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Abstract: Due to population growth, environmental pollution and climate change, the lack of water 

resources has become a critical factor which threatens sustainable agricultural development. 

Reasonable irrigation scheduling strategies can reduce the waste of water and enhance agricultural 

water-use efficiency. In the present study, the decomposition-coordination theory was adopted to 

analyze the hierarchical canal system. A novel nonlinear multi-level multi-objective optimization 

model for complex canal systems was established, taking account of the multiple demands from 

decision makers and realistic factors of canal operation. An interactive method of the technique for 

order preference using similarity algorithm and genetic algorithm was proposed to solve the 

developed model. The developed model was successfully applied for the operational strategy 

making of a canal system located in the arid area of northwest China. The results indicated that the 

optimization model could help shorten the operational duration by two days, achieve about 26% 

reduction of irrigation water consumption, and improve the efficiency of water delivery from 0.566 

to 0.687. That will be very favorable for the promotion of the agricultural water productivity, the 

relief of water shortage crisis and the sustainable development of agriculture. The outcomes can 

provide a wide range of support for decision making and make irrigation decision-making more 

scientific and systematic. 

Keywords: irrigation scheduling; multilevel multi-objective programming; decomposition-

coordination theory; TOPSIS; genetic algorithm 

 

1. Introduction 

Due to population growth, environmental pollution and climate change, the lack of water 

resources has become a critical factor which threatens the sustainable agricultural development [1–

6], which has been widely recognized as an effective way for human society and natural system 

harmonization [7]. Irrigation, as a measure to improve crop production, is one of the main ways of 

agricultural water consumption, especially in semi-arid and arid areas [8]. There are several methods 

for irrigation, in which the canal irrigation is a traditional one that is widely used around the world 

[3,9–11]. The canal system usually consists of main canal, branch canal and lateral canal in hierarchy. 

The irrigation scheduling is usually made according to design flow and design irrigation area. In real-

world contexts, the irrigation scheduling is complex when considering the influence of various 

factors, such as cropping pattern, irrigation quota and irrigation duration. It is a challenge to make 

canal scheduling only based on experience and simple computation. Meanwhile, unreasonable 

irrigation scheduling may lead to remarkable water leakage and loss. For example, the utilization 

coefficient of irrigation water is only 0.542 in China and a large amount of water has been wasted in 
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irrigation [12]. Therefore, there is an urgent need to develop efficient and practical irrigation 

scheduling for canal irrigation through sound methods. 

Over the past decades, many studies have been done regarding canal irrigation scheduling. 

Suryavanshi and Reddy [13] firstly proposed stream tube hypothesis, in which canal was considered 

as a tube with equal discharge and the 0–1 linear programming was established to optimize the 

irrigation scheduling. Wang et al. [14] further improved 0–1 linear programming through 

coordinating the irrigation runtime and discharge. However, these approaches are limited by the 

hypothesis that the lowest-level canals have same discharge capacity. On the basis of the concept of 

time block, Anwar and Clarke [15] presented a mixed-integer linear programming to optimize the 

canal scheduling among a group of users. It was assumed that canals ran at fixed flow rates and the 

difference between the scheduled start time and the required time decided by farmers was 

minimized, while it still has the same limitation with the approaches proposed by Suryavanshi [13] 

and Wang [14]. Linear programming could be unrealistic for practical planning. With the 

development of heuristic methods such as evolutionary algorithms, the developed models can also 

be non-linear and non-convex. For nonlinear canal scheduling optimization with single objective, 

genetic algorithm has been proved to be an efficient method [16–20]. 

However, the scheduling optimization with single objective can hardly meet the multiple 

requirements of decision makers in reality, thus leading to multi-objective programming [21]. This 

kind of canal scheduling problem needs an integrated solution using metaheuristic techniques such 

as genetic algorithm (GA) and simulated annealing [22]. Peng et al. [23] generated a multi-objective 

model for canal scheduling with different flow rates of lowest-level canals. Only the discharge and 

sequence of secondary canals were considered in decision variables, while there was no consideration 

of operation duration of each canal. 

Although there is an increasing trend in using multi-objective model to optimize canal 

scheduling [10,24], many following limitations still exist. (i) The distribution of canal system is 

hierarchical for real cases and the requirements of decision makers may vary with each other. Thus, 

canal irrigation scheduling making is a multi-level and multi-objective problem. (ii) In order to 

simplify the model, the runtime or flow rate of each canal were often fixed without change in previous 

studies. Based on the premise that there is known crop water demand of each canal in irrigation, the 

runtime of each canal is inversely proportional to the flow rate, which means the optimal flow rates 

will affect irrigation runtime. Therefore, it is necessary to optimize the flow rate and runtime 

simultaneously. (iii) The more complex the established model is, the more difficult it is to find an 

efficient algorithm for solving optimization problems. Due to the large number of decision variables 

and complex searching process, such irrigation problem will be a NP-hard problem [25] and more 

efficient method is needed to improve the solving of model. 

In this study, therefore, a nonlinear multi-level multi-objective optimization model for complex 

canal systems will be established, taking account of the multiple demands from decision makers and 

realistic factors of canal operation in practice. An interactive solving method integrating the 

technique for order preference by similarity to ideal solution (TOPSIS) and GA will be proposed to 

solve the abovementioned model. The framework of this study is shown in Figure 1. 
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Figure 1. The framework of study. 

2. Methodology 

2.1. Decomposition-Coordination Theory for Canal Systems 

Canal system refers to the irrigation canals in this paper. The canals are often classified as main 

canal, branch canal, lateral canal, etc., according to hierarchy. In some complex irrigation systems, 

the main canal can be divided into a general main canal and sub-main canal, and so can the branch 

canal. A schematic diagram of a typical canal system is shown in Figure 2. Large-scale system 

decomposition-coordination methods, which is an algorithm for solving large-scale, multi-reservoir 

systems, can simplify complex problems into several interrelated sub-problems and to obtain the 

global optimum on the global through coordination among sub-systems [26]. Though the solving 

method was not actually adopted, its principle would provide a clear model framework for large-

scale system [27]. Thus, the decomposition-coordination theory was adopted to analyze such multi-

level canal system. 

Based on the decomposition-coordination theory, the large scale systems can be split into several 

relatively independent subsystems and the coordination variables can be used to connect with each 

other. The generalized model framework according to the decomposition-coordination theory for 

large-scale canal irrigation system is shown in Figure 3. The related coordination variables include 

flow rate, start time, and end time of canals. 
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Figure 2. A schematic representation of canal distribution. The actual example takes a typical canal 

system distribution in reality for example. The model example is ranked by the level of canals, which 

will be used in the model description. 
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Figure 3. The generalized model framework according to the decomposition-coordination theory for 

a large-scale system. The hypothetical additional variables are represented by an ellipsis. 

2.2. Model Development 

A nonlinear multi-level multi-objective model was developed to optimize irrigation scheduling 

for complex canal systems. The decision variables were flow rates, operational start times, and 

operational end times of the last-stage canals. The objectives of first-level model were to minimize 

the total leakage loss of the whole irrigation system and the flow fluctuation of the first-level canal. 

The total leakage loss was also minimized for each subsystem. The corresponding mathematical 

expressions are shown as follows and the meaning of parameters is shown in Table 1. 

First level: 
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rate of the upper level in a specific moment was an accumulation of the gross flow rates of its 

controlled canals. Equation (1) denoted the variance of flow rate at different times. 

The leakage loss of each subsystem was the sum of the water loss from the dominant canal and 

its controlled lower canals, as shown in Equations (2)–(4). Though the aforementioned expressions 

established a three-level canal system, more complex canal system can be involved by applying the 

same principle. The leakage loss of canal was calculated as follows, in which the empirical formula 

by Guo [28] was used. The leakage flow quantity was the product of leakage flow rate and the 

duration. 

 ' ''     s q t t     (5) 

(1 ) /100mq A l q       (6) 

Taking account of the operational demand in reality, four constrains, including the flow capacity 

of canal, runtime, discharge into the field, and flow continuity, were considered in this study. 

(1) Flow capacity constraint 

For the security of canal operation, the gross flow rate should not exceed the maximum flow 

rate. Meanwhile, in order to ensure the sufficient flow movement, the net flow rate should not be 

lower than minimum flow rate. 

dq a q   (7) 

dq q b q     (8) 

(2) Runtime constraint 
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The irrigation time should be within the requested irrigation period. If assuming the canal 

operation begins at 0, the start time should be equal or greater than 0 and the end time should not 

exceed T. Additionally, the end time should be higher than the start time. 

0 ' ''t t T    (9) 
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(3) Discharge constraint 

The net discharge of each lowest-level canal should meet the net water demand of the crops in 

the canal area. The total gross water consumption of the canal system should not exceed the available 

water supply. Note that the water demand was regarded as changeable but known, including the 

effect of soil water, precipitation and even the deficit irrigation requirement. 

 '' 'f f f f fq t t M Area     (10) 

 
1

'' '
F

f f f a
f

q t t S W


     (11) 

(4) Flow continuity constraints 

The flow rate at the entrance of a canal should equal the sum of flow rates at the entrance of each 

subordinate plus its leakage loss. 

Table 1. Nomenclatures for parameters. 

Parameter Description Unit 

0S  The leakage loss of the first-level canal m3 

iS  The leakage loss of the second-level canal m3 

ij
S  The leakage loss of the third-level canal m3 

ijk
S  The leakage loss of the forth-level canal m3 

0 tQ  The net flow rate of fisrt-level canal at the t th time moment 3m /s  

0Q  The mean of all 0 tQ  within a rotation period 3m /s  

t The sequence number of irrigation time period with total number T  

i  The sequence number of secondary canals in the second level with total number I  

ij  
The sequence number of canals in the third level affiliated with i th second-level canal. 

The total number is iJ  
 

ijk  
The sequence number of canals in the fourth level affiliated with ij th third-level 

canal, which belongs to i th second-level canal. The total number is ijK  
 

s  The leakage loss of the canal m3 

q  The leakage flow rate of the canal 3m /s  

q  The net flow rate of the canal 3m /s  

't  The start runtime of the canal  

''t  The end runtime of the canal  

  Reduction coefficient by canal lining  

A  Infiltration coefficient of canal bed  

l  The canal length m 

m  Infiltration index of canal bed  

dq  The design flow rate of the canal 3m /s  

a The coefficient of minimum capacity  

b The coefficient of maximum capacity  

fq  The flow rate of the f th last-level canal 3m /s  

'ft  The start time of the f th last-level canal  

''ft  The end time of the f th last-level canal  

S  The total leakage loss of the whole canal system m3 

aW  The available water supply m3 

fM  The irrigation quota of the area controlled by the f th last-level canal m3 

fArea  The area controlled by the f th last-level canal m2 
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2.3. Model Solving 

In multi-level programming, the upper-level decision makers first make their own decision and 

then ask each subordinate to search its optimal decision based on the upper-level outcomes. Then the 

lower-level decision can be submitted to upper level and the upper-level decision makers will modify 

their decision based on lower-level feedback. In such a way, the decision made by lower levels can 

also impact the decision of upper levels. The solution requires continuous adjustment among 

different levels. Recently, much attention has been paid to the nonlinear multi-level multi-objective 

programming in systems optimization [29–32]. Due to its complexity, it is often difficult to have the 

problem solved effectively and conveniently through single algorithm. In this study, an interactive 

technique for order preference by similarity algorithm to ideal solution (TOPSIS) [33] was used. 

Meanwhile, GA was combined with TOPSIS for solving this problem. The diagram of solution 

procedure is shown in Figure 4. Due to the large number of decision variables, the initial population 

generation of GA was further improved. Other procedures in GA can be referred to the works of 

Wardlaw and Bhaktikul [18], and Haq and Anwar [16]. 
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Figure 4. The solving procedure of the developed model. 

3. Case Study 

3.1. Study Area and Data Collection 

The study area is located in the middle reaches of Heihe River Basin (98°00′–101°30′ E, 38°00′–

42°30′ N), Zhangye City, Gansu Province of China (Figure 5a,b). The area has a typical arid and semi-

arid climate, with low precipitation (about 200 mm/year) and high potential evaporation (above 1500 

mm/year) according to the Zhangye Statistical Yearbook. Agriculture is the main water-use sector 

and agricultural water consumption accounts for 87.6% of the total water consumption in Zhangye 

[34]. Under the changing environment, the conflicts between water supply and demand are 

aggravated and agricultural development has been threatened by scarce water resources. Meanwhile, 

Zhangye has a long history of agricultural irrigation and possesses relatively complete irrigation 

canal networks. The water-use efficiency of canal networks by artesian irrigation at Zhangye is about 

0.535 in 2016 according to the water efficiency calculation and analysis report for farm irrigation of 

Zhangye in 2016, which is lower than the average level in China, 0.542, according to the China water 
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resources bulletin of 2016. Such low water-use efficiency and inappropriate water resources 

management have further worsened the existing conflicts [35,36]. Therefore, it is necessary to 

improve the water-use efficiency in irrigation. This study focused on the Mingyong submain canal 

and its subordinate canals, which belong to Xigan irrigation district in Ganzhou district, Zhangye 

City. Figure 5d shows the distribution of the Mingyong submain canal and its subordinate canals. 

The canal system consists of one first-level canal, four second-level canals and twenty-three third-

level canals. The attributes of the canal system are listed in Table 2, where the canal number will be 

used to represent the canal name in the following section. The lateral canal of the canal system has 

no lining. When calculating canal leakage, its reduction coefficient by canal lining is 1 according to 

Guo [28]. However, the branch canal and submain canal have concrete lining, whose reduction 

coefficient by canal lining is 0.5 [28]. The third round of summer irrigation in 2016 is selected as study 

phase. The data of irrigation area, water demand and water availability came from the water 

allocation project of 2016 in Xigan irrigation district, Ganzhou district, Zhangye (WAP), which are 

listed in Table 3. Meanwhile, the planning irrigation period as the requirement of the WAP is from 

June 18th to July 9th, 22 days in total. The empirical water efficiency of Mingyong submain canal 

system is 0.566 according to the WAP of Xigan irrigation district in 2016. 

Table 2. The attributes of Mingyong submain canal and its subordinates (I, II, III, IV represent the 

second-level canals. 1–23 represent the lowest-level canals, corresponding to the Figure 5d. The canal 

number will be used in the following parts.). 

Canal 

Number 
Name Type 

Capacity 

(m3/s) 

Total Length 

(km) 

Design Irrigation Area 

(hm2) 
 Mingyong  Submain canal 6.00 1.780 3445.067 

I Yanhe  Branch canal 2.00 2.410 870.000 

1 Zhishu Lateral canal 0.50 2.580 149.400 

2 Yanhe 1st Lateral canal 0.80 1.400 142.733 

3 Yanhe 2nd Lateral canal 0.90 1.510 128.800 

4 Yanhe 3rd Lateral canal 1.00 1.520 203.000 

5 Yanhe 4th Lateral canal 1.50 1.650 204.600 

6 Yanhe 5th Lateral canal 0.30 1.700 41.467 

II Wujiazha  Branch canal 1.30 5.000 808.667 

7 Wujiazha 1st Lateral canal 0.30 0.600 27.667 

8 Wujiazha 2nd Lateral canal 1.30 1.940 248.933 

9 Wujiazha 3rd Lateral canal 1.30 2.180 269.533 

10 Wujiazha 4th Lateral canal 1.20 1.830 233.333 

11 Wujiazha 5th Lateral canal 0.30 0.300 29.200 

III Mingyong 2nd  Branch canal 2.50 11.420 947.200 

12 Yongji Lateral canal 0.80 1.700 86.667 

13 Zhongnan Lateral canal 1.20 5.830 216.467 

14 Yonghe 1st  Lateral canal 0.80 2.260 52.933 

15 Yonghe 2nd  Lateral canal 1.00 1.840 147.467 

16 Yonghe 3rd  Lateral canal 1.00 1.540 73.400 

17 Mingyong 1st  Lateral canal 1.00 1.200 46.200 

18 Mingyong 2nd  Lateral canal 1.00 2.150 106.267 

19 Liaoyan  Lateral canal 1.00 2.370 146.533 

IV Mingyong 3rd  Branch canal 2.00 2.320 819.200 

20 Yongji  Branch canal 1.30 2.280 284.933 

21 Shangya  Branch canal 1.50 3.420 226.533 

22 Xiaya  Branch canal 0.80 4.910 180.933 

23 Jiahe  Branch canal 1.20 5.890 167.067 
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Figure 5. Map of the Mingyong submain canal network. (a) The location of Gansu Province in China. 

(b) The location of Ganzhou District, Zhangye City, Gansu Province. (c) The distribution of Ganzhou 

irrigation network and the location of Mingyong submain network. (d) The distribution of Mingyong 

submain network. 

Table 3. Water allocation plan of the 3rd summer-irrigation period in 2016. 

Canal  
Actual Irrigation 

Area (hm2) 

Irrigating 

Quota (m3/hm2) 

Water 

Demand (m3) 

Allocating 

Proportion (%) 

Available 

Water (m3) 

Mingyong submain canal 2382 1080 257.23 100.00 572.53 

I 798 1080 86.18 31.91 182.68 

II 810 1080 87.48 33.42 191.34 

III 390 1080 42.12 17.61 100.81 

IV 384 1080 41.44 15.99 91.52 

Based on the decomposition-coordination theory, a nonlinear bi-level multi-objective model was 

established. The parameter identification is listed in Table 4. The empirical coefficients of canal 

leakage computation were referred to the literature of Guo [28]. The time step was set as half day and 

then there were 44 periods of time within the whole irrigation period, i.e., the T = 44 in Equation (1). 

Table 4. The parameter identification of optimal model. 

Parameter Value  

The coefficient of minimum capacity in lowest-level canal 0.6 

a b 

c d 
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The coefficient of maximum capacity in lowest-level canal 1.2 

The coefficient of minimum capacity in second-level canal 0.2 

The coefficient of maximum capacity in second-level canal 1.2 

The coefficient of minimum capacity in superior canal 0.1 

The coefficient of maximum capacity in superior canal 1.2 

The water utilization coefficient from lateral canal to field 0.8 

Reduction coefficient by canal lining 0.5 

Infiltration coefficient of canal bed 3.4 

Infiltration index of canal bed 0.5 

The water utilization coefficient from lateral canal to field 0.6125 

3.2. Result Analysis and Discussion 

Figure 6 shows the irrigation scheduling of the lowest-level canals. The optimal duration of the 

whole canal system decreased from 44 periods to 40 periods, indicating the increase of the average 

flow rate of canal system. As is shown in Figure 6, the operational duration of the lowest-level canals 

attached to Mingyong 2nd branch canal was significantly less than others. That could be attributed 

to the relatively small water demands in this area (Table 3). Their higher design flow rates also 

suggested their demand flow rates were high and, thus, the amount of required time for delivery was 

low. Meanwhile, given that the crops which needed irrigating in this study phase were spring wheat, 

seed maize and field maize, another reason for low operational duration could be due to less cropping 

area of these types of crops irrigated by the Mingyong 2nd branch canal and its subordinate canals 

compared with other areas. 

 

Figure 6. The operation schedule of the lowest-level canals. The legend means the lowest-level canal 

is attached to the second-level canal. 
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Figure 7 shows the optimal net flow rates, gross flow rates, design flow rates, minimum and 

maximum flow rates of the lowest-level canals. The optimal flow rates were within the range between 

minimum and maximum flow rates, which means the optimal flow rates meet the operational 

requirement in reality. The operation flow rate of the first-level canal is exhibited in Figure 8. The 

results show that the flow rate can also be within the range between maximum and minimum flow 

rates, which would guarantee the normal operation of canal irrigation. Moreover, the flow rates of 

each second-level canal can also meet the normal irrigation operation requirement (Figure 9). 

However, it was also noted that the irrigation operation of second-level canals was not continuous 

(Figure 6). The reason could be that the solution of the model was dominated by first-level objectives 

and the flow continuity in lower-level canals was not guaranteed. Although it may result in the 

frequent open and close of the canal sluice gates for second-level canals, the whole irrigation system 

can still meet best the requirements of decision makers. 

 

Figure 7. The optimal net flow rates, gross flow rates, min-max flow rates, and capacities of the lowest-

level canals. 

 

Figure 8. The optimal flow rates of the first-level canal over time. 
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Figure 9. The optimal flow rates of the second-level canals over time. 

Figure 10 presents the optimal allocated water and the planned water demand. The results 

indicated the optimal allocated water resources could satisfy the planned water demands. Table 5 

shows the canal leakage loss of each level canal system. Compared with other second-level canals, 

the Mingyong 3rd branch canal and its subordinates had less leakage loss. The subordinates of 

Mingyong 3rd branch canal are sub-branch canals with higher rates of lining, which can significantly 

reduce the leakage loss. It also proved that effective lining would be an efficient way to reduce the 

leakage loss of canals. The total water consumption was 4.23 million m3 under optimal conditions, 

saving about 4150 10  m3 water (26%) compared with planned water use of 5.73 million m3 according 

to the WAP. 

 

Figure 10. The optimal allocated water and the planned water demand. 
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Table 5. The leakage loss of canals (104 m3). 

 I II III  IV Total 

The total leakage loss of the subordinates 26.63 23.88 11.37 6.23 68.11 

The leakage loss of the second-level canal 1.38 2.71 3.15 0.75 7.99 

The leakage loss of the superior canal     2.16 

The total leakage loss of the Minyong canal system     78.26 

Table 6 shows the optimal net allocated water resources, the optimal and empirical effective 

utilization coefficients, correspondingly. The empirical data was referred to the WAP of Xigan 

irrigation district in 2016. It can be seen the canal water-use efficiency was significantly improved 

through using the developed optimization model. Compared with the results for lateral canals, an 

obvious efficiency enhancement of the main canals and branch canals was obtained after 

optimization. That proves the reasonable management would be an effective measure to enhance 

water-use efficiency when the certain requirement for lining was met. The total water-use efficiency 

of the Mingyong canal system increased from 0.566 to 0.687, indicating that water saving can be 

achieved by optimizing the canal operation scheduling. 

Table 6. The optimal net allocated water resources and the optimal and empirical effective utilization 

coefficients correspondingly. 

 

Net 

Water to 

Field 

(104 m3) 

Allocated Water (104 m3) 
Optimal Effective Utilization 

Coefficients 

Empirical Effective Utilization 

Coefficients 

Lateral/Su

b-Branch 

Canal 

Branch 

Canal 

Sub-Main 

Canal 

Lateral/Su

b-Branch 

Canal 

Branch 

Canal 

Sub-

Main 

Canal 

Lateral/

Sub-

Branch 

Canal 

Branch 

Canal 

Sub-

Main 

Canal 

I 87.30 135.76 137.14 

422.93 

0.643 0.990 

0.995 

0.613 0.970 

0.989 
II 89.16 135.33 138.04 0.659 0.980 0.613 0.940 

III 40.06 61.45 64.60 0.652 0.951 0.613 0.859 

IV 74.01 80.24 80.99 0.922 0.991 0.931 0.931 

Therefore, the results show that (i) the optimal flow rates can meet the requirement of the canal 

operation, which guarantees the canal operational reliability. (ii) The optimal water allocation can 

satisfy the net crop water demand, showing its practicability. (iii) The reduction of operational 

duration and water leakage loss demonstrate the advancement of the developed model. Compared 

with previous studies [3,10,23,24,37], the developed model has some advantages as follows. (i) From 

the perspective of model structure, it is a multi-level and multi-objective model which can reflect the 

actual distribution of the canal system and deal with the conflict of different decision makers in 

practice. (ii) From the angle of model component, the model takes account of the restrictive 

relationship of canal flow rate and runtime, making it more consistent with the reality. (iii) From the 

algorithm, the algorithm possess the ability to solve the model with more complex structure and more 

accurate time step. The model can solve the half-day time step with a 22-day period, while one day 

is usually selected as the time step when the time constraint is beyond 10 days in previous studies 

[3,8,20,21,34]. Additionally, the model and algorithm can be modified and applied to other canal 

systems. Nonetheless, the established optimization model has some limitation. One limitation of the 

proposed approach is about the use of a simplified equation when calculating the variance of the 

superior canal. That could make runtime discrete and rather than continuous variable. Though the 

accuracy of the outcome will increase with the decrease of the time step, the associated computation 

effort will also increase, which calls for a more efficient algorithm in further work. Furthermore, 

considering the deep percolation is an important source of groundwater recharge and may also play 

a critical part in recharging the wetlands [33], the further improvement can also be conducted by 

involving the contribution of canal percolation to local ecology. 
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4. Conclusions 

In order to resolve the irrigation management problem for complex canal system, a multi-level 

nonlinear multi-objective model was established to meet the multiple requirements of decision 

makers under different positions. The decomposition-coordination principle was adopted to help 

analyze the relationship among canals in different levels and clarify the connection among different 

components of the established model. Then an improved algorithm which combined GA and TOPSIS 

was applied to resolve the multilevel and multi-objective model. 

As a demonstration, the developed model and algorithm were applied for the scheduling 

making of a canal system located in the arid area of northwest China. The results indicated that the 

integrated algorithm can solve the problem more efficiently by using a shorter time step and the 

optimization model can shorten the operational duration by two days, achieve about 26% reduction 

of irrigation water consumption, and improve the efficiency of water delivery from 0.566 to 0.687. 

The model can also reflect the tradeoffs of multiple targets from the same level and give an insight 

into the effects of various demands of the different levels. Thus, the decision-makers can make 

informed operation decisions by given the flexibility to change their expectation according to the 

feedback from other levels. That will be very favorable for the promotion of the agricultural water 

productivity, the relief of water shortage crisis and the sustainable development of agriculture. This 

proposed approach also has a great potential for being further modified based on the characteristics 

of other canal systems. The outcomes can provide a wide range of support for decision making and 

make irrigation decision-making more scientific and systematic. 
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