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Abstract: In recent years, the international community has placed great emphasis on environmental
protection issues. The United Nations has also successively enacted relevant laws and regulations to
restrain international greenhouse gas emissions and some countries implemented carbon tax levies
to reduce air pollution. The tire industry is a manufacturing industry with high pollution and high
carbon emissions; therefore, the purpose of this paper is to propose a framework of production
planning and control with carbon tax under Industry 4.0 and use the tire industry as the illustrative
example. In this framework, the mathematical programming model, with Activity-Based Costing
(ABC) and Theory of Constraints (TOC) for production planning, is used to achieve the optimal
solution under various production and sale constraints in order to find the optimal product-mix
maximizing the profit. On the other hand, Industry 4.0 utilizes new technologies such as 3D printing,
robot and automated guided vehicle (AGV) and links all the components in the manufacturing
systems by using various sensor systems, Cyber-Physical Systems (CPS) and Internet of Things (IoT)
to collect and monitor the activity data of all the components in real-time, to give intelligent responses
to various problems that may arise in the factory by the real-time analysis results of cloud computing
and big data and to attain the various benefits of Industry 4.0 implementation. The parameters of the
mathematical programming model will be updated periodically from the new big data set. In this
paper, an illustrative example is used is used to demonstrate the application of the model. From the
optimal solution and sensitivity analyses on increasing the raw material’s prices and carbon taxes
will affect the profits. This framework can provide a general approach to help companies execute
production management in the way of more efficiency, less cost, lower carbon emission and higher
quality across the value chain for the tire industry and other industries.

Keywords: Activity-Based Costing (ABC); Industry 4.0; tire industry; carbon emission; carbon tax;
mathematical programming; sustainability

1. Introduction

While Industry 4.0 has emerged in the manufacturing industry in recent years, the introduction
of Industry 4.0 in the manufacturing industry is still rare [1]. In recent years, consolidating the real
economy has been emphasized by governments at all levels as one of the important components of the
economy, thus, modern manufacturing industries are receiving great attention by related industries
and governments at all levels. Hermann et al. [2] pointed out that interoperability and modularity
result in the processing of huge amounts of data, as produced by these heterogeneous devices; data
processing and integration with other systems for industrial processes, including the core context of
Industry 4.0, remain research challenges.

In recent years, the international community has placed considerable emphasis on environmental
protection issues and the United Nations has also successively enacted relevant laws and regulations
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such as international greenhouse gas emissions and the 2015 Paris Accord (UNFCC, 2016), in the hope
that the environment we live in will not continue to deteriorate. Due to the developments of science and
technology and the result of high industrialization, anthropocentric greenhouse gases are continually
generated and accumulated, leading to increased global warming with deteriorating climate and
environmental ecology. In the past decade, it has been well recognized that environmental and
economic performance are mutually reinforcing, such as improved environmental performance leading
to lower costs, increased sales and raising economic efficiency. Different perspectives and empirical
studies suggest that more attention should be paid to the causal relationship between eco-efficiency
and different environmental management approaches [3,4], as well as their economic consequences.
For example, the implementation of the carbon tax will help to improve the environment.

The purpose of this paper is to propose a framework of production planning and control with
carbon tax under Industry 4.0 and use the tire industry as the illustrative example. This framework is
shown in Figure 1. In this framework, the mathematical programming model is used to imitate the real
situation of business to achieve the optimal solution under various production and sale constraints,
where Activity-Based Costing (ABC) [5] is used to calculate the accurate costs of activities and products
for the tire industry and Theory of Constraints (TOC) [6,7] is used to formulate the constraints related
to production and sale or cost-associated. This is the “production planning” part of the framework,
which will give the optimal production and sale target and the profit target in the manufacturing
operation for the management, that is, it uses the mathematical programming model to find the optimal
product-mix maximizing the profit under various constraints.
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On the other hand, the related technologies of Industry 4.0 are used to control the manufacturing
activities to achieve the profit and sale targets. Industry 4.0 is composed of three tiers of technologies
including the automation technologies for manufacturing activities, the Manufacturing Execution
Systems (MES) for shop floor control [8–11] and the Enterprise Resource Planning Systems (ERP) [12]
for big data analysis [13–15] and cloud computing [16]. That is, Industry 4.0 utilizes new technologies
such as 3D printing, robot and automated guided vehicle (AGV) [17,18] and links all the components
in the manufacturing systems by using various sensors systems, Cyber-Physical Systems (CPS) [19,20]
and Internet of Things (IoT) [15,21,22]. Then, the system will real-timely collect and monitor the
activity data of all the components and give intelligent responses to various problems that may arise
in the factory by the real-time analysis results of cloud computing and big data [22]. The parameters of
the mathematical programming model will be updated periodically from the new big data set. For
example, ABC cost parameters can be updated from more real data.

Based on the framework mentioned above, the remainder of this paper is organized into five
sections. Section 2 describes the research background of this research. Section 3 develops the green
production planning model for the tire industry with ABC and TOC. An illustrative example is
presented in Section 4 to demonstrate how to apply the model proposed in this paper and to conduct
the sensitivity analysis. Shop floor control under Industry 4.0 in Tire industry is explained in Section 5.
Finally, conclusions are presented in Section 6.

2. Research Background

2.1. Brief of Industry 4.0

The Industrial Internet of Things (IIoT) addresses the economic, ecological and social aspects
of sustainable value creation for manufacturers. The core of technology is more important than its
technical foundation and economic discussions are still in infancy. Using exploratory multi-case
research methods and semi-structured interviews with experts from manufacturing companies in
three major German industries, Kiel et al. [23] found that achieving sustainable industrial value
creation can be achieved through expanding technology integration of data and information. The rise
of the third industrial revolution was mainly driven by the computerization of manufacturing and
manufacturing processes supported by business processes and information technology, beginning
with the development of smart goods, three-dimensional printers and substantive core links [15]. The
development of the Internet of Things (IoT) and big data is the key concept and core of Industry 4.0.
The implementation of Industry 4.0 has had profound impact on industrial value creation. Therefore,
the relevance of the relevant opportunities and challenges in Industry 4.0 is studied. As a driving factor
for the implementation of Industry 4.0 in the context of sustainable development, different perspectives
are adopted from different company scales and industry sectors. It was found that strategy, operations,
environmental and social opportunities were positive drivers of Industry 4.0 implementation, while
competitiveness and future viability, as well as organizational and production challenges, hampered
its progress [24]. The system is continuously developed for a variety of industries, including big data,
personnel, animal or atmospheric phenomena and so forth it can instantly collect these constantly
updated data for analysis.

The world is currently facing the challenge of growing capital and consumer demand, while
ensuring sustainable human survival and environmental and economic development. In order to cope
with this challenge, industrial value creation must be sustainable and the development of Industry
4.0 offers tremendous opportunities for sustainable manufacturing. Recent research and practice
developments have outlined the different opportunities for sustainable manufacturing that showcase
Industry 4.0, which use cases of retrofitting manufacturing equipment as a specific opportunity
for sustainability [25]. The growth of Industry 4.0 requires more sustainable production plans to
continue producing high quality products. The intelligent production systems of the future will be
able to automatically configure the production of a variety of products and use it as the driver for
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the implementation of Industry 4.0 in terms of sustainable development [26,27]. Information needs
analysis can help reduce big data to smart data and identify possible contextual key elements. A
demonstration application has been developed for the provision of context-related information [28].

2.2. Green Production and Environmental Protection in the Tire Industry

In recent years, due to environmental concerns, new green manufacturing technologies have
been widely explored and applied to improve operation technology and have also been used in
the manufacturing investments [29–32]. In recent years, the issue of global warming has drawn
ever-greater attention and carbon taxes have been adopted by various countries, such as Denmark,
Norway, Sweden and the Netherlands, to reduce their carbon dioxide emissions. Economists and
international organizations demand the introduction of carbon taxes as a cost-effective way to decrease
greenhouse gas emissions [32,33]. Moreover, carbon duty guidelines can also promote the growth
and application of renewable power sources, lay a solid foundation for implementing environmental
measures and assist in the growth of the global economy [33–35]. With rapid technological progress,
the tire industry has been pushed to recognize the need for environmental protection for the sustainable
development of enterprises in regard to indispensable factors, such as raw materials. By embracing the
concept of environmental protection, processes and products must support care of the environment
and cherish resources, as well as improved product designs, equipment and surrounding operations.
In addition, with the increase in corporate social responsibility awareness, the tire industry must
consider the cost of carbon emissions, in order to accurately predict tire production costs and reduce
the impact on environmental pollution.

2.3. The Current Application of Industry 4.0 in Tire Industry

In recent years, the consolidation of the economy has been emphasized by governments at all levels
and this industrial production is classified as the Industrial Internet of Things (IoT) or Industry 4.0 [36];
the modern manufacturing industry receives great attention by related industry and governments at all
levels. Various industries are working hard to improve manufacturing efficiency [37]. Beier et al. [38]
proposed a way to support manufacturing execution systems to provide support for developers and
practitioners. As the tire production process is complex [39], the Manufacturing Execution System
(MES) in the tire production process becomes more complex. Due to the complexity of the tire process,
as compared with common process industries, the design of the system architecture and the realization
of an information network are much more complex; with the influence of many types of uncertain
factors in the production process, the difficulty of implementing MES is increased. Thus, we must
improve the traditional MES [8,9], as based on the actual situation of tire production processes, in
order to meet the requirements of tire production processes.

Since 2014, with the rise of German Industry 4.0, which proposed and implemented the big
data analytics architecture [40] and agenda, the data analysis of literature points out the existing
deficiencies and potential research directions as the foundation for future Industry 4.0 research and
related topics [41]. The tire manufacturing industry has had to abandon traditional manufacturing to
achieve intelligent chemical plants; the former labor-intensive production methods oriented throughout
the factory production process now sees workers replaced by smart robots. Workers only need to
confirm the key activities and adjustments and press a few buttons; intelligent robots can complete
the vast majority of work. Previous manual preparations of very heavy materials required a lot of
labor; now, the AGV car [17,18] will automatically carry the material to its destination. After the tires
are formed, the robot will automatically take the tire and move it directly to the next manufacturing
process. The entire process of things, people, tooling, equipment and location information intelligent
matching can truly achieve quality tracking and traceability, which enables the global tire industry
to achieve the whole process of an intelligent enterprise. Through Industry 4.0 intelligent plants, the
future tire industry can significantly reduce the labor intensity of employees, thus, enabling the product
to achieve high-end, high value-added, high quality and energy efficiency to reach the advanced global
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level. In the era of intelligent manufacturing [42], the tire industry has to seize the opportunity to
transition from a traditional manufacturing enterprise to an internet platform business.

2.4. Sustainability and Industry 4.0

Kamble et al. [43] proposed a sustainability Industry 4.0 framework which included three tiers:
(1) Industry 4.0 related technologies (IoT, Big data, Cloud computing, Simulation & prototype,
3D printing, Augmented reality and Robotic systems), (2) Process integration (Human-machine
collaboration, Shop floor-equipment) and (3) Sustainable outcomes (Economic, Process automation
and safety and Environmental protection). This framework means that companies can uses the related
technologies of Industry 4.0 to achieve the process integration which interconnect all the elements
(machines, equipment, people, work-in-process and products) of the manufacturing systems in order
to efficiently execute the manufacturing tasks using the least resources, time and energy and generating
least waste and emissions. This will result in three pillars of sustainability [25,44,45]: (1) economic
sustainability through using least resources, time and energy, (2) social sustainability through placing
importance on the right or health of employees, community and other stakeholders, (3) environmental
sustainability through using least energy, generating least waste and emission and recycling the
resources [46–50]. Sustainable Industry 4.0 concept was applied in supply chains [51,52] and industrial
value creation [23–25,45]; it also was investigated in different countries [38].

3. Production Planning Model with ABC and TOC

ABC was developed in mid-1980 and had been a general costing method since then. In the
model proposed in this paper, ABC is used to measure the costs of activities. ABC cost system can be
applied to solve the shortcomings of the traditional cost system. While traditional cost system allocates
factory (indirect) overhead to products by using the volume-related allocation bases (such as direct
labor, direct material and machine hour), ABC allocates factory (indirect) overhead to products by
using volume-related or volume-unrelated allocation bases which consider the causal relationship
between overhead and products [53,54]. Especially, two-stage ABC assignment method first assigns
the overhead (or resource) cost to activities by using resource drivers and then assigns activity costs to
products (or cost objects) by using activity drivers [55]. That is, activities is the intermediate of ABC
cost assignment and there are four levels of activities in the factory: (1) unit-level activities (performed
one time when a unit is produced such machining, 100% inspection, etc.), (2) batch-level activities
(performed one time for a batch such as material handling, set-up, scheduling, sampling inspection,
etc.), (3) product-level activities (performed one time for each kind of product such as product design,
advertising, etc.) and (4) facility-level activities (performed for maintaining the factory operation) [56].

The ABC method can be customized to analyze different types of board decision making, which
includes price and product-mix [56,57], environmental management [58], green building project,
strategy and construction method selection [59–62], green supply chain management [63,64], green
airline fleet planning [11], outsourcing solutions [65] and green airline fleet planning [66]. This article
applies mathematical programming models and analyzes the most profitable tire product mix using
the ABC approach. The ABC system has four benefits: (1) accurately identifying product costs and
expenses; (2) identifying activity drivers and obtaining accurate information on value-added and
non-value-added activity costs; (3) assigning costs to products or activities that consume resources by
a causal way; (4) determining of non-value-added activity costs to find the opportunities and priorities
of cost reduction [55,67]. These benefits can be applied to the ABC mathematical programming model
of the tire industry.

In addition, systematic analysis of overhead cost be used to find the optimal product mix decisions
through linear programming and TOC [56]. Patterson [68] focused on the concept of throughput
accounting, which directly links product mix solution to the TOC theory. Plenert’s (1993) [53] economic
planning includes using an integer linear programming method and TOC to find the optimal product
mix with various restricted capital. Tsai et al. [60] employed TOC-based arithmetic to obtain the best
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product mix solution. This study also uses the TOC approach to determine production priorities, as
this approach can be applied to a variety of study themes for deriving the best product mix [56–58,69].

When Germany introduced Industry 4.0 in 2011, it symbolized the beginning of the fourth
industrial revolution. While previous linear programming models were widely used to solve
production planning problems [70–75], another important feature combined with today’s Industry
4.0 [35] is the capability to gather and make use of large amounts of data. An important driver
behind Industry 4.0 is the internet and related connectivity elements, as used on the shop floor, enable
machines to communicate and collaborate for production control. Therefore, this paper considers
that these concepts can be used to solve the complex processes of producing tires and collect a large
amount of follow-up production and control data by means of the real-time interconnection, which
can propel the future research of the tire industry into the Industry 4.0 structure [25].

3.1. A Production Process for a Typical Tire Company

In the tire industry, the production process can be divided into six major activities: kneading,
pressing out, cutting off, forming, vulcanizing and inspecting: (1) Kneading (j = 1): All the rubber
materials, such as soot and so forth, are sent to a kneading machine, in order to change the strength
of the rubber, plastic, elasticity, durability and conduct mixed rubber manufacturing of tire products.
(2) Pressing out (j = 2): The pressing out activity applies glue and friction to produce heat to cook the
rubber. (3) Cutting off (j = 3): In the cutting-off activity, the product is sent to the cutting machine to cut
the tire size and add other different elements using the cutting machine. (4) Forming (j = 4): It is then
sent to the molding assembly to carry out the forming activity, with all the materials, strips and steel
rings, a prototype of the tire will be formed. (5) Vulcanizing (j = 5): The fifth activity is to carry out
the vulcanizing activity, which is to rearrange the rubber molecules; the heating and molding works
will be carried out by means of steam. (6) Inspecting (j = 6): The next inspecting activity is carried out
and the finished goods are transported to the warehouse. The tire manufacturing flow chart is shown
in Figure 2. In this model, assume that (1) these six activities are unit-level activities which use the
resources of direct material, direct labor and machine hour, (2) there is only one batch-level activity
considered in the model, that is, material handling and (3) it does not consider the product-level and
facility-level activities since their costs are included in the other fixed cost.
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3.2. Assumptions

In the production planning model proposed in this paper, there are the following assumptions:

1. The unit price of products remains unchanged within the relevant range of planning.
2. The unit direct material costs are constant within the relevant range of planning.
3. By working overtime with higher wage rates, direct labor resources can be expanded.
4. The activities required for the tire production process and their activity drivers and the resources

required for each activity and their resource drivers has been determined through ABC analyses.
5. There are hundreds of materials for producing tires. This paper assumes that the five materials

(natural rubber, soot, synthetic rubber, cord and bead) with the highest proportion in the
manufacturing process are used as the direct material inputs. Other materials are not included in
the research of this mathematical programming model.

6. Carbon tax cost is considered as a variable cost, which is dependent on the quantity of carbon
emissions and different carbon tax rates are used for different carbon tax ranges. Assume that all
kinds of emissions have been calculated to the carbon equivalent.

7. The data assumed in this study are in metric tons for carbon emission and U.S. dollars for
amounts, as shown in Table 1.

3.3. Green Production Planning Model

3.3.1. Notations

The following notations for variables and parameters were used in this paper:

Variables:

Qi the production quantity of product i for Company T;

∅1, ∅2
a set of 0–1 variables of SOS1 (special ordered set of type 1), where only one variable will be
non-zero [76,77];

ε1, ε2, ε3
a set of 0–1 variables of SOS1 (special ordered set of type 1), where only one variable will be
non-zero [76,77];

δ0, δ1, δ2,
δ3

a set of non-negative variables of SOS2 (special ordered set of type 2), where at most two
adjacent variables may be non-zero in the order of a given set [76,77];

φ0, φ1, φ2
a set of non-negative variables of SOS2 (special ordered set of type 2), where at most two
adjacent variables may be non-zero in the order of a given set [76,77];

bi the number of batches for material handling of product i;

Parameters:

Si the unit sales price of product i;
Ck the unit cost of the material k;
αik the requirements of material k for producing a unit of product i;
Wk the quantity of material k available for use;
LH0 the normal direct labor hours available;

LH1
the maximal working hours at the first overtime rate plus the normal direct labor hours
available;

LH2
the maximal working hours at the first and second overtime rate plus the normal direct labor
hours available;

LC0 total direct labor costs at the normal direct labor hours available (LH0);

LC1
total direct labor costs at the maximal working hours at the first overtime rate plus the normal
direct labor hours available (LH1);

LC2
total direct labor costs at the maximal working hours at the first and second overtime rate plus
the normal direct labor hours available (LH2);

ej the actual operating activity costs for each activity driver in activity j;
aij the number of machine hours required to produce one unit of product i in activity j = 1~6;



Sustainability 2018, 10, 3221 8 of 24

uij the number of machine hours required to transport one batch of product i in activity j = 7;
nij the quantity of product i for a batch in activity j;
li the requirement of direct labor hours for one unit of product i;
TDL total direct labor hours used from Equation (3);
MHj the number of machine hours available for activity j;

CEC1
the total carbon tax cost at the upper limit of total carbon emission quantity of the first carbon
tax range (CE1);

CEC2
the total carbon tax cost at the upper limit of total carbon emission quantity of the first carbon
tax range (CE2);

CEC3
the total carbon tax cost at the upper limit of total carbon emission quantity of the third carbon
tax range (CE3);

TCEQ the total quantity of carbon emission from Equation (15);
CE1 the upper limit of total carbon emission quantity of the first carbon tax range;
CE2 the upper limit of total carbon emission quantity of the second carbon tax range;
CE3 the upper limit of total carbon emission quantity of the third carbon tax range;
qi the cost of material handling for one batch of product i;
vi the quantity of carbon emission for producing one unit of product i.

3.3.2. The Objective Function

The objective function of the green production planning model under ABC and Industry 4.0 is to
maximize profit (π), as follows:

Maximize π = (Total revenue)− (Direct material cost)− (Direct labor cost)
−(Material handing cost)− (carbon tax cost)− (Other fixed cost)

Maximize π =
n
∑

i=1
SiQi −

s
∑

k=1

{
Ck

n
∑

i=1
(αikQi)

}
− {[LC0 +φ1(LC1 − LC0) +φ2(LC2 − LC0)]}

−
n
∑

i=1
uijbi − (CEC1δ1+CEC2δ2+CEC3δ3)− F

(1)
The profit function π in the model is shown in Equation (1). ∑n

i=1 SiQi, the first term of Equation
(1) is total revenue. ∑s

k=1 {Ck ∑n
i=1 (αikQi)}, the second term of Equation (1), is total direct material

cost. Direct labor cost is [LC0 +φ1(LC1 − LC0) + (φ2LC2 − LC0)] of Equation (1) in the third term.
∑n

i=1 uijbi of Equation (1) in the fourth term is the material handling cost, where the activity of material
handling is the batch-level activity. Carbon emission cost is (CEC1δ1 + CEC2δ2 +CEC3δ3) of Equation
(1) in the fifth term. Other fixed cost is F of Equation (1) in the sixth term. Tire environmental regulatory
costs, including the handling of regular inspections, the relevant costs and environmental standards
value specifications, in accordance with local government laws and regulations, are fixed costs, thus,
they can be expressed as a constant (USD $20,000 in the example data). Company T will make the
green product-mix decision based on the current capacity.

3.3.3. Direct Material Quantity Constraints

Total direct material cost is ∑s
k=1 {Ck ∑n

i=1 (αikQi)}, the second term of Equation (1) and the
associated constraint is shown in Equation (2):

Direct material quantity constraints:

n

∑
i=1

(αikQi) ≤Wk k = 1, 2, . . . , s (2)

where, αik is the requirements of material k for producing a unit of product i and Wk is the quantity of
material k available for use.
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3.3.4. Direct Labor Cost Function

Suppose that direct labor hours can be extended by overtime work at higher pay rates. The direct
labor cost function is shown in Figure 3. The normal labor hours available is LH0 and it can be extended
to LH1 and LH2; the total direct labor costs are LC0, LC1 and LC2 at LH0, LH1 and LH2, respectively.
The third term in Equation (1), that is, [LC0 +φ1(LC1 − LC0)+φ2(LC2 − LC0)] is the total direct labor
cost. LC0 is the cost of non-discretional labor hours and φ1(LC1 − LC0)+φ2(LC2 − LC0) is the cost of
total overtime work at two different higher pay rates. The constraints associated with direct labor are
shown in Equations (3)–(11):

Direct labor hour constraints:

TDL = l1Q1 + l2Q2 + l3Q3= LH0 +φ1(LH1 − LH0)+φ2(LH2 − LH0) (3)

φ0 −∅1 ≤ 0 (4)

φ1 −∅1 −∅2 ≤ 0 (5)

φ2 −∅2 ≤ 0 (6)

φ0 +φ1 +φ2 = 1 (7)

∅1 +∅2 = 1 (8)

0 ≤ φ0 ≤ 1 (9)

0 ≤ φ1 ≤ 1 (10)

0 ≤ φ2 ≤ 1 (11)
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The total direct labor constraint in Equation (3) is the TDL. ∅1 and ∅2 is a SOS1 set of 0–1 variables,
where only one of these variables will be non-zero;φ0,φ1 andφ2 is a SOS2 set of non-negative variables,
where there may be up to two adjacent variables in the order given to the group, which are non-zero.
If ∅1 = 1, then ∅2 = 0 from Equation (8), φ2 = 0 from Equation (6). φ0, φ1 ≤ 1 from Equations (4)
and (5) and φ0 + φ1 = 1 from Equation (7). Therefore, total direct labor hours and total labor costs
are LH0 +φ1(LH1 − LH0) and LC0 +φ1(LC1 − LC0), respectively. It means that the company works
overtime at the first overtime rate. On the other hand, if ∅2 = 1, then ∅1 = 0 from Equation (8), φ0 = 0
from Equation (4), φ1, φ2 ≤ 1 from Equations (5) and (6) and φ1 + φ2 = 1 from Equation (7). Thus, the
total direct labor hours required is LH0 +φ1(LH1 − LH0)+φ2(LH2 − LH0) from Equations (3) and
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total labor cost is LC0 +φ1(LC1 − LC0)+φ2(LC2 − LC0), respectively. It means there will be overtime
work at the second overtime rate.

3.3.5. Machine Hour Constraints

In the tire manufacturing process, each activity has a different machine for operation. Due to the
complexity of the tire manufacturing process, in this study, the mathematical programming model
assumes that the related cost of a machine for an activity is included in the fixed costs, F, meaning
the last term of Equation (1). Let aij be the number of machine hours required to produce one unit of
product i in activity j = 1, 2, 3, 4, 5, 6; Therefore, the associated machine hour constraints are shown in
Equation (12):

Machine hour constraints:

∑n
i=1 aijQi ≤ MHj, j = 1, 2, 3, 4, 5, 6 (12)

3.3.6. Batch-Level Activity Cost Function for Material Handling

In the tire manufacturing process, we must first obtain the relevant materials from the warehouse
for mixing operations and the finished goods are moved to the warehouse. In this study, we assume
the material from the warehouse is to be carried out at a specific number for a batch. Therefore, the
total material handling cost is ∑n

i=1 qibi and the constraints associated with material handling are
shown in Equations (13) and (14):

Material handing constraints:

Qi ≤ nijbi, i = 1, 2, 3, . . . , n, j = 7 (13)

∑n
i=1 uijbi ≤ MHj, j = 7 (14)

where, nij is the quantity of product i for a batch in activity j; bi is the number of batches for material
handling of product i; qi is the cost of material handling for one batch of product i; uij is the number
of machine hours required to transport one batch of product i in activity j = 7. Note that the material
required for each batch is transported in one time. Thus, Equation (13) is the constraint for the
production quantity for product i and Equation (14) is the constraint for the resource hours of material
handling. The total material handling cost is ∑n

i=1 uijbi, the fourth term of Equation (1).

3.3.7. Carbon Tax Function

Wang et al. [78] showed that levying taxes can slightly increase the GDP. Energy taxes have impact
on the cost of the energy industry due to rising energy costs. Shrinking production scale, capital
and labor may require transfer to low-energy, low-emission industries. Energy taxes can reduce the
concentration of air pollutants, thereby, improving air quality. In addition, the calculation of capital
and operating expenses is based on a simulation of carbon emissions and economic performance
under efficiency taxes, as based on the quality and energy balances obtained; the results show
that all of the assessed environmental impact indicators are performing well [79]. Therefore, such
economic, environmental and health improvement will have positive impact on the country’s energy
tax. According to Tsai et al. [31], the new green manufacturing technology (GMT) can reduce carbon
emissions and the cost of carbon emissions should be measured using the life cycle assessment (LCA)
method. LCA is a method to compare the impact on the environment from the fluoroscopy of the
entire life cycle of a technology, product, or service. Based on previous research, we consider all the
environmental impacts of carbon emissions in the tire manufacturing process. According to the method
of Ward and Chapman [80], Equation (15) is used to quantify carbon emissions. Since carbon emissions
are also considered taxable at different rates, the total carbon tax cost function is a piecewise linear
function, as shown in Figure 4. As carbon emissions increase, taxes will increase. Carbon emissions
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can be increased from CE1 to CE2 and CE3. Therefore, the total carbon tax costs are CEC1, CEC2 and
CEC3 at the quantities of CE1, CE2 and CE3, respectively. Total carbon tax cost is the fifth term in
Equation (1), as follows:

The total cost of carbon emission = CEC1 δ1 + CEC2 δ2 + CEC3 δ3

The constraints associated with carbon emissions are shown in Equations (15)–(21):
Carbon emission constraints:

TCEQ = v1Q1 + v2Q2 + v3Q3= CE1δ1 + CE2δ2 + CE3δ3 (15)

δ0 − ε1 ≤ 0 (16)

δ1 − ε1 − ε2 ≤ 0 (17)

δ2 − ε2 − ε3 ≤ 0 (18)

δ3 − ε3 ≤ 0 (19)

δ0 + δ1 + δ2 + δ3 = 1 (20)

ε1 + ε2 + ε3 = 1 (21)

Total carbon emission quantity is TCEQ = v1Q1 + v2Q2 + v3Q3= CEQ1 from Equation (15). In
Equations (16)–(21), (ε1, ε2, ε3) is a SOS1 set of 0–1 variables, where only one of these variables will be
non-zero from Equation (21). (δ0, δ1, δ2, δ3) is a SOS2 set of non-negative variables, where there may be
up to two adjacent variables in the order given to the group, which are non-zero. If ε1 = 1, then ε2, ε3 =
0 from Equation (21); δ2, δ3 = 0 from Equations (18) and (19); δ0, δ1 ≤ 1 from Equations (16) and (17);
and δ0 + δ1 = 1 from Equation (20). Thus, the total quantity of carbon emissions and the total carbon
tax cost are (CE1δ1) and (CEC1δ1), from Equation (15) and Equation (1), respectively. It means that
the quantity of carbon emission falls within the first range of carbon tax, that is, [0, CE1δ1]. If ε2 = 1,
then ε1, ε3 = 0 from Equation (21); δ0, δ3 = 0 from Equations (16) and (19); δ1, δ2 ≤ 1 from Equations
(17) and (18); and δ1 + δ2 = 1 from Equation (20). Thus, the total quantity of carbon emissions and
the total carbon tax cost are (CE1δ1 + CE2δ2) and (CEC1δ1 + CEC2δ2), respectively. It means that the
quantity of carbon emission falls within the second range of carbon tax, that is, [CE1δ1, CE2δ2]. If
ε3 = 1, similarly, it means that the quantity of carbon emissions falls within the third range of carbon
tax, that is, [CE2δ2, CE3δ3].
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4. Illustration

As an illustration, company T in the tire industry has been established in Taiwan for more than
50 years. There are 11 tire manufacturing companies in the world, with more than 24,000 worldwide
employees and paid-in capital exceeding 30 billion yuan. The main products are various kinds of tires
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and rubber products. Company T is used to illustrate how to apply the green decision-making model
proposed in this paper.

To implement air pollution control, tire companies have changed all heavy oil boilers to natural
gas boilers; however, this equipment exhausts gas for production process combustion and cannot
effectively reduce carbon emissions. As a result, carbon emissions have seriously affected air pollution
and have to be controlled.

4.1. Example Data and Optimal Decision Analysis

Assume that the following costs for producing the products of Company T have been calculated:
(1) direct material cost; (2) kneading activity cost; (3) squeeze out activity cost; (4) cut activity cost; (5)
forming activity cost; (6) vulcanization activity cost; (7) inspection activity cost; (8) material handing
activity cost; (9) carbon tax cost; (10) direct labor cost. Assume also that Company T has three main
products: PCR (Passenger Car Radial) (i = 1), TBR (Truck & Bus Radial) (i = 2) and MC (Motorcycle)
(i = 3) and that these products consume the same direct materials. In this illustration, the quantity
of each product is in the thousands and the cost and input costs are in U.S. dollars. The data for this
illustration are shown in Table 1. Total fixed cost is USD $20,000; the green product-mix decision model
is presented according to Equations (1)–(21), as follows:

Maximizeπ =
n
∑

i=1
SiQi −

s
∑

k=1

{
Ck

n
∑

i=1
(αikQi)

}
− [LC0 +φ1(LC1 − LC0) +φ2(LC2 − LC0)]

−(q1b1+q2b2+q3b3)− (CEC1δ1 + CEC2δ2 + CEC3δ3)− F
= (300Q1 + 1000Q2 + Q3)− (20× 4 + 10× 2 + 5× 5 + 37× 2 + 21× 2)Q1 − (20×
6 + 10× 10 + 5× 15 + 37× 6 + 21× 15)Q2 − (20× 2 + 10× 1 + 5× 2 + 37× 1 + 21×
1)Q3 − 7040− 3960φ1 − 8800φ2 − 50b1 − 150b2 − 10b3 − 7000δ1−
10, 000δ2 − 13, 000δ3 − 20, 000

Subject to:
Direct material quantity constraints:

4Q1 + 6Q2 + 2Q3 ≤ 10, 500, 000

2Q1 + 10Q2 + 1Q3 ≤ 8, 000, 000

5Q1 + 15Q2 + 2Q3 ≤ 8, 600, 000

2Q1 + 6Q2 + 1Q3 ≤ 7, 000, 000

2Q1 + 15Q2 + 1Q3 ≤ 7, 800, 000

Direct labor hour constraints:

1Q1 + 1.5Q2 + 0.5Q3 − 1760 − 2200φ1 − 2640φ2 = 0
φ0 −∅1 ≤ 0
φ1 −∅1 −∅2 ≤ 0
φ2 −∅2 ≤ 0
φ0+φ1+φ2 = 1
∅1 +∅2 = 1
0 ≤ φ0 ≤ 1
0 ≤ φ1 ≤ 1
0 ≤ φ2 ≤ 1
∅1,∅2 = 0, 1

Machine hour constraints:
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5Q1 + 10Q2 + 1Q3 ≤ 13,200,000
2Q1 + 4Q2 + 1Q3 ≤ 22,000,000
2Q1 + 3Q2 + 1Q3 ≤ 22,000,000
3Q1 + 5Q2 + 1Q3 ≤ 26,400,000
2Q1 + 3Q2 + 1Q3 ≤ 13,200,000
3Q1 + 6Q2 + 1Q3 ≤ 6,600,000

Table 1. Data for Illustrative Example.

Product PCR
(i = 1)

TBR
(i = 2)

MC
(i = 3)

Available Capacity
(thousand)

Maximum demand: (thousand) ej j Qi 1000 100 1500
Selling price: (USD) Si 300 1000 150

Direct material: k = 1 20 αi1 4 6 2 W1 = 10,500
(USD/ton) k = 2 10 αi2 2 10 1 W2 = 8000

k = 3
k = 4
k = 5

5
37
21

αi3
αi4
αi5

5
2
2

15
6

15

2
1
1

W3 = 8600
W4 = 7000
W5 = 7800

Machine hour constraint:

Kneading
Pressing out
Cutting off

Forming
Vulcanizing
Inspecting

Machine hours
Machine

hoursMachine
hours

Machine hours
Machine hours
Machine hours

1
2
3
4
5
6

ai1
ai2
ai3
ai4
ai5
ai6

5
2
2
3
2
3

10
4
3
5
3
6

1
1
1
1
1
1

MH1 = 13,200
MH2 = 22,000
MH3 = 22,000
MH4 = 26,400
MH5 = 13,200
MH6 = 6600

Material handling constraint:
Machine hours (hr)

Cost (USD)
q1 = 50; q2 = 150;

q3 = 10 7 ui7
ni7

2
5

3
10

1
1 MH7 = 1760

Direct labor constraint:
Cost:

Labor hours (hr)
LC0 = 7040
LH0 = 1760

LC1 = 11,000
LH1 = 2200

LC2 = 15,840
LH2 = 2640 li 1 1.5 0.5

Wage rate (USD/hr) r0 = 4 r1 = 9 r2 = 11

Carbon emission constraint:
Cost (USD)

Emission quantities
CEC1 = 7000

CE1 = 700
CEC2 = 10,000

CE2 = 850
CEC3 = 13,000

CE3 = 950 vi 0.2 0.1 0.1

Tax rate (USD/ton) T1 = 10 T2 = 20 T3 = 30

Total fixed cost:
(USD) 20,000

Material handing constraints:

Q1− 5b1 ≤ 0
Q2− 10b2 ≤ 0
Q3− 1b3 ≤ 0
2b1 + 3b2 + 1b3 ≤ 1,760,000

Carbon emission constraints:

0.2Q1 + 0.1Q2 + 0.1Q3 − 700δ1 − 850δ2 − 950δ3 = 0
δ0 − ε1 ≤ 0
δ1 − ε1 − ε2 ≤ 0
δ2 − ε2 − ε3 ≤ 0
δ3 − ε3 ≤ 0
δ0+δ1+δ2+δ3 = 1
ε1+ε2+ε3 = 1

We solved this mathematical programming model with LINGO 16.0 software and obtained the
optimal solution with product-mix, resource consumption, carbon emission and tax and total profit as
shown in Table 2.
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Table 2. Optimal solutions, Resource consumption, Carbon emission and tax and Total profit.

Q1 =1,020,000 Q2 =60,000 Q3 =1,300,000
φ0 =1 φ1 =0 φ2 =0
b1 =204,000 b2 =6000 b3 =1,300,000
δ1 =0.49 δ2 =0 δ3 =0
δ0 =0.51 ∅1 =1 ∅2 =0
ε1 =1 ε2 =0 ε3 =0

Machine hours Direct material quantity Direct labor hour = 1,760,000
1 7,000,000 1 7,040,000 Carbon emission quantity = 340,000
2 3,580,000 2 3,940,000 Carbon tax = $3,400,000 (USD)
3 3,520,000 3 8,600,000 Total profit π = $57,320,000 (USD)
4 4,660,000 4 3,700,000
5 3,520,000 5 4,240,000
6 4,720,000
7 1,726,000

According to Table 2, the optimal solution is (Q1, Q2, Q3) = (1,020,000, 60,000, 1,300,000), which
requires 7,040,000 units (= 4 × 1,020,000 + 6 × 60,000 +2 × 1,300,000) of the first kind of material,
3,940,000 units (= 2 × 1,020,000 + 10 × 60,000 + 1 × 1,300,000) of the second kind of material,
8,600,000 units (= 5 × 1,020,000 + 15 × 60,000 + 2 × 1,300,000) of the third kind of material, 3,700,000
units (= 2 × 1,020,000 + 6 × 60,000 + 1 × 1,300,000) of the fourth kind of material, 4,240,000 units
(= 2 × 1,020,000 + 15 × 60,000 + 1 × 1,300,000) of the fifth kind of material, 7,000,000 (= 5 × 1,020,000 +
10 × 60,000 + 1 × 1,300,000) of the first kind of machine hours, 3,580,000 (= 2 × 1,020,000 + 4 × 60,000
+ 1 × 1,300,000) of the second kind of machine hours, 3,520,000 (= 2 × 1,020,000 + 3 × 60,000 + 1 ×
1,300,000) of the third kind of machine hours, 4,660,000 (= 3 × 1,020,000 + 5 × 60,000 + 1 × 1,300,000)
of the fourth kind of machine hours, 3,520,000 (= 2 × 1,020,000 + 3 × 60,000 + 1 × 1,300,000) of the
fifth kind of machine hours, 4,720,000 (= 3 × 1,020,000 + 6 × 60,000 + 1 × 1,300,000) of the sixth kind
of machine hours and 1,726,000 (= 2 × 204,000 + 3 × 6000 + 1 × 1,300,000) material handing machine
hours. In addition, it will consume 1,760,000 direct labor hours (= 1 × 1,020,000 + 1.5 × 60,000 + 0.5
× 1,300,000); and the carbon emission quantity is 340,000 (= 0.2 × 1,020,000 + 0.1 × 60,000 + 0.1 ×
1,300,000) tons, which is just within the first carbon tax range. The total profit π is USD $57,320,000.

Company T obtains the optimal solution through the above green ABC mathematical
programming model. In the future, Company T will engage in green production and introduce
the related technology of Industry 4.0 step-by-step. Then, its relevant ABC data can be acquired
directly from the relevant departments (e.g., accounting, research and development, procurement and
production departments) with direct access to materials, sales price and other related costs. Regarding
carbon tax costs, information on carbon emission regulations and carbon costs can be obtained from
government agencies and the company’s management. However, the TOC program used in this study
provides the tire industry with the opportunity to identify and use the most restrictive new green
manufacturing technologies in the future, which enables the tire industry to find the best combination
of various products. While investing in new green manufacturing technologies can be prohibitively
expensive, good environmental investments in the tire industry can maximize profits by adopting the
TOC process.

4.2. Sensitivity Analysis

The green tire manufacturing ABC decision model of this study does not consider the significance
of capacity expansion. The possibility or profit of expanding capacity must be evaluated by sensitivity
analysis, which conducts successful assessment of the resources invested to expand capacity. Tire
managers may end up with suboptimal solutions when the level of expansion of various tire resources
is determined in the wrong way. In addition, with the ABC decision model for green tire manufacturing,
it is difficult to simultaneously consider two or more capacity expansions. Suppose the tire company
plans to maximize profits by conducting sensitivity analyses to change the costs of carbon emissions
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and material prices, in order to explore their effects on product-mix and profit. In this study, the
above assumptions are applied to ABC mathematical programming model and sensitivity analysis is
conducted. Tire material prices and carbon taxes increase and decrease by 10%, 20%, 30% and so forth
(as shown in Table 3).

The finding show that the material price and carbon tax cost increased from 10% to 30%, while the
total profit decline rate increased from 78% to 226%, indicating that, under these three circumstances,
the original total profit of USD $57,320 of the tire industry will take place (as shown in Figure 5), thus,
turning profit to loss and total profit declines. On the contrary, if the material price and carbon tax cost
are reduced from 10% to 30%, the increase in total profit would increase from 78% to 235%, indicating
that the tire industry would have a total original profit of USD $57,320 in these three cases; increase
total profit and exceed 2.35 times the original total profit (as shown in Figure 6).

Sensitivity analysis of the above six conditions found that the change in the total profit of the tire
industry was mainly due to the increase and decrease of the material price and the carbon tax cost.
Therefore, the tire industry should strictly increase the total profit in the case of Control costs, in order
to avoid any loss of profit.

Table 3. Sensitivity Analysis on direct material and carbon cost.

Direct Material and Carbon
Cost Decrease/Increase

Ratio (%)

Original Profit
(A)

Profit after Change
(B)

Decrease/Increase Profit
(C) = (B − A)

Decrease/Increase (Compared
with the Initial Value) (%)

(D = C/A)

−30% 57,320 192,062 134,742 235%
−20% 57,320 147,148 89,828 156%
−10% 57,320 102,234 44,914 78%
−0% 57,320 57,320 0 0%
30% 57,320 −72,268 −129,588 −226%
20% 57,320 −29,952 −87,272 −152%
10% 57,320 12,406 −44,914 −78%

Unit: Thousands of USD.
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5. Shop Floor Control under Industry 4.0 in the Tire Industry

Shop floor control (SFC) mainly comprises a collection of production process-related
information [81], meaning it is a method to parameterize the real-time shop floor data for control [11],
as collected by the Manufacture Execution System (MES); however, MES focuses on the control of
field-related equipment. Due to the complicated manufacturing process of tires and the development
of related control technologies, the cost of manufacturing equipment for tires is high. Compared with
other traditional industries, the tire industry MES should integrate Enterprise Resource Planning
(ERP), including measurement, analyzing and improving the consumption of resources for sustainable
development in manufacturing, the standards for environmental performance assessment and
optimization and real-time energy indicators for production systems to gather relevant data in a
real-time manner [82]. SFC may include the following functions to control the production to achieve
the production/sale and profit target under various constraints.

(1) Status Monitoring: Analysis of huge data sets (Big Data) could allow quick and accurate
decision-making. For example, productivity improvements can be achieved by analyzing
device performance and degradation for real-time feedback on configuration and optimization.
Herman et al. [2] proposed a cloud-based IoT application architecture that will improve the
deployment of intelligent industrial systems for remote monitoring and scrolling. Additionally,
this can generate huge amounts of data during operation time due to the potential presence of
hundreds or even thousands of sensors, considered as Big Data [83]. While cloud computing
employed in industrial environments can bring benefits, it also poses challenges for the storage of
Big Data, which describes cloud computing as a cloud-manufacturing counterpart to industrial
environments [84], with the focus on increasing agility in the industrial environment and enabling
the supply chain to capture the largest data sets [16,85,86].

(2) Work-in-process tracking: With the development of ERP, more and more manufacturing enterprises
are interested in the integration of ERP and MES systems [87,88]. The MES system architecture
is designed for short-term production support. Simulation testing can be used to support the
decision-making process; the real-time dynamics of MES and WIP can be performed more
accurately [89]; RFID and wireless information networks can capture real-time field data from
manufacturing plants to monitor and reduce WIP inventory [90,91]. The correct use of materials
according to the actual needs can reduce the investment in production material and the integration
of ERP and MES can achieve the purpose of sharing resource and integrating the related
information in management decision-making. MES uses RFID technology to improve the
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efficiency of data collection [92,93]. Another data collection approaches under Industry 4.0 were
proposed such as the multi-mode data acquisition method [94] and the Sophos-MS’s practical
solution design and development [95].

(3) Throughput tracking: We can track the tire manufacturing process-related information; however,
in order to understand whether the production quantity of tire manufacturing can be completed
as scheduled, we can integrate ERP with the MES to truly track the progress of tire production;
we can also immediately review the reasons for handling backward production and then find the
possible solutions [96,97].

(4) Capacity feedback: In the Industry 4.0 environment, the right application of big data management
is one of the most important factors. The “Product Planning Software” concept and structure is a
new process planning, operation sequencing and scheduling method, as presented by [97]. In
order to track the utilization of capacity, sensors are added to each machine to track its utilization.
By knowing the utilization of capacity, the tire manufacturing process can be controlled without
increasing idle costs or inventory costs. In addition, bottleneck detection with the sensors systems
and IoT in production can improve production efficiency and stability in order to increase capacity
utilization [98,99]. This capacity utilization tracking can assist in the application of Theory of
Constraints in the production planning stage.

(5) Quality control: The MES and ERP systems collect information for production process control
through automated equipment and the management software system mode of operation, tire
quality is detected [100]. The production control system of smart manufacturing under Industry
4.0 should be able to real-timely respond to various production problems and to effectively
coordinate different resources of different departments to solve the problems encountered [96].
Beyond this, Industry 4.0 can focus on predictive maintenance for machines before the production
problems occur through the big data analyses of troubling sounds or images [101–103]. Besides,
Rødseth et al. [104] developed an integrated planning (IPL) approach which simultaneously
executed production and maintenance planning in production scheduling.

(6) Real-time interconnection: Delima and Balaunzarán [105] claim that smart manufacturing under
Industry 4.0 has four characteristics: (1) self-awareness of current state of the production process,
(2) real-time predictive capabilities for possible production problems arise such as products’ bad
quality and machine breakdown, (3) a high level of real-time automation of activities across the
production process, (4) real-time interconnection. The characteristic of real-time interconnection
is to connect all the system components of machines, equipment, persons, materials and products
at the factory level through Cyber-Physical Systems (CPS) [106,107] and Industrial Internet of
Things (IIoT) [108–112]. It also can connect with suppliers and customers at the external supply
chain level [105,106]. Under these circumstances, companies can do the works from product
development to after-sale services with more efficiency, lower cost, lower carbon emission and
higher quality [113].

6. Discussion

In the mathematical programming model, this research considers the carbon tax cost in addition
to the related costs of the tire industry. This model is used to get the optimal product-mix maximizing
the profits of the tire company under various constraints at the stage of production planning. As the
costs of the tire industry are mainly affected by the fluctuations of the raw materials and increasing
of carbon tax, profits will be seriously affected; therefore, this study further tests sensitivity by using
the proposed mathematical programming model. If the cost of materials and the cost of carbon taxes
increase or decrease by 10% to 30%, the six situations are analyzed and tested. When material and
carbon costs are increased by 10% to 30%, the results show that the total profit will be substantially
reduced from USD $72,268,000 to USD $57,320,000 and the percentage of the total profit reduction will
be up to negative 226%. Conversely, if the material and carbon costs are reduced by 10% to 30%, the
results show that the total profit will increase substantially from USD $57,320,000 to USD $192,062,000
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and the gross profit percentage will be increased up to 235%. The mathematical programming model
of this study shows that the fluctuation of raw materials and the increased carbon tax are the factors
affecting the maximum profit of the tire industry. As a result, the tire industry should carefully consider
the costs of raw materials and carbon emissions to successfully obtain the appropriate profits.

One of the main features of Industry 4.0 is mass customization through integrating all components
in the manufacturing system [113]. However, this feature is not suitable for the tire industry. Industry
4.0 can provide tire companies the following benefits: (1) improved efficiency and productivity through
process automation, visualization and control (2) reduced costs through improved efficiency and
productivity and efficient resource utilization, recycling and reuse, (3) increased and quick innovation
through computer-aided design (CAD) or 3D design capabilities and reduced product launch time,
(4) improved product quality through predictive maintenance and quality monitoring by using big data
analysis, (5) improved sustainability through monitoring and control of carbon and other emissions,
(6) increased customer satisfaction through better customer services of the rapid responsiveness and
deep information availability and then (7) achieving higher revenues and profits [114,115].

This paper claims that the related technologies and techniques of Industry 4.0 can be used to
efficiently control the production to achieve the targets of sales and profits set at the production
planning stage and to attain the benefits mentioned above through status monitoring, work-in-process
tracking, throughput tracking, capacity feedback, quality control with predictive maintenance and
real-time interconnection across the value chain [116]. In addition, the activity cost calculation and
activity improvement of Activity-Based Costing (ABC) will be easily achieved since all the components
in the manufacturing systems can be connected and monitored under Industry 4.0. In the literature,
seldom research explored the combination of the mathematical programming model and Industry 4.0
except the applications in the textile [117] and paper [118] industries, which have different production
processes and activities.

7. Conclusions

This paper aims to propose a linkage of the mathematical programming model for production
control and Industry 4.0 for production control. At the stage of production control, ABC is used to
measure the costs of activities and TOC is used to identify the constraints of production or sales, which
form the mathematical programming model for production planning. The outputs of production
planning model will be the targets of business operation, including production/sale and profit targets.
Industry 4.0 is used to control the production to attain the production/sale and profit targets by
using three tiers of technologies including the automation technologies, the Manufacturing Execution
Systems (MES) and the Enterprise Resource Planning Systems (ERP). Sections 3 and 4 proposed a
production planning model with ABC and TOC and presented an illustration for demonstrating the
application of the model; Section 5 discusses the shop floor control techniques for production control
with status monitoring, work-in-process tracking, throughput tracking, capacity feedback, quality
control with predictive maintenance and real-time interconnection across the value chain in order to
achieve the planning targets and various Industry 4.0 benefits. The main contribution of this paper is
to provide a framework for production planning and control with carbon tax through mathematical
programming model and Industry 4.0 related technologies.

At present, there are few studies in the literature combining the mathematical programming
model and Industry 4.0 related technologies in production planning and control with carbon tax. The
managerial implication of this framework is that it can provide a general approach to help companies
execute production management in the way of more efficiency, less cost, lower carbon emission and
higher quality across the value chain for the tire industry. Besides, this framework also can be applied
to other industries.

However, there are some research limitations in this research which can derive the future research
directions. First, the model assumes that the unit prices of products and the unit costs of direct materials
are constant within the relevant range of planning. It may be extended to consider the relationship
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between the product prices and the market demands and to consider the purchase quantity discounts of
materials within the relevant range of planning. Second, the model uses a continuous piecewise linear
carbon tax function of three carbon tax ranges with the increasing carbon tax rates, called “Carbon tax
function with extra progressive tax rates.” It can consider the discontinuous carbon tax function with
full progressive tax rates which uses the increasing carbon tax rates for all carbon emission quantity
at the different carbon tax ranges. It also can consider the free carbon tax quantity for the carbon tax
function mentioned above. Third, the model only considers a batch-level activity, that is, material
handling, in order to simplify the model. It can consider other batch-level activities such set-up and
scheduling and consider the product-level activities such as product design and product advertising.
Fourth, the framework in Figure 1 provides the periodic feedback and updated parameters to next
period’s production planning. However, the next ideal approach is providing various decision models
in the model base of Industry 4.0 for Cloud Computing and Big Data analysis in order for frequent
adjustment to the situation at that time.
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