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Abstract: The environmental impacts caused by construction waste have attracted increasing
attention in recent years. The effective management of construction waste is essential in order
to reduce negative environmental influences. Construction waste management (CWM) can be
viewed as a complex adaptive system, as it involves not only various factors (e.g., social, economic,
and environmental), but also different stakeholders (such as developers, contractors, designers,
and governmental departments) simultaneously. System dynamics (SD) and agent-based modeling
(ABM) are the two most popular approaches to deal with the complexity in CWM systems. However,
the two approaches have their own advantages and drawbacks. The aim of this research is to conduct
a comprehensive review and develop a novel model for combining the advantages of both SD and
ABM. The research findings revealed that two options can be considered when combining SD with
ABM; the two options are discussed.
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1. Introduction

With the fast urbanization and rapid growth of construction activities, the amount of construction
waste has been increasing significantly in past years [1–3]. In the United States, the generation of
construction debris was 530 million tons in 2013; cement concrete and asphalt concrete constituted the
top two components [4]. In the European Union (EU), it was reported that construction waste represents
approximately 25–30% of all EU waste; however, the recycling rate was very low [5]. In Hong Kong,
the generation of construction waste also took a great proportion of total solid waste, representing
about one third in 2014 and 2015, respectively [6]. It also encouraged the environmentally sound
management of construction waste in China [2,7,8]. From the above statistics, it can be seen that there
is an urgent need for effective construction waste management. So far, relevant waste management
policies and strategies have been investigated, such as waste effective design [9], on-site sorting [10],
barcode system [11], low waste technology [12], prefabrication [13,14], lean management [15], building
information modeling [16], etc.

The implementation of construction projects involves complexity and dynamics. Alvanchi, et al. [17]
claimed that the modeling of construction systems aims to improve construction work performance by
tracking the dynamic behavior of construction systems. From a systematics perspective, construction
waste management (CWM) can be viewed as a complex adaptive system (CAS). A CAS is defined
as “a system in which a perfect understanding of the individual parts does not automatically convey
a perfect understanding of the whole system’s behavior” [18]. It is a collection of individual agents
that are free to act in ways that are not totally predictable [19]. However, the actions of agents are
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interconnected, which makes it is possible to learn from experiences and adapt to changes according
to the external environment [20].

As CWM involves not only various factors (e.g., social, economic, environmental) but also
different stakeholders (such as developers, contractors, designers, and governmental departments)
simultaneously; thus, bearing the philosophy of complexity to investigate the routes of achieving
effective CWM has great research potential. Scholars have investigated the adaptive characteristics
of CWM systems in the literature. For example, Yuan and Wang [21] employed dynamic modeling
to investigate the economic effectiveness of CWM. Ding, et al. [22] simulated the environmental
performance of construction waste reduction management in China. Au, et al. [23] analyzed the
impacts of government charges on the disposal of construction waste.

System dynamics (SD) and agent-based modeling (ABM) are the two most commonly used
approaches for investigating the complexity in CWM. Each approach has its particular advantages and
drawbacks. For example, the method of SD, as a top–down approach, allows for convenient model
construction and validation. On the contrary, ABM, as a bottom–up approach, allows for sophisticated
interactions between agents and heterogenous state space [24]. Currently, the existing CWM studies
were conducted independently without combining the advantages of the two approaches. However,
the two approaches have great potential for combining with each other so as to be more powerful.
The aim of this research is to thoroughly investigate the applications of SD and ABM in CWM studies,
and to discuss the potential of combining the advantages of SD and ABM in order to comprehensively
deal with CWM complexities. The rest of this paper is organized as follows. Firstly, the SD and ABM
approaches are introduced in Section 2. Then, the applications of these two approaches in CWM
studies are reviewed and presented in Section 3. Subsequently, a comparison of the two approaches
is made, and discussions of the combination are made in Section 4. Finally, conclusions are given in
Section 5.

2. Overview of System Dynamics (SD) and Agent-Based Modeling (ABM)

Complexity science has attracted substantial attention from scholars in various disciplines, ranging
from physics, economics, and computer science to social science [25–27]. It deals with the nonlinear
relationships in a complex system, focusing on the characteristics and interaction rules among the
components. To explore the complexity in a complex system, system dynamics (SD) and agent-based
modeling (ABM) are the two most commonly used approaches.

2.1. System Dynamics (SD)

System Dynamics (SD) is a top–down information feedback method that was proposed
by Professor Forrester [28]. The essence of this method is the feedback structures with high
order, multiloop, and nonlinearity. SD is a well-developed approach for visualizing, analyzing,
and understanding complex dynamic feedbacks [29].

Diagramming tools, such as causal loop diagrams (CLDs) and stock–flow diagrams (SFDs),
are used to capture the structure of a complex system [30]. CLDs are able to map the feedback
structures of a complex system; they can show how the system is dynamically influenced by the
interactions of all of the variables. A CLD consists of variables connected by arrows; the arrows denote
the causal influences among the variables. Each causal link is assigned a polarity—either positive (+)
or negative (−)—to indicate how the dependent variables are influenced by the independent variables.
The important loops are highlighted by a loop identifier, showing whether the loops are positive
(reinforcing) or negative (balancing). An illustrative CLD is presented in Figure 1. A positive feedback
illustrates that a change in any of the variables within the causal loop will eventually affect itself in a
positive way, while a negative feedback means that a change on any variables within the causal loop
will affect itself in a negative way [22].
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variables and use integral or differential equations to represent the described information. Four 
building blocks are used to develop a quantitative SFD from a qualitative CLD: stock, flow, 
converter, and connector [31], as shown in Figure 2. Stocks create delays by accumulating the 
difference between the inflow and the outflow. By decoupling the rates of flows, stocks are the 
source of disequilibrium dynamics. Flows are the functions of the stock and other state variables and 
parameters [30]. The value of a flow can be positive or negative. A positive flow is an inflow that will 
fill in the stock, while a negative flow is an outflow draining from the stock. A convertor has a 
utilitarian role in selecting the proper values and functions of the parameters in the model, and a 
connector is an information transmitter connecting elements [32]. 
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A flow chart of the model development and simulation process is presented in Figure 3. From 
this figure, it can be seen that the basic procedure of an SD modeling covers the system analysis 
stage, the establishment of the conceptual model stage, the establishment of the quantitative model 
stage, the model verification stage, and the model simulation stage. 

Figure 1. An illustrative causal loop diagram (CLD).

The CLDs can successfully describe the basic logical structures; however, in order to conduct a
quantitative analysis, SFDs should be employed. SFDs can distinguish the nature of different variables
and use integral or differential equations to represent the described information. Four building
blocks are used to develop a quantitative SFD from a qualitative CLD: stock, flow, converter,
and connector [31], as shown in Figure 2. Stocks create delays by accumulating the difference between
the inflow and the outflow. By decoupling the rates of flows, stocks are the source of disequilibrium
dynamics. Flows are the functions of the stock and other state variables and parameters [30]. The value
of a flow can be positive or negative. A positive flow is an inflow that will fill in the stock, while a
negative flow is an outflow draining from the stock. A convertor has a utilitarian role in selecting
the proper values and functions of the parameters in the model, and a connector is an information
transmitter connecting elements [32].
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A flow chart of the model development and simulation process is presented in Figure 3. From this
figure, it can be seen that the basic procedure of an SD modeling covers the system analysis stage,
the establishment of the conceptual model stage, the establishment of the quantitative model stage,
the model verification stage, and the model simulation stage.
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Figure 3. A flow chart of system dynamics (SD) modeling.

2.2. Agent-Based Modeling (ABM)

In contrary to SD, agent-based modeling (ABM) is a bottom–up computational modeling approach.
By using ABM, the individual entities in a CAS are represented by discrete agents that interact
autonomously in a simulated space to produce emergent and non-intuitive outcomes at the population
level [33]. The interactions or communications among the agents are made according to a set
of predefined “rules” [34]. The rules governing individual agents’ behavior are influential to the
outcomes/predictions of ABM; thus, it is necessary to tightly couple all of the rule-based algorithms at
all of the stages of model development.

ABM can be implemented by programming languages (e.g., C, Java, and Python) or specialized
toolkits such as NetLogo, Swarm, and Repast. Generally, ABM follows an incremental modeling
process by starting from a simple model to a complex model [35]. This process is illustrated in Figure 4.
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3. The Application of SD and ABM in CWM Studies

Both SD and ABM have been used successfully to explore and understand CASs in different
disciplines [36]. The applications of SD and ABM in CWM studies are presented as follows.

3.1. The Application of SD in CWM Research

A CWM system involves various aspects: waste generation, reduction, reuse, recycling,
transportation, etc. Several factors can affect the process of CWM, such as environment-related
factors, economic-related factors, social-related factors, etc. There are interactions among these factors;
thus, it is necessary to select an appropriate technique to simulate the complex relationships. SD can
be used to investigate CWM systems, because it could not only precisely describe the cause–effect
relationships among the quantitative variables, it could also properly define qualitative variables.
A summary of SD application in CWM studies is shown in Table 1. From Table 1, it can be seen that
the previous studies mainly focused on the general aspects of CWM, such as policy, the environment,
the economy, society, and construction waste management issues. In terms of modeling software,
iThink, Vensim, and Stella are the most popular.

Table 1. Construction waste management (CWM)-related studies based on system dynamics (SD).

Topic Selected Paper Software Main Focus

Policy

[37] Vensim Develop an SD-based model to determine an optimal charging system that
could reduce construction waste generation and maximize waste recycling.

[38] Vensim
Assess the effectiveness of two policies (i.e., incentives and tax penalties) to
evaluate how the government can influence the behavior of firms in terms
of construction waste recycling.

[39] Vensim Evaluate the possible impacts arising from the application of prefabrication
on construction waste reduction.

Environment
[40] iThink Develop an SD-based model for evaluating the environmental performance

of CWM.

[22] Vensim Simulate the environmental performance of construction waste
reduction management.

Society [41] iThink Develop an SD-based model for quantitatively evaluating the social
performance of CWM to provide insights for an effective promotion.

Economy

[42] iThink Highlight the dynamics and interrelationships of CWM practices and
analyze the cost–benefit of this process.

[21] Vensim Investigate the economic effectiveness of CWM and provide insightful
recommendations for decision making.

[43] iThink Analyze the cost and benefit of CWM from the standpoint of the contractor,
and simulate the effects of economic compensations and penalties.

Policy–economy [44] Vensim Evaluate alternative types of recycling centers under different policy and
economy scenarios.

Environment–economy [45] Stella Evaluate the impacts of two alternatives (i.e., recycling and disposing)
for CWM.

Management

[46] Stella
Develop an SD-based model by incorporating the relationships of major
activities to assist practitioners in better understanding the complexity
of CDW.

[47] iThink Develop a simulation model that can better reveal the interrelationships of
factors during the on-site waste sorting process.

[48] Stella
Develop a model of on-site construction waste management.
The interconnections of the main activities are included in the model, with
a focus on planning and management.

[49] iThink
Develop a simulation model integrating four sub-systems including
construction waste generation, on-site waste sorting, waste landfill,
and public filling.

[50] iThink
Propose a model that can serve as a decision support tool for construction
waste reduction and provide a platform for simulating the effects of
various reduction strategies.

[51] Stella Examine the complexity of CWM by analyzing waste generation,
transportation, recycling, landfilling, and illegal dumping.
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Although SD has been successfully employed in CWM research, some limitations were identified
during application. Generally speaking, the SD model is based on the idea that all of the dynamics
occur due to the accumulation of flows in stocks. Through a literature review, it was found that
SD models did not provide an appropriate means to depict individual differences (e.g., various
waste management participants’ preferences and waste collection levels). For instance, the SD model
established by Yuan, et al. [42] only showed that the environmental awareness had an influence on
waste generation and recycling. In other words, it was assumed that the interaction differences between
related stakeholders (e.g., contractors, governments, designers) and the information distribution among
them are homogeneous. However, in reality, the environmental awareness of different stakeholders is
different; the environmental awareness among stakeholders may interact with each other. Thus, SD has
a drawback that cannot provide full interpretations of how the microscopic stakeholders’ behavior
would affect the emergent macro phenomena. It is necessary to explore a solution to investigate CWM
more comprehensively.

3.2. The Application of ABM in CWM Research

A CWM system involves various stakeholders, such as contractors, developers, transportation
companies, recycling/landfilling centers, government departments, etc. These stakeholders are
adaptable to the environment; they can communicate with the environment to change their behavior
through continuous learning and the accumulation of experience. Hence, a bottom–up ABM method
is capable of bridging the gap between microscopic behavior and macro phenomena in a CWM
system [52].

Previous research using ABM primarily focused on the treatment alternatives of construction
waste. Based on empirical data, Knoeri, et al. [53] presented an ABM of the Swiss recycled construction
material market. It was found that raising construction stakeholders’ awareness of recycled materials
in combination with small price incentives was most effective for promoting the use of recycled
materials. Gan and Cheng [54] employed ABM to analyze the dynamic network of a backfill supply
chain so as to maximize the backfill recovery and reduce the amount of construction waste to landfills.
Ding, et al. [55] developed an ABM for simulating CWM measures to reveal interactions between
the primary stakeholders and impacts on the environment. The construction waste generation and
effects of various policies were investigated. In terms of the waste generated from demolition activities,
Ding, et al. [56] compared the differences of environmental impacts between green demolition and
traditional dismantling using the ABM method.

From the above research, it can be concluded that ABM is more applicable to simulate a dynamic
system due to its decentralization and fast reaction to unexpected disturbances. ABM has the advantage
of direct one-to-one mapping between real and virtual agents in terms of parameter acquisition from
experiments and model validation. In a CWM simulation model, agents are divided according
to CWM stakeholders, such as construction enterprises, demolition companies, and transportation
companies. Each agent has its own states, attributes, and behavior, allowing ABM to investigate
system complexity and interactions from a lower individual agent level to emergent results at a higher
level [57]. ABM generally focuses on micro-level interactions that may explain emergent patterns
such as waste environmental performance at a system level. However, it ignores the feedback effect
of various social and economic factors on the individuals. For example, in the ABM developed by
Ding, et al. [55], the interactions between the agents and the economic and social environment were
not considered.

4. Discussion

From the above literature review, it can be seen that both SD and ABM have been successfully
applied to investigate CWM-related studies. However, there are drawbacks for each approach. It is
worthwhile to explore the possibility of combining the advantages of the two approaches.
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4.1. Comparison of SD and ABM

Both SD and ABM can explore complexity problems in a CAS; however, there are differences
between the two approaches:

• SD is usually used to analyze problems from a macro and holistic-thinking perspective. It is
a “top–down” modeling approach that can avoid the limitations of one-sided thinking (e.g.,
the micro perspective) and help understand the structure behind a complex phenomenon [58].
An SD model can be used to study a dynamic evolution process under different situations.
The philosophical foundation is reductionism. Reductionism is a process of breaking complex
entities, concepts, or phenomena down into their smallest constituents; it can transform ideas
into simple forms [59]. However, SD is often criticized, because a complex system cannot be fully
understood by just dealing with a single discipline. In terms of the CWM system, SD cannot give
a profound explanation of the micro behaviors in the system, because it ignores the relationship
between the macro behavior and micro behavior.

• ABM provides a dynamic approach by building a virtual system. It follows a “bottom–up”
procedure that emphasizes the spatial or social interactions between individuals and their
environment [60]. The philosophical foundation is syncretism. The importance of holistic analysis
is emphasized; meanwhile, the composing parts are also involved [61]. ABM is an effective
cross-scale modeling method that combines time dimension with space dimension, and bears the
characteristics of heterogeneity, space discretization, time discretization, and discrete states [60].
Through computer simulation, the microscopic mechanism of complex macro phenomena can be
revealed. However, Wang and Deisboeck [62] claimed that ABM also has some weaknesses. Firstly,
it is too detailed to simulate over a long period because of the large number of parameters and
rules, which makes parameter identification difficult and requires extensive sensitivity analyses to
determine the prediction robustness. Secondly, ABM is sensitive to small variations; thus, current
ABM can only process a relatively small number of agents. Thirdly, ABM ignores the interactions
between agents and macro factors.

In summary, SD and ABM have their own advantages and disadvantages for analyzing complex
systems. SD focuses on the “flow” relationships and feedbacks that can longitudinally simulate a
system’s dynamic behavior. It is appropriate to analyze the interactions between different elements
and cumulative longitudinal effects. However, spatial factors are not covered in the SD modeling
process. In contrast, ABM considers the spatial interactions. However, the feedback effect of various
social and economic factors on agents is ignored. A more detailed comparison is presented in Figure 5.
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4.2. Combination of SD and ABM for CWM Research

Considering the advantages and drawbacks of SD and ABM, a combination of the two approaches
is essential in order to overcome their limitations:

(1) SD models cannot consider different levels of aggregation; however, ABM has the ability to
capture a fine level of detail. Thus, SD can have the highest abstraction level, and ABM can be
used at lower abstraction levels, varying the nature and scale of elements [63,64].

(2) SD ignores the effects of heterogeneous mixing; each stock consists of homogeneous elements.
Thus, distinctions within the elements (i.e., heterogeneities of any kind) have to be modeled
by adding new stocks. However, the heterogeneous agents can be easily established by using
ABM [65].

(3) SD is equation-based, and needs quantified relationships between variables; thus, it is not suitable
for complex systems with unknown structures. However, ABM can reasonably represent complex
systems based on a limited number of relatively simple rules to reveal emergent behavior [36].

The combination of SD and ABM has been attempted in other disciplines. For instance,
Größler, et al. [66] presented a software-based integration of SD and ABM that investigated supply
chain management. The results showed that Vensim and RePast can be used simultaneously to solve
the technical problem of combining the two methods. In the same vein, it is feasible to integrate SD
and ABM to solve complexity problems in the CWM field.

There are two options to integrate SD and ABM, as shown in Figure 6. The first option is the ABM
method, which is based on SD. This option models a certain number of objects on the macro level
(SD part), inside which agents are modeled at the micro level (ABM part). An illustration of the ABM
method based on SD for CWM is presented in Figure 7. The other option is the SD method based on
ABM. It models interactions of agents at the macro level (ABM part), and their internal structure at the
micro level (SD part). An example of the SD method based on ABM is given, as shown in Figure 8.
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waste management (CWM) is a complex adaptive system that involves not only various factors (e.g.,
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social, economic, and environmental) but also different stakeholders (such as developers, contractors,
designers, and governmental departments) simultaneously. Thus, it is necessary to investigate the
complexity of CWM based on complexity theories.

This paper reviewed the SD and ABM applications in the field of CWM. The findings revealed
that the economic, social, and environmental aspects of CWM have been investigated. SD and ABM
are totally different from each other: SD is a top–down modeling method that describes systems from a
macro perspective, requiring knowledge of the system relations and causalities. ABM, on the contrary,
is a bottom–up approach that models single acting entities of the system and the agents’ interactions
during simulation in order to determine the macro behavior of a system.

Both SD and ABM approaches have their advantages and drawbacks; thus, it is necessary to
combine the two approaches in order to achieve a more powerful approach. Two options are proposed
in this study for potential combination: namely, an ABM method based on SD, and an SD method based
on ABM. Based on the proposed combinations, further studies can be conducted to comprehensively
investigate the complexity in CWM-related systems.
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