. Many companies have tried to standardize technologies
or manage intellectual properties in order to secure a competitive advantage through TM [1].

Intellectual property management (IPM) is a managerial method that strategically utilizes
intellectual property, such as patents, trademarks, and copyrights, for corporate management [3].
Among these, a patent discloses information about an invention through the law, and the inventor
is able to achieve exclusive rights to the invention. In other words, although a patent possesses a
disadvantage in terms of its potential to be disclosed to the public, the inventor can have exclusive rights
to the invention for 20 years. For this reason, many technology-based companies try to acquire exclusive
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rights through patent applications after completing the research and development (R&D) of a technology.
In this regard, patents are considered very useful by helping not only to preserve technology rights, but
also to identify the direction of R&D and the competition intensity in the market [4]. Researchers who
consider the characteristics of a patent, as previously mentioned, have attempted to analyze patents
from a macro perspective and to forecast the direction of technology innovation [5-9].

A patent is recognized as a means of creating profit through licensing or technology transfer,
as well as protecting the rights to an invention. This can be explained through the following example.
Qualcomm has become a strong player in the telecom market with its huge royalty income from its
Code Division Multiple Access (CDMA) technology. Another example is the recently emerged patent
trolls, formally referred to as non-practicing entities (NPEs) [10,11]. In particular, a patent troll does
not develop the actual invention but is allowed to purchase a patent from patent holders and retain
it. If another company infringes on the patent it purchased, it will try to gain economic advantage
through litigation [10]. As such, a patent has economic advantages, as well as legal rights.

Corporations, research institutes, and universities put forth a great deal of effort to transfer their
technologies in order to create economic value from the patents. Technology transfer (TT) means that
the holder of the knowledge, know-how, or technical materials transfers ownership or rights to the
technologies to others who require them [12,13]. From the perspective of technology holders, it is
advantageous because they can achieve financial profit to invest in a new research and development
task when they sell their licensing or technical rights to another. On the other hand, from a buyers’
perspective, it is beneficial because they can reduce the time and cost required for the technology
development process. In recent years, we can see that innovation has been taking place through
technology convergence [6,14,15]. From this perspective, TT is a good way to cope with the patterns
of technological change. Furthermore, many scholars are doing a lot of research to promote TT that
has a beneficial impact on both innovation and economy. Lai and Tsai introduced an evaluation
methodology to enable efficient technology transfer. The proposed method is based on the analytic
hierarchy process (AHP) and fuzzy logic method. They analyzed 20 questionnaires on Taiwan’s
machinery industry to demonstrate the effectiveness of the proposed method. Although this article
suggested a methodology of using scientific methods to evaluate the effectiveness of TT, the study is
limited because only survey data was used [16]. In order to help technology developers plan their
R&D process in a multi-technology industry, Park et al. proposed a method of analyzing the possibility
of technology transfer using patent citation information [17,18]. In addition, Choi et al. showed a
technology prediction model based on the scientific method that uses patent information [13]. They
extracted the quantitative indexes included in the patents for each organization through patent analysis
and proposed an integrated technology transfer prediction model using a regression model, social
network analysis, and decision tree algorithm.

When evaluating the quality of a patent, it is very important to consider the technological
description, as well as qualitative factors. Nevertheless, previous studies have only considered
quantitative indicators or technical material. The goal of this study is to propose a technology transfer
prediction model based on the AdaBoost algorithm that uses technology topics and quantitative
indexes of a patent to solve the above limitation. This paper is organized as follows. In Section 2,
we describe the core theories used by the proposed model, and we propose a technology transfer
prediction model using the ensemble method in Section 3. To illustrate the proposed model, the authors
carry out a case study using the proposed methodology in Section 4. In Section 5, we discuss the
conclusion of our experiment and suggest areas for future study at the end.

2. Background

This paper presents a novel methodology for predicting technology transfer, which considers
both the technology description and quantitative indexes of a patent. The prediction model proposed
in this study is based on the following theoretical backgrounds: patent analysis, topic model, and the
AdaBoost algorithm. This section explains each of these.
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2.1. Patent Analysis for Sustainable Technology Management

A patent is an essential element for protecting the rights of inventions and securing technological
competitiveness. It is a necessary tool for technology management and can also be used for technology
forecasting and R&D management [4,7,9,14,19-21]. In the initial research on technology management
using patent data, Biju et al. used only quantitative information from five-year patent data from
India to identify trends and innovation levels in India [5]. Their study found macroscopic trends
and levels of technology, but it is limited because of the difficulty of understanding the details.
On the other hand, Yoon and Park analyzed patent data using a text mining technique [19,20]. They
extracted keywords from the patent information literature by text mining and analyzed it using
a morphological approach. Through this, they attempted to discover technological opportunities,
as well as perform technology forecasting. Daim et al. forecast emerging technology by analyzing the
bibliometrics of patents [7]. Jun and Park suggested a comprehensive patent analysis method that
considered time-series information, information from literature, and international patent classification
(IPC), which is classified according to the technical description of a patent by an examiner. They
evaluated the level of technological innovation using the proposed methodology [6,8]. Recently, patent
analysis methodology based on statistical techniques has been proposed for technology forecasting and
discovering emerging technology. Kim and Jun (2016) focused on the fact that the frequency of words
occurring in patent documents is mostly zero. They attempted a technical analysis using a zero-inflated
Poisson distribution and a negative binomial regression [22]. In addition, Park and Jun found that the
frequency of a keyword and IPC generated in the patent documents follows the Poisson distribution.
Considering this, they have constructed a technical analysis model for the LED field through a Poisson
regression model and Bayesian network [15]. On the other hand, many studies have been carried
out to discover promising technologies and emerging technologies through patterns generated in
patent applications using machine learning. Kim and Bae attempted to foresee promising technology
by identifying patterns of keywords in patent documents using clustering, a typical unsupervised
technique [9]. Kyebambe et al. try to explore emerging technology utilizing supervised learning that
uses patent citation information [21].

2.2. Topic Modeling

The topic model is one of the unsupervised methods; that is, it is a text mining technique
with which the topics or themes of documents can be identified from a larger collected document
corpus [23,24]. Latent Dirichlet allocation (LDA), which is one of the most popular topic modeling
techniques, is a probabilistic model for expressing a corpus based on Bayesian models and is also
considered to be a probabilistic extension of latent semantic analysis (LSA) [23,24]. The basic idea of
the LDA is that each document has a topic, and a topic can be defined as a word distribution. Figure 1
shows a graphical model of LDA.

Document-Topic Word-Topic Observed
T i Word
Dirichiet distribution assignment or Topic-Word Dirichlet
parameter p(Bla) p(z,16) p(Wylz,, B) distribution parameter
n € [1,N,]
—
m € [1, M] k € [1,K]

Figure 1. Graphical model of latent Dirichlet allocation (LDA).
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When there is an m-th document D,,;, the distribution in which the document D, is included in

the latent topic z, , is denoted by 9:1, which is a multinomial distribution whose hyper-parameter «
follows the Dirichlet distribution. The number of topics k = 1, ..., K, can be statistically estimated, or
the experimenter can determine a fixed value. The distribution of words for k topics is denoted by (pm,
which is also a multinomial distribution whose hyper-parameter § follows the Dirichlet distribution.
The word probability w;, , is determined by p( B).

N
p(6,z,wl, p) = p(6]a) [Ilp(znl(’)r’(wm\zmﬁ) ©)

In Equation (1), the marginal distribution of a document can be obtained as shown in Equation (2)
integrating over 6 and summing over z.

n=1 zn

p(wla, B) = / (0]a) (HsznIQ wn|zn,ﬁ))d9 )

Finally, the probability of the corpus can be expressed as the product of the marginal probabilities
of each single document, as shown in Equation (3).

n=1 zn

p(Dla, B) = H/p (O]t) (H Y (2 0l6m) wm,,,|zm,n,/3)>dem 3)

A topic model is a useful method to identify topics hidden in a set of documents. As a result
of the advantage described above, in recent years, research is often carried out to analyze technical
documents using topic models. Kim et al. used a topic model to find common technologies included in
patent data [25]. Lee and Kang conducted a topic model analysis for published articles and attempted
to discover critical topics in technology innovation management [26].

2.3. Ensemble Method—AdaBoost Algorithm

The ensemble method is an algorithm to improve accuracy by combining multiple weak learners,
typically by boosting and bagging. The Adaboost algorithm is a method proposed by Y. Freund and R.
Schapire in 1995 to improve ‘boosting’ [27,28]. The most important feature of the AdaBoost algorithm
is that the weak learners generated in bagging are made in parallel, whereas AdaBoost produces
sequentially weaker learners. To solve the multi-label case problem and improve the performance
AdaBoost generalization, Schapire and Singer suggested a method for tuning the weight in 1999 [29].
As we consider the problem with a single label in our study, the method proposed by Freund and
Schapire is used. Figure 2 shows a graphical model of the AdaBoost algorithm.

Training Example Distribution Base Classifier Final Classifier
§={(cp, ¥1)s s o ¥} Dy(i) =1/n (he(x)) H(x)

} | | |

Distribution Dy I— ——DI Weak Classifier hy, (x) I—iﬂl
Data ¥ :
Distribution D, }—hl Weak Classifier hy,(x) |_=_." Strong

Classifier

Labels v )R
[ Distribution D3 }—l-' Weak Classifier h,,(x) |—“-"—h =i (Z - ":(-"))
=

.
-
.

I Distribution D,, }— hl Weak Classifier he, (x) Iﬁ‘—b

Figure 2. Graphical model of AdaBoost algorithm.
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The main idea is to adjust the weights of weak classifiers for each distribution and finally combine
these weak classifiers to get one strong classifier. In other words, it generates a hypothesis with
high accuracy.

Suppose that the training example is given as S = {(x1,y1), (x2,¥2),..., (Xn,yn)}, Where
xi € x, ¥i € {—1,41}, and y; refer to class or label. An initial distribution D (i) is defined as
D; (i) = 1/n, a uniform distribution. The distribution Dy is updated according to the weighted error €;
to minimize the weak hypothesis /; in each round.

€r = Priwp, [ (xi) # i 4)

According to error €;, weight a; of weak hypothesis /; is determined according to Equation (4),
and the distribution D, (7) is updated through Equation (5) by the weight ;.

_1 1—€t
Ny = 2111( e ) (5)

As can be seen from Equation (5), if ; > 0.5, a; < 0 and if ¢; < 0.5, a; > 0. That is, as the error €;
of the weak hypothesis 1; decreases, the weight a; increases. If the error €; > 0.5, the performance of
weak classifier is lower than that of random guessing. Therefore, the hypothesis of the weak classifier
is not considered, and we move to the next round.

Desa(i) = 24 xexpl—auiu(i) ©

In Equation (6), if h(i) = y;, then Dy 41 (i) = %@, and if 1 (i) # y;, then Dy 1 (i) = Dt(%jeut ,

T
where Z; represents a normalization factor. This satisfies ), D;(i) = 1. Finally, the strong classifier is
=1

H(x) = sign (i uctht(x)> 7)

defined as follows.

t=1

3. Methodology

In this research, we propose a scientific-based technology transfer prediction model using the
AdaBoost algorithm for sustainable technology management. The proposed model is able to cover the
quantitative indexes and information in the patent literature. Patent data are composed of various
information on the inventions, such as text, numeric information, equations, and figures. In order
to advance this experiment, therefore, patent data need to be changed into structured data. This
study progresses as follows. In the first step, we identify the technology topics by analyzing titles and
abstracts in patent data. In the next step, we extract quantitative indexes from patent data. Finally,
merging the technology topics and quantitative indexes, the technology transfer prediction model is
produced using AdaBoost. Figure 3 illustrates this experimental process.
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Collecting patent data
Y
Extracting Text information from Extracting quantitative information
patent Jfirom patent

I

Text pre-processing

)

LDA inference and
producing the technology topic

I

¥

Merging the technology topic and
quantitative information

!

Generating a technology transfer
prediction model using Adaboost

l

Analyzing the generated model
applying the test dataset

Figure 3. Methodology.

3.1. Collecting the Data

The aim of our study is to produce a technology transfer prediction model using patent data.
The patents used for the experiment belong to the domain of inference and machine learning
technologies filed before August 2016 in the United States. Because artificial intelligence (AI) technology
is a fusion of various technologies, such as speech recognition, natural language processing, machine
learning, and so on, it is difficult for a company to conduct research and development on all the
sub-technologies in that field. Therefore, a lot of enterprises adopt a technology trading strategy.
For this reason, we collect the patent data included in the field of inference and machine learning
and try to generate the model. The data were collected from worldwide intellectual property service
(WIPS), which is a Korean service provider of patent information. The collected data contains noise or
redundant patents, so we removed them. As a result, a total of 711 valid patents were selected for the
further analysis. In the patent search database that we used, one is able to check the information of
applicant and current assignee of a patent. If current assignee is different from the original applicant,
we considered that the patent is transferred. Out of the 711 valid patents, 208 were found to have been
transferred. Table 1 shows a detailed description of the collected data.

Table 1. Information on collected data.

Technical Field Applicant Country  # of Data (# of Transferred) Period

Inference and machine learning us. 711 (208) ~August 2016

3.2. Technology Clustering Using Topic Model

To enable searchers to locate patents easily, the patent examiner classifies them using IPC,
cooperative patent classification (CPC), or file index (FI) according to the contents of the patent
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specification. However, since the classification codes do not contain detailed technical content,
the ability to ascertain technical material based on them is limited. Therefore, in our study,
the technologies in the target domain are first classified through topic modeling.

Figure 4 illustrate the process of finding the technology topic in this research. In order to grasp
the technological topics of the collected data, we used the text of patent documents obtained by
merging the titles and the abstracts into a corpus, which is a linguistic set of texts. Under the given
grammatical structure, the word class is generally written according to the location of the predicate,
object, and the like. Among them, stop-words such as “the”, “a”, “by”, “as ", referring to
commonly used terms, are necessary for building general sentences, but are worthless for the analysis

”,and “is

in this study. As such words do not provide special meaning in LDA and cause an unnecessary increase
in the complexity of the computation when included, it is necessary to remove them appropriately for
efficient information processing. Therefore, preprocessing is performed by eliminating stop-words.
In addition, because not every word in the documents is significant for further analysis, the term
frequency-inverse document frequency (TF-IDF) method was used to select significant words for the
experiment. The form of the word is determined by the position of each word in the sentence. For this
reason, if the word form is not the same, a computer is not able to recognize whether some words have
the same meaning or not, which can result in a data distortion. Thus, the unification of words that
have the same meaning is necessary. In this study, stemming is used to unify the forms of words. Also,
we eliminate any numbers, punctuation, and symbols that may distort the analytic process.

T o e e Lo
Patent.01 mining Patent01 025 0.1 015 009
Patent.02 - Rem;ring-""’.f" Patent02  0.14 0.7 0.1 0.01 0.04

words
Patent.03 - - Removing the - Patent03 065 013 001 02 001
punctuation,
Patent.04 e Patent04  0.05 0.02 017 0.06 0.7
- Stemming
- TF-IDF
Patent.n Patent.n 0.1 03 0.05 0.6 0.05
Figure 4. The process of finding the technology topic. ~TF-IDF—term frequency-inverse

document frequency.

The data that have been refined through the preprocessing system are used to fit the LDA model.
To fit the LDA model, we adopted the Gibbs sampling method and increased it from 2 to 10 to find
the optimal K. In addition, the number of iterations is limited to 500, 1000, and 2000 so that the topic
can be displayed well. The Dirichlet parameter « is set as the estimated value from the document and
parameter f is set as 0.1. Table 2 shows the most suitable parameters for fitting LDA models found
through repetition.

Table 2. Latent Dirichlet allocation (LDA) parameters.

There are various opinions on how to determine the optimal number of topics [23,24,30-32].

Component Candidates
Inference Algorithm Gibbs sampling
The number of K From 2 to 10
Gibbs sampling iteration 1000

Parameter «, 8

A=T/50,8=0.1

For our purposes, the topic is determined by the topic probability § of each document.
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3.3. Technology Transfer Prediction Model Using the AdaBoost Algorithm

In order to implement the technology transfer prediction model, we use the AdaBoost algorithm,
which is a typical ensemble model. Figure 5 illustrates the proposed model, and Table 3 shows the
used variables in this study.

Technology transfer

Patent dataset Weak Classifiers Didiction el
| Weak Classifier hfl (x) ‘
________ Technology
. dogic | Weak Classifier he, ) |
Xy E:,_,r'j l Weak Classifier hy,(x) l
2 | OQuantitative | | 3

X3 Indexes > ven .

Xn E:_,‘j | Weak Classifier hr,‘_ . (x) ‘
Tec’h}?o!ogv ' .

yi. ....... - Ti'ﬂ'”sfe_?‘ | Wealk C!(-'SS.!’GEJ‘ hr“_l (X) ‘
information | Weak Classifier h:,, () ‘

Figure 5. Modeling process for technology transfer prediction model.

Table 3. Variables used in the proposed model.

Variables Description
Citation Number of backward citations
Period The period from application to registration
Claim Number of registered claims
Family patent Number of applied family patents
Family country Number of family countries
Patent references Number of references (patent)
Non-patent references Number of references (not patent, e.g., article, book, etc.)
Transfer Whether a patent has been transferred or not (dummy)
Technology Topic Topic number according to topic modeling (dummy)

In our experiment, the quantitative indexes mean the variables, such as citation, period, claim,
family patent, family country, patent references, and non-patent references. The technology topic
represents the technical description of a patent using the LDA. As mentioned in the background,
however, it is not appropriate to use categorical independent variables directly as inputs to the
AdaBoost algorithm. Therefore, the technology topic variable needs to be changed into the dummy
variable. Among the variables in the dataset, “Transfer” indicates whether a patent has been transferred
from the original holder to another. In the patent search database that we used, one is able to check the
information of applicant and current assignee of a patent. If an assignee is changed, we consider that
the patent is transferred. We used “Transfer” as the output variable y; in this experiment. Therefore,
if the patent is transferred to another, it has a value of +1, otherwise it has a value of —1. The parameters
used in the AdaBoost algorithm were estimated through iteration. Table 4 shows the parameters used
in this experiment.

Table 4. Ensemble model for parameters.

Component Candidates
Ensemble Model =~ AdaBoost [27]
Max. depth 4

Iteration 100
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To validate the performance of the proposed model, we consider the measures of accuracy,
specificity, and sensitivity, which can be used for evaluating the classification performance.

The measures are shown in detail in Table 5.

Table 5. Performance measures. TP—true positive; TN—true negative; FP—false positive; FN—false

negative; P—positive; N—negative.

Measure Equation
TP+TN
Accuracy piN
e TP
Sensitivity TP+EN
Specificity s

The accuracy represents the overall performance of the classifier; it considers true positive (TP)
and true negative (TN) together. However, when a classifier learns the noisy training data excessively,
it may cause overfitting. Thus, the accuracy is not able to measure the correct performance of a classifier
in such a situation. In order to overcome this problem, we evaluate the performance of the proposed
model considering both the sensitivity, which only considers true positive, and the specificity, which

considers true negative only.

4. Experiment Result
To carry out this study, we collected data for the technical field of inference and machine learning

according to the conditions mentioned at the beginning of Section 3.1.

First, in order to examine the trend of the collected data, we show the trend for applications and
technology transfer in the graph in Figure 6. In Figure 6, “n” is the graph showing the number of
patent applications by year, and “tr” indicates the number of technology transfers by year.

1
I\
1
I‘III
60 1 [
| |I
| 1
| |
| \
-
| I|
\J |
& ) category
S 40 / N
o f II \ e n
2 - -
| \ tr
| *
|
@ 1 | \
\ ’ |
20 : A ‘
_;' | ]
B'-.-G\\ - _—* - -
- —a o
0
1995 2000 2005 2010 2015
year

Figure 6. Trend of patent application of part of inference and machine learning and of technology
transfer. n—number of patent applications by year; tr—number of technology transfers by year.

As can be seen, from 1995 to 2008, patent applications for the above technology field showed a
steady increase. In 2009, patent applications dropped sharply compared with 2008, but the number of
applications increased until 2013. However, from 2014 onward, patent applications have decreased
again. Looking at the trends in technology transfer, the chart begins to measure it in 1997. Although
the number of technology transfers is not large, it has gradually increased since 2008 and rose sharply

in 2014.
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We would like to know trends according to specific technologies, but the patent data do not have
technical classification information. Therefore, in this study, a technical classification is performed
using the LDA as mentioned above. The LDA uses the parameters shown in Table 2. In addition,
several methods for selecting the optimal number of topics have already been proposed [23,24,31-33].
We used the method Cao et al. proposed, which is considered to be the most appropriate method for

this study [31]. The result is shown in Figure 7.

Perplexity
0.011 0.012 0013 0.014
| | | |

0.010
]

T T T
6 8 10

Number of topics

Figure 7. Result of analysis of the number of optimal topics.

10 of 15

As aresult of the analysis of the optimal number of topics using the method described by Cao etal.,,

it was found to have a minimum at k = 5. Based on these results, we classified the technology topic of
collected data. Table 6 shows the results. The top ten keywords included in each topic were utilized to

define the technology topic.

Table 6. Technology topics. ANN—artificial neural network.

Topic Core Keyword Defined Technology Quantity
1 node, vector, processor, well, target, patient, Expert System 152
expert, complet, element, format
5 signal, sensor, pattern, Clrcul.t, tabl, robot, Signal Processing 138
audio, alarm, power, diagnost
3 Teasen, urit, sequnc, semant, content, Natural Language Understanding 159
context, languag, score, search, observ
4 1imag, ob]ect, event, .actlon, manag, service, Image Processing 144
convolute, filter, agent, fact
5 ANN, neuron, modul, layer, extract, fuzzi, Artificial Neural Network 118

document, recur, attribute, simul

As a result of the technical classification, the technology of “natural language understanding”

7

occupied the largest part, about 22.4%, in the field of inference and machine learning. Next,
“expert system” technology accounted for 21.4%, followed by signal processing, image processing,
and artificial neural network technology. Table 7 shows the number of technology transfers for the

above technology fields.
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Table 7. Technology transfer according to technology topic.

Topic 1. Topic 2. Topic 3. Topic 4. Topic 5. Total
Not Transferred 112 108 98 100 85 503
Transferred 40 30 61 44 33 208
Ratio of Transferred 26% 22% 38% 31% 28% 29%

The transfer rate of the collected data was 29% on average. As a result of confirming the proportion
of technology transfers according to the technology classification using LDA, the rate of technology
transfer in the field of Topic 3 (natural language understanding) is 38%, which is relatively higher than
other technology fields.

To generate the technology transfer prediction model proposed in this study, we merge the
previous topic model results and the quantitative index for patents, which is described in Table 3
and used the AdaBoost algorithm. In order to compare the performance of the proposed method,
performance comparison tests are performed with K-nearest neighbor classifier (K-NN), support vector
machine (SVM), and neural network algorithm, which are representative classification algorithms.
The performance measures use the accuracy, sensitivity, and specificity mentioned in Section 3. We also
discuss models that include technology topics and those that do not. The experimental results are
shown in Tables 8 and 9 and Figures 8 and 9. In Figures 8 and 9, NT refers to a model that does not
include the technology topic, and YT refers to a model that includes the technology topic.

Table 8. Performance measure of proposed model (include the technology topic information).
K-NN—K-nearest neighbor classifier, SVM—support vector machine.

The Proposed Model K-NN SVM Neural Network
Accuracy 0.774 0.675 0.750 0.643
Sensitivity 0.435 0.113 0.258 0.343
Specificity 0.913 0.907 0.953 0.79

Table 9. Performance measure of proposed model (not including the technology topic information).

The Proposed Model K-NN SVM Neural Network
Accuracy 0.726 0.684 0.708 0.657
Sensitivity 0.339 0.210 0.145 0.357
Specificity 0.887 0.880 0.940 0.804
3 Calegory g Category
£ oa | Ly iy | B
§ g H-
A Proposed Model HeNN Neurainet SVM ” A Propased Model L0 Neuralnat VM
m Algorithm
(a) (b)

Figure 8. (a) The accuracy of a proposed model and others; (b) The specificity of a proposed model and
others. NT—model that does not include the technology topic; YT—model that includes the technology
topic. K-NN—K-nearest neighbor classifier, SVM—support vector machine.
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0.01

0.3

Category

.NT

Sensitivity
o
L~

A Proposed Model Neurainet SVM
Algonlhrn

Figure 9. The sensitivity of proposed model and others.

We compared models that include the technology topic with ones that do not include it. The result
is shown in the following. The classification performance of the technology transfer prediction model
including the technology information from the literature is superior to the model that does not include
the literature information. The sensitivity of the model that does not contain the technical content
is notably lower than that of the model that includes the technical information because overfitting
occurs in the model. Therefore, it can be assumed that technology information is an important factor
in predicting technology transfer.

Next, we generated models using the proposed method and other models for comparison, which
were based on classifiers such as K-nearest neighbor classifier (K-NN), support vector machine (SVM),
and neural network, respectively. The K-NN is simple in structure but has an excellent performance.
For this reason, it is used in many classification problems [33-36]. The support vector machine and
the neural network are also well known to have excellent classification performance and are applied
in various fields [37-40]. As a result of the comparison between the proposed model in this study
and the other classifiers mentioned above, the accuracy of the models was found to be similar overall.
However, in terms of the sensitivity and the specificity, which indicates the true positive and the true
negative, respectively, there was a significant difference between the proposed model and the other
models. In particular, the sensitivity and specificity of the other models we compared were lower than
those of the proposed model. This seems to be because of the overfitting of the model. These results
show that the proposed model performs better than the other models do in the case of technology
transfer prediction. It can, therefore, be inferred that the proposed model based on patent data in this
study is suitable for predicting technology transfer.

5. Discussion

The advancement of science and technology has made human life more convenient than ever,
but competition in society has also become very intense. In today’s technology-intensive market
environment, companies strive to survive through sustained growth. Such efforts are made in a
variety of ways, such as self-driving car alliance. Technology transfer is also a management strategy
for maintaining technological competitiveness and sustaining the growth of companies. Previously,
studies using surveys or patent data have been conducted to promote technology transfer, but no
systematic model was suggested.

This study proposes a predictive model of technology transfer based on an ensemble method
to support the continuous growth of enterprises and countries. The proposed model can predict the
transferability of patents. In the experimental results, the proposed model showed better classification
performance than the other models. If companies or research institutes use the predicted results, it is
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possible to select patents with a high potential for being transferred, which can increase the success
rates of the transactions. The capital acquired through technology transfer can be reinvested in the
activities for continuous growth of enterprises or research institutes.

In future work, we expect to improve the generalization performance of the model by using
various technical data. In addition, it is necessary to develop an additional algorithm that is able to
enhance the performance of prediction.

6. Conclusions

In recent years, intellectual property has become an indispensable element for the sustainable
growth of a corporation. A lot of technology-intensive companies have tried to maintain their
competitiveness directly through technological research and development. As a method of
technological development is the pursuit of convergence, these days, it is difficult to secure
competitiveness using traditional methods. As an alternative, technology transfer is becoming widely
used. Technology transfer should be encouraged because not only companies, but also universities
and research institutes that have developed technologies, are able to acquire opportunities to create
new technologies through such transfers.

Previous work has been studied to find the factors needed to predict technology transfers.
In addition, models that only consider either quantitative elements or technical content have been
proposed. However, these studies have not focused on a technology transfer prediction model that
considers both of them. In this study, we proposed a methodology for predicting technology transfer to
enable more effective technology transfers. LDA was used to take into account the technical contents
of the collected patent data. Its results were used as variables for the proposed model to represent
patent technologies. Also, quantitative factors of the patents were extracted. The technology transfer
prediction model based on both the result of the LDA and the quantitative patent variables was finally
produced using the AdaBoost algorithm, which is a representative ensemble method. As a result,
it was confirmed that the accuracy, sensitivity, and specificity of the proposed model were superior to
those of the other methods we compared.

Through the outcome of our study, we were able to predict technology transfer, and the following
advantages are expected. There are differences in the quantitative elements of patents in each
technology area. Therefore, there is a limitation in that it is challenging to generalize when attempting
a technology transfer prediction using only quantitative patent factors. The proposed model is able
to reflect the technology field, and it is also sufficient to cover the difference of quantitative factors
existing in each technical area as information on technology is included. Also, it is expected that the
result of the technology transfer prediction can be taken into consideration when evaluating the value
of a technology.
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