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Abstract: Due to its significant roles in post-fire responses of forest ecosystem, numerous studies
have been investigating factors affecting burn severity. In the broad sense, topography, fuels, and
fire weather, known as the forest fire triangle, determine the degree of burn severity. Most previous
studies have adopted ordinary least squares (OLS) methods to investigate these factors, which
have proven effective for capturing the direct and linear effects of those variables on burn severity.
However, they oversimplify the relationships among variables and have limitations in explaining
the complex effects of the variables. One way to overcome this limitation is the structural equation
model (SEM) method. SEM can decompose effects of a variable into direct effects and indirect (i.e.,
acting through other variables) effects. The goal of this study is to capture a systematic structure,
explaining how topographic characteristics including slope, elevation, topographic wetness index
(TWI), solar radiation index (SRI), and susceptible forest cover type (i.e., Japanese red pine) affect
burn severity. We built a hypothetical SEM and estimated the model in AMOS. The results strongly
suggest that the effects of topographic characteristics are far more complex than those suggested
by the OLS analyses in previous studies. Specifically, elevation and TWI had direct and indirect
negative effects on burn severity, while slope and SRI had only an indirect positive effect, which was
not captured in the linear regression model. Nonetheless, the percentage of red pine showed the
strongest positive effect on burn severity (i.e., increasing burn severity). The results of this study and
those of previous studies reinforce the importance of controlling susceptible forest cover through
forest management and silviculture.

Keywords: structural equation model; burn severity; TWI; SRI; Japanese red pine; topography; path
analysis; AMOS

1. Introduction

Forest fires create a unique mosaic of burn severity that has considerable impact on post-fire
biotic and abiotic characteristics and on the dynamics and complexity of the forest ecosystem
at various spatial and temporal scales [1–4]. In the forest fire literature, burn severity has been
shown to be strongly associated with avian and small mammal responses [5], soil properties [6,7],
species diversity [8], net forest primary production [9], seed germination [10,11], landscape
heterogeneity [11–14], tree mortality [15,16], and tree regeneration and responses [7,17–21]. Thus,
effective fire-resilient forest management and restoration of burned areas must be practiced on the
basis of a clear understanding of how burn severity is determined by various environmental variables.

However, the roles of environmental variables in determining the burn severity of a fire event
are poorly understood, in part due to the spatially varying and non-linear effects of environmental
variables on burn severity [22,23] and the dynamics and complexity of environmental interactions.
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From this time forward, it can no longer be excusable that our understanding of the relationships of
environmental variables with burn severity is far from their true nature.

Burn severity is determined largely by weather, fuel, and topography (known as the forest
fire triangle). The primary characteristics of topography that affect burn severity, as described
in previous studies, include elevation, slope, aspect, topographic position, solar radiation, and
topographic wetness [22–25]. In the fire literature, weather is described as having two aspects, climate
and fire weather. Climate reflects long-term precipitation, temperature, relative moisture, solar
radiation, drought, and wind at a broad temporal and spatial scale, whereas fire weather is associated
with site-specific weather conditions during a burning event [26–28]. Many previous studies have
reported that fuel is the key component in determining burn severity, and some examples of critical
characteristics of fuels affecting burn severity include fuel type, tree density, fuel moisture, and spatial
distribution and heterogeneity of fuel [4,20,25]. When evaluating the relationships of environmental
variables with burn severity, most previous studies have investigated simple, linear, and stationary
relationships, which may not be sufficient to delineate the complex nature of the relationships. Recently,
Lee et al. [22] reported that the relationship between susceptible tree cover and burn severity might not
be constant over space (i.e., non-stationary effects). In their study, they estimated a conventional
regression model (i.e., stationary model) and a geographically weighted regression model (i.e.,
non-stationary model) for burn severity with Japanese red pine trees and compared their performance
in predicting burn severity. The comparison of the two models clearly indicated that the non-stationary
model explained the variance of burn severity much better than the conventional regression, suggesting
spatially varying effects of red pine trees on burn severity. Similarly, Lee et al. [23] demonstrated that
there might be non-linear relationships between topographic variables and burn severity, while red
pine trees showed a linear relationship with burn severity. Nelson [29] also reported non-linear effects
of weather characteristics on burn severity. The results of these recent studies provide an interesting
glimpse into the complex relationships between environmental variables and burn severity, but a large
portion of such complex relationships remain unclear.

This study aimed to investigate structural relationships of topographic characteristics and red
pine trees with burn severity. Aside from spatially varying effects of susceptible fuels and non-linear
effects of topographic characteristics, some of the complex relationships between topographic
characteristics and burn severity might be associated with indirect effects of topographic characteristics
on burn severity through susceptible fuel (i.e., Japanese red pine trees). Direct effects of topographic
characteristics are site-specific topographic circumstances during a fire event. Meanwhile, indirect
effect can be considered as pre-fire, long-term conditions resulting from cumulative interactions among
topographic characteristics and red pine trees over time. The results of this study might fill some
gaps of our knowledge on the true nature of burn severity ensuing from complex interactions of
environmental variables and fuels.

2. Materials and Methods

2.1. Samcheok Fire

In April 2000, the Samcheok fire (37◦7′42”–37◦20′34” N, 129◦11′24”–129◦22′32” E) started from
a garbage burn site and eventually burned about 16,151 ha of red pine-dominated forests for nine
consecutive days in Samcheok Province, Korea (Figure 1). The fire, which was recorded as the largest
forest fire in Korea since 1960 [30], resulted in a unique burn mosaic over space. A number of studies
identified topographic complexity and highly heterogeneous spatial distributions of red pine trees
(Pinus densiflora), which is known to be the most susceptible tree in Korea (e.g., [20,22,23]) due to heavy
crown fuel load and highly flammable needles containing high concentrations of essential oils [21].
The pre-fire forest was dominated by Japanese red pine (Pinus densiflora Siebold and Zucc.) (Figure 1).
Other tree stands occupying the area included Korean white pine (Pinus koraiensis Siebold and Zucc.),
mixed forests, Mongolian oak (Quercus mongolica Fisch. ex Ledeb.), larch (Larix leptolepis Gordon), and
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Japanese alder (Alnus japonica (Thunb.) Steud) [30]. According to the Korean Forest Services, high
wind speed (26.8 m/s) and low relative humidity (7%) during the fire increased burn severity and fire
spread [30].
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Figure 1. Site of Samcheok fire (key map), pre-fire image acquired in 1999 (a), post-fire image acquired
in 2000 (b), and delta normalized burn ratio (dNBR) map (c). The pre-fire forest was dominated by
Japanese red pine (d). About 16,151 ha of densely forested area burned for nine consecutive days. The
dNBR map clearly shows that areas in the southeast were burned more severely.

In preliminary analysis, burn severity in the study areas significantly correlated with Japanese red
pine (r = 0.58) and mixed forest (r = −0.25), while significant correlations were not observed between
burn severity and Mongolian oak, Korean white pine, larch, Japanese alder and agricultural areas. The
preliminary analysis clearly showed that Japanese red pine forest cover was the most susceptible forest
cover the study areas.
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2.2. Unit for Spatial Analysis

For the spatial analysis, we generated 802 grid cells (500 m) over the study areas using Autodesk
Computer-aided Drafting (CAD) software version 2014 (Autodesk Inc., San Rafael, CA, US). The grid
CAD file was converted into a geographic information system (GIS) file with 802 polygons and a
unique identification code (ID) was assigned to each grid cell polygon. Multiple digital maps for burn
severity, red pine trees, elevation, slope, solar radiation index (SRI), and topographic wetness index
(TWI) were derived from multiple sources. The digital maps were converted into GRID format in the
GIS, and then the mean values of all selected variables within each grid cell polygon were computed
using the overlay function in GIS.

Unit of analysis (500 m) was determined with consideration on the largest data resolution. We
extracted dataset for analysis from multiple sources such as National Forest Classification Digital Map
(NFCDM, no resolution) to compute the percent of susceptible forest cover, LandSat images (30 m
resolution) to generate burn severity and DEM (50 m resolution) to capture topographic characteristics.
Thus, we had to determine analysis resolution based on the resolution of DEM (50 m resolution). Since
there was no clear-cut criteria in determining the analysis resolution with the largest data resolution,
we rationalized that analysis resolution had to be 10 times greater than the resolution of DEM to
capture the topographic characteristics (i.e., SRI, TWI). In addition, the spatial unit (i.e., size of the grid
cell polygon, 500 m) has been shown to be effective for capturing complex topographic characteristics
in the study areas [22,23,25].

2.3. Delineating Topography and Distribution of Red Pine Trees

As one part of the forest fire triangle, topographic characteristics have been shown to have
significant impacts on fire behavior. In the fire literature, numerous indictors have been proposed to
delineate topographic characteristics, effects of solar radiation on fuels, and spatial distributions of
forest cover types in the relationships of topographic characteristics with fire behavior. Some popular
topographic indicators implemented in the fire literatures are elevation, slope, aspect, TWI, SRI,
topographic position index, elevation relief ratio, heat load index, topographic roughness index, and
gullies (e.g., [20,22,23,31–35]). Despite the fact that each topographic indicator has its own advantages
in delineating topographic characteristics, we prefer simple indicators because it is easy to understand
study results and implement these into practice in forest management and silviculture for managers
and public officers. Another consideration is multicollinearity problems among indicators. According
to Lee et al. [23], most topographic indicators tend to be highly correlated, which could lead to low
model performance.

Based on these considerations, we selected elevation (m), slope (◦), TWI, and SRI to delineate
topographic characteristics in this study. Elevation and slope are the simplest measurements
and have been implemented in numerous previous studies to describe topographic characteristics
(e.g., [22,23,36–38]). SRI is a measure of the potential annual direct incident solar radiation at specific
location [39]. TWI is a measure of the availability of long-term soil moisture as affected by local slope
and drainage [40,41]. All topographic variables were computed with Digital Elevation Model (DEM,
50 m resolution), released by Korean Geographic Survey.

The percentage of red pine tree cover within a grid cell was computed using the National
Forest Classification Digital Map (NFCDM) released by the Korean Forest Service (KFS) in GIS Shape
file format. On the basis of satellite imagery (25 m resolution) and field survey data (1/25,000
scale), the NFCDM classifies forest cover based on three criteria, tree type, age group, and sub-layer.
Initially, the NFCDM identified 50 forest cover types, but we aggregated these into the 10 categories of
including mixed coniferous forest, broad-leaved forest, mixed forest, planted Japanese red pine forest,
planted Korean white pine forest, planted pitch pine forest, Japanese red pine forest, open forest, and
agricultural land. A digital tree cover map containing only Japanese red pine tree cover was extracted
from the aggregated forest cover map and converted into GRID format with 50 m resolution. Finally,
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the percentage of red pine trees within each grid cell was computed by overlaying the red pine tree
map layer onto the grid cell layer in GIS.

2.4. Mapping Burn Severity

Many previous studies have measured burn severity by the vegetation consumed by fire. This
study adopted the same approach and defined burn severity as the degree of change in vegetation.
Consumption of vegetation by fire causes a remarkable reduction in visible to near-infrared reflectance
that can be captured effectively by comparing pre-fire and post-fire satellite imagery. One of the most
popular methods for comparing pre-fire reflectance with post-fir reflectance of vegetation is the delta
normalized burn ratio (dNBR) (e.g., [8,22]; see [20] for more details on computing dNBR with multiple
bands). A number of studies have reported better performance in delineating burn severity with dNBR
than with other similar indexes (e.g., NDVI) (e.g., [42–45]), and it has been shown to be an effective
tool for capturing burn severity in Korean forests (e.g., [22,23,25,45]). To compute dNBR, we used
Landsat satellite images (30 m resolution) acquired in 1999 and 2000 and then calculated dNBR using
the Erdas 10.3 service pack (Leica Geosystems, St. Gallen, Switzerland). The dNBR was then classified
into six classes ranging from extreme severity to low severity to unburned using the Remote Sensing
Application Center method [46]. Then, burn severity was validated with ground-measured composite
burn index (CBI) values surveyed from 25 plots. The classified burn severity was transformed into
GRID file format, and the mean burn severity in each grid cell polygon was computed in GIS using
the overlay function. In a broad sense, Class 5 (very high severity) and Class 6 (extreme severity)
are typified by nearly complete combustion of all litter, duff, and small logs, mortality of small trees,
and consumption of large tree crowns while Class 2 (low severity) indicates that the fire consumes
only light fuels including litters, small dead branches, or ground cover, together with scorching of the
crowns of medium-sized trees [46].

2.5. OLS and Hypothesized SEM

Ordinary least squares (OLS) approaches (i.e., linear regression models) are the most common
approaches used in forest fire studies investigating environmental factors affecting burn severity.
However, although OLS can be useful for examining direct influences of environmental variables,
especially effects of topography, fuels, and weather, on burn severity, it has limitations in revealing
complex relationships between environmental variables and burn severity. Recent studies have
reported that the effects of environmental variables on burn severity might not be linear or constant
over space and time [22,23,47]. Because of the nature of environmental variables, they interact with
each other [47–50], and their interactions over space and time can modify and sometimes amplify their
effects on fire severity during a fire event. In such cases, the complex effects of environmental variables
on burn severity may not be predicted by a simple OLS method. To understand the causal mechanisms
better, structural equation models (SEM) can be useful tools for addressing complex sets of relationships
between environmental variables and burn severity. Whereas linear regression estimates direct simple
effects on burn severity, SEM specifies more complex systems of relationships of environmental
variables with burn severity, focusing on both direct effects of environmental variables on burn severity
and indirect effects on burn severity through other variables. The SEM approach has the advantage of
yielding consistent and unbiased estimates of unknown model parameters and allowing the researcher
to perform a global test of model fit. For SEM analysis, instead of using raw data, the variance and
covariance matrix is used. The main idea of SEM is to compare the variance/covariance matrix of
observed variables with an implied variance matrix, a simpler underlying structure, yielded by SEM.
An important aspect of both OLS and SEM is estimating unknown parameters (regression coefficients
and path coefficients); however, the methods of estimation are different. Unlike standard regression
using OLS, the maximum likelihood (ML) method, which finds the maximum value of the joint
probability of continuous sample observations, is commonly used for SEM.



Sustainability 2018, 10, 2473 6 of 15

We used AMOS (SPSS, IBM, Inc.) structural equation modeling software to conduct SEM to
estimate a complex set of causal relationships between burn severity, topographic variables, and red
pine trees. Figure 2 illustrates the hypothesized model for initial estimation in this study. In the
hypothesized model, slope and elevation were considered as exogenous variables and SRI, TWI, and
percentage of red pine trees were entered as endogenous variables. Thus, slope and elevation can
have both direct impacts on burn severity and indirect impacts on burn severity through SRI, TWI,
and the percentage of red pine trees. In the model, SRI, TWI, and the percentage of red pine trees
were hypothesized to be affected by slope and elevation and, at the same time, to affect burn severity.
Standardized path coefficients were used to compare the relative magnitudes of predictors on target
variables (p < 0.05). To estimate SEM, we used the bootstrapping method, which generates repeated
estimates of the indirect effects. Using this method, multiple mediators were tested simultaneously, and
indirect effects were assessed through 95% bias-corrected confidence intervals. Finally, we compared
the results of the SEM path analysis with the results of linear regression.
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Figure 2. Hypothesized structural equation model. The hypothesized model indicates that slope
and elevation have direct and indirect impacts on burn severity. They influence SRI, TWI, and the
percentage of red pine trees, which have significant effects of the degree of burn severity.

2.6. Testing the Goodness of Fit of the Estimated SEM

A number of indices have been used to test the goodness of fit of an estimated SEM. The χ2 test
is one of the commonly used indicators, but it is known to be sensitive to sample size [51], so some
supplementary measures have been developed [52,53]. In this study, we used several criteria suggested
in previous studies to test the model fit, including the goodness-of-fit index (GFI > 0.9), adjusted
goodness-of-fit index (AGFI > 0.8), comparative fit index (CFI > 0.9), root mean square residuals (RMSR
< 0.1), root mean square error of approximation (RMSEA < 0.6), normed fit index (NFI > 0.9), and
parsimony normed fit index (PNFI > 0.9) [53].

3. Results

3.1. Profile of Variables and Their Relationships

Complex topographic characteristics and great variations of SRI, TWI, the percent of red pine
trees, and burn severity over space have been well documented in previous studies (e.g., [22,23,25]).
Descriptive statistics demonstrate considerable variations in slope and elevation, suggesting complex
topographic characteristics of the site. Specifically, slope ranges from 0.05◦ to 28.341◦ and has a mean
value of 15.283◦. Elevation ranges from 0 m to 849.5 m and has a mean value of 254.86 m. High standard
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deviations of slope and elevation suggest great spatial variance of these variables. Accordingly, SRI
has a wide range of 0.67 to 1.04, with a mean value of 0.88. TWI ranges from 1.24 to 5.67, with a
mean value of 2.46. The percentage of red pine trees ranges from 0 to 100%, with a mean value of
58.24%, suggesting a very selective and aggregated distribution of red pine trees within the study
areas. The mean value of the percentage of red pine trees within grid cells was 3.88 and the range
was 1.5 to 5.73 (Table 1). According to a previous study [33], the burn severity was likely low in grid
cells with low elevation (r = −0.25) and low TWI (r = −0.15). On the contrary, the burn severity was
likely high in grid cells dominated by red pine trees (r = 0.47). A strong positive association between
slope and elevation was observed (r = 0.69), suggesting that the mean slope was steep in cell grids in
high elevation areas. Additionally, grid cells in high elevation areas were likely have fewer pine trees
(r = −0.42). TWI showed relatively strong associations with elevation (r = −0.57) and slope (r = −0.65)
compared with the associations between SRI and elevation (r = −0.14) and slope (r = −0.37).

Table 1. Profile of the variables including unit, range, minimum, maximum, median, and mean. The
considerable variance in slope and elevation suggests the geographical complexity of the study site.
The great variance of the percentage of red pine trees indicates an aggregated distribution of red pine
trees over space.

Variable Unit Min Max Median Mean (SD)

Slope ◦ 0.05 28.34 15.62 15.28 (5.56)
Elevation meter 0.00 849.50 197.28 254.86 (204.73)

SRI unitless 0.67 1.04 0.89 0.88 (0.07)
TWI unitless 1.24 5.67 2.41 2.46 (0.62)

% red pine % 0.00 100 64.62 58.24 (35.09)
Burn severity 6 classes 1.50 5.73 3.87 3.88 (0.67)

n = 802.

3.2. Multiple Linear Regression

The estimated linear regression model for burn severity indicated that elevation (b = −0.001,
β = −0.27, p < 0.01) and TWI (b = −0.305, β = −0.29, p < 0.01) could reduce the degree of burn severity,
while the percentage of pine trees (b = 0.007, β = 0.34, p < 0.01) could amplify burn severity. However,
slope and SRI did not appear to have significant effects on burn severity (p < 0.05) and were removed
from the estimated model. The estimated linear regression model was able to explain about 27% of the
variance in burn severity (A. R-square = 0.266). The F-value of the estimated model was 97.64 (p < 0.01)
(Table 2). The linear model for burn severity (LMbs) with elevation, TWI, and percentage of red pine
trees is shown as Equation (1) below:

LMbs = 4.42 + (−0.001 × elevation) + (−0.305 × TWI) + (0.007 × %red pine) (1)

3.3. Estimated Structural Equation Model

In the hypothesized model, there were two exogenous variables—elevation and slope—and these
were covariate variables. The model also included three endogenous variables (i.e., SRI, TWI, % of red
pine trees) and one dependent variable (burn severity). We estimated the initial structural equation
model for burn severity with the two exogenous variables and three endogenous variables in SPSS
AMOS. In the estimated initial model (Figure 3), slope showed negative effects on SRI (b = −0.007,
β = −0.519) and TWI (b = −0.056, β = −0.496) and a positive effect on the percentage of red pine
trees (b = 1.641, β = 0.260). However, the direct effect of slope on burn severity was not significant at
the 95% confidential level. Elevation appeared to have a positive effect on SRI (b = 0.0001, β = 0.216)
and negative effects on TWI (b = −0.001, β = −0.228) and the percentage of red pine (b = −0.113,
β = −0.774). Unlike slope, elevation showed a direct negative effect on burn severity (b = −0.001,
β = −0.261). Thus, SRI was decreased by slope and increased by elevation, while TWI was decreased
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by both slope and elevation. Irrespective of sign, the standardized coefficients suggested that SRI and
TWI values were more strongly affected by slope than elevation.

Table 2. Estimated regression results for burn severity. Standard errors are reported in parentheses. The
estimated model explained about 27% of the variance of burn severity. In this model, the percentage of
red pine trees increases the degree of burn severity, whereas elevation and TWI decrease burn severity.

Variable
Coefficient

t-Value
b β

Constant 4.42 - 28.84 **
Elevation −0.001 ** −0.26 −6.06 **

TWI −0.305 ** −0.28 −7.16 **
%Red pine trees 0.007 ** 0.34 9.52 **

F-value 97.64 **

Adjusted R-squared 0.266

** p < 0.01.
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Figure 3. The estimated structural equation model (SEM). Slope and elevation appeared to have
significant effects on SRI and TWI. The percentage of red pine trees was affected by slope, elevation,
SRI and TWI. Elevation, TWI, and the percentage of red pine trees had impacts on burn severity.
However, slope and SRI did not show significant effects on burn severity in the estimated SEM. Values
in parentheses are standardized coefficients.

In the estimated model, SRI showed a positive effect on the percentage of red pine trees
(b = 102.126, β = −0.213) but no significant effect on burn severity. It was hypothesized that TWI
had impacts on the percentage of red pine trees and burn severity, as shown in the hypothesized
model. TWI negatively affected the percentage of red pine (b = −20.102, β = −0.357) and burn severity
(b = −0.312, β = −0.292). In the hypothesized model, the percentage of red pine trees was affected by
slope, elevation, SRI, and TWI. The estimated initial model suggested that the percentage of red pine
trees would be positively affected by slope and SRI and negatively influenced by elevation and TWI. In
our hypothesized model, burn severity was affected by slope, elevation, SRI, TWI, and the percentage
of red pine trees. The estimated SEM partially supported the hypothesized model. Specifically, burn
severity was affected by elevation (b = −0.001, β = −0.261), TWI (b = −0.312, β = −0.292), and the
percentage of red pine trees (b = 0.007, β = 0.342). However, slope and SRI did not show any significant
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effects on burn severity (Table 3). This result was almost identical with the result of the linear regression
analysis in Table 2, which showed significant effects of elevation, TWI, and the percentage of red pine
trees and no significant effects of slope and SRI. Exclusion of the paths that showed no significance (i.e.,
from slope to SRI, from SRI to burn severity) at the significance level (Table 3) resulted in a simplified
structural equation model for burn severity with slope, elevation, SRI, TWI, and percentage of red
pine trees (Figure 4). Despite eliminating insignificant paths from the initial model, there were not
many changes in the coefficients of remaining paths. The SEMs of the initial model (Figure 3) and
the reduced model (Figure 4) were almost identical. There were only a few changes in coefficients of
the paths from red pine trees to burn severity, TWI to burn severity, and elevation to burn severity.
However, the changes were modest at best.

Table 3. Estimated initial SEM. Almost all paths in the hypothesized model were verified in the
estimated SEM. However, slope and SRI did not show significant effects on burn severity.

Path Coefficient S.E. C.R. P

SRI ← Slope −0.007 0.001 −11.617 ***
SRI ← Elevation 0.000 0.000 4.831 ***
TWI ← Slope −0.056 0.004 −13.741 ***
TWI ← Elevation −0.001 0.000 −6.318 ***

Red Pine ← Slope 1.641 0.296 5.543 ***
Red Pine ← Elevation −0.133 0.007 −18.815 ***
Red Pine ← SRI 102.126 15.014 6.802 ***
Red Pine ← TWI −20.102 2.183 −9.209 ***

BS ← TWI −0.312 0.046 −6.780 ***
BS ← Elevation −0.001 0.000 −5.019 ***
BS ← Red pine 0.007 0.001 9.185 ***
BS ← Slope −0.001 0.006 −0.209 0.835
BS ← SRI 0.094 0.310 0.302 0.763

*** p < 0.001.
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3.4. Goodness of Fit

The initial model provided a good fit to the observed data. The χ2 value was 0.697, which was
not significant (p > 0.05), indicating that there was no significant difference between the observed
and implied variance/covariance matrix. The other goodness-of-fit indices also indicated a good fit
within the accepted exhortation levels: goodness-of-fit index (GFI) = 1.000, adjusted goodness-of-fit
index (AGFI) = 0.999, comparative fit index (CFI) = 1.000, root mean square error of approximation
(RMSEA) = 0.000, root mean square residual (RMR) = 0.044, normed fit index (NFI) = 1.000, and
parsimony normed fit index (PNFI) = 0.067. The root mean square residuals (RMSR) = 0.38. Despite
the fact that the PNFI and RMSR values did not satisfy the suggested criteria, the overall goodness of
fit of the estimated model seemed to be good enough (Table 4).

Table 4. Summary of initial and final model fit. Most of the recommended indices of the estimated
model [53] were in the acceptable range, with the exceptions of RMSR and PNFI.

Goodness-of-Fit Index Recommended Value Initial Model Final Model

χ2 Non-significant at p < 0.05 0.69 0.37
Goodness-of-fit index (GFI) >0.90 1.00 1.00

Adjusted goodness-of-fit index (AGFI) >0.80 0.99 0.99
Comparative fit index (CFI) >0.90 1.00 1.00

Root mean square residuals (RMSR) <0.10 0.38 0.38
Root mean square error of approximation (RMSEA) <0.08 0.00 0.00

Normed fit index (NFI) >0.90 1.00 1.00
Parsimony normed fit index (PNFI) >0.60 0.07 0.20

4. Discussion

SEM has been shown to be suited to exploring the mediation effects of intermediate variables
on the causal relationships of predictors with a dependent variable. SEM does not simply estimate
the direct effects that are often implicitly considered in an OLS analysis. Instead, it decomposes the
effects into direct effects and indirect effects acting through intermediate variables in the system.
In this context, the total effect could be significant, even if each of the direct or (and) indirect effects
are not significant.

The estimated SEM strongly indicated that the effects of topographic characteristics and
susceptible fuel on burn severity might be far more complex than we initially anticipated. In the fire
literature, the relationships of elevation and slope with burn severity have been portrayed somewhat
contradictorily. Positive relationships of elevation and slope with burn severity have been reported in
a number of studies (e.g., [54–56]). On the contrary, other studies have reported a negative effect of
elevation on burn severity (e.g., [16,39]) due in part to cooler temperatures and higher humidity [23].
Some of the possible reasons for these controversial results in previous studies and in this study are
complex interactions among the fire triangle (i.e., fuel, topography, and fire weather) during a fire
event [4,23,47–50,55], nonlinear effects [23,25,57], and spatially varying effects of topographic variables
on burn severity [22].

Equation (2) showed the method for computing the indirect effects of elevation on burn severity
with standardized coefficients. In Equation (2), the indirect effects of elevation on burn severity can
be understood as the sum of four indirect effects, the through SRI effect, through TWI effect, through
TWI–red pine effect, and through red pine effect. The sum of the estimated standardized indirect
effects of elevation on burn severity was −0.157 (Table 5). The total effect of elevation on burn severity
was the sum of the direct effect and indirect effect (Equation (3)). From this perspective, the effect of
elevation on burn severity could be decreased by both the direct effect of elevation and the indirect
effects derived from interactions of elevation with slope, SRI, TWI, and the percentage of red pine trees.
The estimated linear regression model (Equation (1)) suggested a negative (direct) effect of elevation
on burn severity. However, the estimated SEM (Figure 4, Equation (2)) strongly suggested that this
effect could be lowered further by TWI. On the contrary, SRI and the percentage of red pine trees could
increase burn severity indirectly.
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Table 5. Summary of direct and indirect effects of variables on burn severity and their 95% confidence
intervals. All of the standardized path coefficients of the variables indicated that elevation and TWI
had both direct and indirect effects on burn severity, while slope and SRI appeared to have only indirect
effects. The percentage of red pine trees seemed to have only a direct effect.

Variable
Effect Type (on
Burn Severity)

Path
Coefficient (β)

95% CI
p

Lower Upper

Elevation Direct −0.266
TWI Direct −0.285

Pine trees Direct 0.343
Elevation Indirect −0.157 −0.223 −0.094 0.002 **

Slope Indirect 0.253 0.199 0.317 0.001 **
TWI Indirect −0.123 −0.162 −0.09 0.001 **
SRI Indirect 0.073 0.049 0.105 0.001 **

** p < 0.01.

Indirect effectelevation on bs = Effect 1 βthrough SRI & pine = [(0.216 × 0.213 × 0.343)]
+ Effect 2 βthrough TWI= [(−0.228 × −0.285)] + Effect 3 βthrough TWI & pine

= [(−0.228 × −0.357 × 0.343)] + Effect 4 (βthrough pine) = [(−0.774 × 0.343)]
(2)

Total effect elevation on bs = Direct effect (β = −0.266) + Indirect effects (β = −0.157) (3)

Slope did not appear as a significant variable affecting burn severity directly in the estimated
linear model (Table 2, Equation (1)). Figure 4 supports the results of the linear regression analysis,
indicating no direct effects of slope on burn severity. However, slope showed indirect effects on burn
severity through SRI, through TWI, through SRI–red pine, through TWI–red pine, and through red
pine (Figure 4 and Table 5). The sum of the indirect effects and the total effect of slope on burn severity
(β = 0.253) could be computed by Equation (4). In this case, Equations (4) and (5) were identical
because the direct effect of slope was zero. However, the indirect effect of slope in Equation (5) and
Table 5 suggested that there was a total positive effect of slope on burn severity. Despite the fact that no
significant effect of slope on burn severity was observed in the linear regression model, the estimated
SEM identified a significant positive total effect of slope on burn severity.

Indirect effectslope on bs = Effect 1 (βthrough SRI&pine) = [(−0.519 × 0.213 × 0.343)]
+ Effect 2 (βthrough TWI) = [(−0.496 × −0.285)] + Effect 3 (βthrough TWI & pine) =

[(−0.496 × −0.357 × 0.343)] + Effect 4 (βthrough pine) = [(0.26 × 0.343)]
(4)

Total effectslope on bs = Direct effect (β = 0) + Indirect effects (β = 0.253) (5)

Similarly, SRI did not show a significant direct effect on burn severity. However, a modest but
significant indirect effect (i.e., through the percentage of red pine trees) of SRI (β = 0.073) on burn
severity was observed. Additionally, TWI was shown to have both direct (β = −0.285) and indirect
(β = −0.123) effects on burn severity (Table 5). The percentage of red pine trees appeared to have only
a direct effect on burn severity (β = 0.343).

Indirect effects, as reported in this study, might add another dimension to the complex
relationships between topographic characteristics and burn severity. As numerous studies [23,54–56]
discussed, topographic variables play a significant role not only during the burning event but also
during the long-term pre-fire conditioning of fuels (e.g., availability of susceptible fuels, long-term
moisture, composition/configuration of fuels, accumulation of ground fuels, etc.). The indirect effect
of topographic variables might be associated with the long-term pre-fire conditions of fuels, while
the direct effect might be related with interactions among fuels and fire weather during the burning
event. In sum, the results of this study and those of previous studies provide reasons for caution
with regard to over-simplification of the relationships between topographic characteristics and burn
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severity. However, the SEM estimated in this study reinforced the strong tie between susceptible forest
cover type and burn severity that has been reported in numerous previous studies irrespective of
geographic location.

5. Conclusions

Concern about the direct and indirect effects of topographic variables on burn severity has been
expressed in the literature. Direct effects can be regarded as the physical settings of a fire event, whereas
indirect effects can be considered to be related to the pre-fire conditions of fuel, such as composition,
configuration, density, average stand diameter, and long-term moisture. In this study, we were able
to distinguish direct effects and indirect effects of topographic characteristics by using the structural
equation model (SEM), which was able to decompose the effects of topographic variables into direct
and indirect types. From the estimated SEM, we found that elevation and topographic wetness index
(TWI) had both direct and indirect effects on burn severity. However, slope and solar radiation index
(SRI) appeared to have only indirect effects on burn severity, which could not be captured by the
conventional linear regression model.

The findings of previous studies and this study strongly suggest that over-simplification of the
relationships between topographic characteristics and burn severity might lead to false conceptions
about the effects of topographic variables on burn severity due to indirect, non-linear, and spatially
varying effects of topographic variables on burn severity. Additionally, the results of this study and
those of previous studies strongly suggest that conventional ordinary least square methods such
as correlation and linear regression cannot effectively capture these complex effects of topographic
characteristics on burn severity. Inconsistent effects of topographic characteristics on burn severity
have been reported in the fire literature, and we found that the effects of topographic characteristics
(e.g., elevation, slope, SRI, TWI) on burn severity are far more complex than previously recognized.

Nonetheless, the effect of susceptible forest cover on burn severity was consistent. Irrespective
of topographic complexity, Japanese red pine appeared to increase burn severity in Korean forests.
In this context, forest management and silviculture should pay closer attention to susceptible fuels
than to topographic characteristics. In addition, consideration of the topographic characteristics of
target areas might be a useful supplemental approach in forest management and silviculture. In
practical perspective, it might be an effective approach to consider the topographic characteristics and
distributions of susceptible forest cover together. For example, one needs to identify areas with high
SRI values and those that are covered by susceptible forest cover. Burn severity in areas covered by
susceptible forest cover (e.g., red pine trees) might not be higher than expected if TWI values were high,
because such topographic conditions could increase the moisture content of fuels. These approaches
may help forest managers in place-specific prioritization of areas requiring more/less intensive fuel
treatments, such as prescribed burning, mechanical thinning, or placing breaks. Thus, fuel treatments
of susceptible forest cover without consideration of topographic characteristics may not be efficient
in lowering burn severity. It was noteworthy that slope and SRI increased the percent of susceptible
forest cover (i.e., Japanese red pine), while elevation and TWI had the opposite effect in the study areas.
However, the roles of topographic characteristics in the distribution of susceptible forest cover may
depend on the types of susceptible forest cover. Different types of susceptible forest cover may prefer
totally different topographic conditions.

The spatial scale of this study was 500 m. However, investigating the direct and indirect effects of
topographic variables at a broader scale might have led to somewhat different conclusions. Subsequent
studies may need to consider different spatial scales or fire site scales. Due to a lack of weather data, we
were not able to integrate weather factors into the modeling of direct and indirect effects of topographic
variables on burn severity. Considering interactions of topographic characteristics with fuels and
weather factors might provide a more sophisticated result that could facilitate understanding of the
true nature of effects of topographic characteristics on burn severity and their relative importance
within the forest fire triangle.
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