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Abstract: The present study analyzed the potential of eight operational mining sites in Uzbekistan
for the installation of photovoltaic (PV) systems: Sarmich, Ingichka, Kuytosh, Yakhton, Chauli,
Sherobod, Chorkesar, and Tebinbuloq. A PV system with 1 MW capacity, which required a total
of 4926 m2 of project land, was considered. The renewable energy analysis software RETScreen,
developed by Natural Resources Canada (NRC), was used to calculate energy production, greenhouse
gas reduction, and financial factors of the PV systems in the selected study areas. The iron mine
Tebinbuloq in Karakalpak showed the highest potential, with annual electricity production of
approximately 1685 MWh, equating to a potential reduction of approximately 930 tons of greenhouse
gases. The economic benefit of the PV system in this mine was $2.217 million USD net present value
with a project payback period of approximately 13 years. The results of precision checks of satellite-
and ground-based solar measurements showed high correlations; hence, satellite-based data can be
applied for solar project assessments where solar monitoring meteorological stations are not available.
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1. Introduction

Global energy consumption is predicted to more than double in the next three decades [1].
Depleting deposits of fossil fuels and environmental concerns have led governments to investigate
new energy sources and support research into renewable energy to sustain economic and industrial
development [2,3]. Among renewable energy sources (e.g., wind, geothermal, solar, etc.), solar power,
and particularly photovoltaic (PV) systems, are considered the most environmentally friendly (in terms
of sustainability) for residential, commercial, and industrial applications [4–8].

The mining industry is an essential industrial branch with a high energy demand; for example,
copper mining is expected to consume 41.1 terawatt-hours (TWh) of energy in the near future [9].
Furthermore, mining operations have environmental consequences such as causing soil pollution,
generating greenhouse gas (GHG) emissions, and polluting clean water systems; these problems
require the mining sector to implement development strategies that are integrated with sustainability
concerns [10,11]. Research in Australia shows that, as a result of the combination of numerous mineral
processing operations (e.g., crushing, concentrating, blasting, loading, and hauling), 628.2 kg CO2 is
emitted to process one metric ton of ore from copper concentrate [12].

Recently, global mining companies and international environmental protection organizations
have identified solar energy implementation as a solution to address both the demand for mining
sites to reduce environmental footprints and for the reshaping of post-mining sites into green energy
regions [13,14]. Consequently, PV systems are installed in operational and abandoned mining sites
globally. One of the top copper producing countries, Chile, designed the grid-connected 1 MW Calama
Solar 3 PV power plant project near the world’s biggest open pit copper mine, Chuquicamata copper
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mine, to meet the electricity demands of the mine. Consequently, Chile achieved an annual reduction
in GHG emissions of 1600 metric tons [15]. A 10.6 MW PV system was installed in a Western Australian
copper–gold mine, Degrussa mine. At this site, mining operations were previously dependent on fossil
fuel, and installation of the PV system reduced total emissions of Australia by 12,000 metric tons per
year [16]. Shanta Gold, the East African gold mining company in Tanzania, deployed a 63 kWp solar
power plant around New Luika gold mine in 2014. After the success of the initial step, an additional
seven projects were installed in the following three years, equating to an annual CO2 reduction of
660 tons [17].

The largest solar project in Canada (SunMine) is in Kimberley, British Columbia, and is a commercial
solar construction. It is built on the reclaimed site of the Sullivan Mine and consists of 4032 solar cell
modules with tracking facilities [18]. Solarpark Meuro is located on an abandoned lignite mining site
in Germany, and it is another example of a PV power station used in a mining operation. This system
uses 636,000 solar cells to produce 166 MW of electricity [19]. Designed in partnership with First Solar
and the US and Australian solar company Ingenero, a 1.7 MW solar power plant generated electricity
for a bauxite mine in Weipa, which was expected to decrease annual CO2 emissions by 1600 tons [20].
In South Korea, several small-scale PV systems were designed at different post-mining points at the
Ssangyong open pit limestone mine [21] and at an abandoned mine tailings dam in the Sangdong
mine [22]. Furthermore, the potential for installation of PV systems at several abandoned mining
districts and several operational mining sites has been analyzed for suitability and economic feasibility
of solar applications [23–25].

Uzbekistan is a leading power-generating country in Central Asia, generating almost 59 TWh
of electricity annually. However, as a consequence of fossil fuel dependency (89% of total electricity
production, of which 76% is from natural gas, 7% fuel oil, and 6% coal), the country is the second largest
polluter among Central Asian countries after Kazakhstan (230 million metric tons CO2 annually),
producing 85.3 million tons of CO2 annually [26]. Furthermore, the energy demand of Uzbekistan is
expected to increase by up to 25.5% by 2030 [27]. In order to manage increasing electricity demands,
Uzbekistan has joined the International Renewable Energy Agency (IRENA) to boost renewable energy
policies [28], and it has developed the strategy of energy production from renewable energy sources and
reduction of the dependence on fossil fuels [29]. Recently, the findings of different studies employing
various approaches showed the prospects of renewable energies in Uzbekistan: 70% of the land surface
in the country (total 44.7 million ha) is suitable for installation of solar energy power plants [30].
The launch of the 100 MW grid-connected solar power plant in the Samarkand region [31] was one of
the initial steps towards solar energy integration, which was followed by projection of large-scale PV
power plants in Kashkadarya, Namangan, and Surkhandarya provinces [32].

Uzbekistan is rich in natural resources with more than 1800 deposits of mineral resources identified.
It is a leading producer globally of copper, gold, and uranium, and many mineral deposits remain in
reserves [33]. In 2017, the sector accounted for 12.7% of the total production revenue of the country,
equating to 18.3 trillion soms. Recent local and international studies have investigated the potential of
renewable energy generation such as using PV and concentrating solar power (CSP) systems [34,35]
as well as wind power [36]. Studies of solar resource observations in the country conducted by
the Asian Development Bank concluded that some provinces were more suitable for CSP, while PV
system installation was preferred for others [37]. These studies provided some necessary information
for primary design, financing, and operation of solar energy systems. However, to the best of our
knowledge, studies analyzing renewable energy sources with a focus on the mining industry, and that
can estimate the probability of energy production where mineral processing and mines are primarily
located, have not yet been conducted.

The present study analyzes the feasibility of PV system installation in eight mining districts
throughout Uzbekistan for the purposes of improved energy efficiency and sustainability. Geographic
information system (GIS) was used to assess solar site measurements of mining sites in the study area.
Annual power production, GHG emission reduction, net present value (NPV) of the plant, investment
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payback period, and the internal rate of return (IRR) were investigated using RETScreen software,
developed by Natural Resources Canada (NRC), to facilitate estimations of the economic and energy
aspects of the 1 MW capacity PV system installation.

2. Materials and Methods

2.1. Study Area

Uzbekistan covers an area of 447,400 km2 of mixed relief and geographical terrain, and it consists of
12 provinces and the Karakalpak Republic. Days of sunshine are estimated at >300 d annually, and the
average temperature in July is 32 ◦C. The mineral resources of the country include metallic ores such as
copper, zinc, lead, tungsten, and molybdenum; precious metals such as uranium, gold and silver; and
large fossil fuel reserves [38]. Electricity generation is approximately 52.7 TWh annually from a total of
38 power plants (10 thermal and 28 hydropower plants). The energy sector is primarily dependent
on fossil fuels—85% of power stations use natural gas, 11% fuel oil, 4% coal, and renewable energy
generates <1% of total energy production. The solar energy source by global horizontal irradiation
(GHI) is estimated at an average of 1700–2000 W/m2/year, which makes Uzbekistan one of the top
potential countries for solar power generation in Central Asia [37]. However, because of the scarcity
of data and regional limitations of large-scale exploitation of solar energy in some regions [32,34,37],
a map showing an overall assessment of solar energy potentials in mining districts has not yet been
considered by the scientific community. This study developed a map of mining districts in Uzbekistan,
highlighting the most promising locations for potential PV system investments regarding metallic and
valuable mineral mines.

Regions of existing mining operations were divided into three major provinces: Kizilkum district,
Nurota district, and near Tashkent deposits (Figure 1). The mineral processing industry is managed
by two government-owned mining companies: Navoi Mining Metallurgical State Company (Navoi
GMK) [39] (in Kizilkum and partly eastern Nurota district) and Almalyk Mining Metallurgical Combine
Joint Stock Company (Almalyk GMK) [40] (mainly near Tashkent deposits and partly western Nurota
district). Almalyk GMK is the only copper producer in the country; mineral deposits near Tashkent
contain more than 170 types of minerals. In addition to copper, lead/zinc/barite ores are also mined
and processed in this region. Gold and uranium are extracted mainly by Navoi GMK (share of 80%)
with total control of 13 gold deposits [33].
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A total of 63 metal and precious mineral mining sites were considered in this study, including
23 gold, 11 uranium, 4 copper, and 20 other mineral deposits. To identify approximate meteorological
conditions for each mining site, Figure 1 shows a solar resource map with a spatial resolution of
30.0 arc-seconds created by SOLARGIS [41]. Since the mining industry spread throughout the country
hierarchically, eight provinces were identified for this study: Tashkent, Namangan, Jizzakh, Navoi,
Samarkand, Bukhara, Surkhandarya, and Karakalpak. The majority of these sites were in remote areas
(i.e., distant from grid connections and urban centers).

The highest potential mining site per province was identified according to satellite-based solar
radiation values (Table 1). Since the mining site Tebinbuloq is the only area in Karakalpakstan where
mining of precious minerals is available, it was considered as the study site for subsequent analysis.
Selected study sites per region are shown in Figure 2.

Table 1. Eight mining sites selected for photovoltaic potential analysis.

ID Region Mining Site Company Mineral Status
Global Horizontal
Irradiation (GHI)

(kWh/m2/day)

Annual Mean
Temperature

(◦C)

2 Navoi Sarmich Navoi MMC 1 gold/silver operating 4.41 14.20
26 Samarkand Ingichka Navoi MMC 1 tungsten operating 4.55 13.60
31 Jizzakh Kuytosh unavailable tungsten projected 4.36 15.20
36 Surkhandarya Sherobod unavailable strontium projected 4.46 17.50
38 Bukhoro Yakhtan Navoi MMC 1 tungsten abandoned 4.55 14.20
43 Namangan Chorkesar Almalyk MMC 1 uranium abandoned 4.27 8.10
60 Tashkent Chauli Almalyk MMC 1 uranium abandoned 4.62 14.30
62 Karakalpakstan Tebinbuloq unavailable iron projected 4.38 12.10

1 Mining Metallurgical State Company.
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2.2. Data Collection

Solar potential assessments were conducted by analyses of meteorological data collected at eight
mining sites in Uzbekistan. Meteorological data consisting of total long-term annual averages of GHI
(kWh/m2) between 1999 and 2015 were analyzed. The amount of solar radiation data received at the
surface, horizontal to the ground and with a resolution of 30.0 arc-seconds, was obtained from the
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Global Solar Atlas for the solar resource assessment and mapping contract between the World Bank
Group [41]. Temperature observation data derived from satellite databases were also utilized during
analyses (Table 1).

The average daily horizontal solar radiation ranged from 4.33 to 4.55 kWh/m2/day; the Ingichka
deposit in Samarkand and the Yakhton mine in Bukhara province showed the highest solar radiation,
while the lowest was identified in the northeast of the country at the Chorkesar mine. The annual
mean temperature was the highest in the Surkhandarya region and the lowest in the Namangan area.

Figure 3 shows that daily irradiance was the highest in summer and spring months, ranging from
approximately 5 to 7.5 kWh/m2 day, and the temperature was the highest during June to September
in the selected study sites. GHI was highest in the area of the Chauli mine, which was located in
the northwest part of the country; however, solar energy measurements were performed at a central
meteorological station using the most accurate technologies.Sustainability 2019, 11, x FOR PEER REVIEW 2 of 15 

 

 
(a) 

 
(b) 

Figure 3. (a) Average daily irradiance; and (b) average temperatures of selected mining sites in 
Uzbekistan. 

2.3. System Design 

Installation of PV systems (1 MW capacity) was considered at each site. As the renewable energy 
certificates (REC) policy is not yet applied in Uzbekistan, certification weights were not included in 
estimations. To analyze system parameters, up-to-date cost of natural gas (1000 sum/m3) and 
electricity (370 sum/kWh) reported by Uzbekenergo Joint Stock Company of Uzbekistan were 
applied [42], and they were used in calculations of annual power production and GHG emissions, 
which were exchanged into USD by the conversion ratio provided by the National Bank of 
Uzbekistan [43]. 

A fixed facility system was installed with a 40° slope, and the azimuth was set to the south. A 
4926 m2 area was required to install the proposed PV system. The parameters of the PV system and 
inverter are given in Table 2. 

RETScreen software tool, developed by Natural Resources Canada (NRC), was used to conduct 
power production, emissions, and economic analyses of the PV system installation. Previous studies 
used RETScreen to evaluate power production analyses in potential mining districts of South Korea 
[24]. The PV system was designed as an off-grid system to support the energy needs of a mining site. 

Table 2. The characteristics of the photovoltaic (PV) system (1 MW) considered in the study. 

Item Parameter Value 

Photovoltaic 

Material mono-Si 
Model Sunpower, mono-Si-SPR-X20-250-BLK 

Total units 4000 
Capacity per unit (kW/unit) 250 

Total capacity (kW) 1000 
Efficiency (%) 20.3 

0

2

4

6

8

Av
er

ag
e 

Da
ily

 G
HI

, 
kW

h/
m

2 /
da

y

Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov

-10
0

10
20
30
40
50
60
70

Av
er

ag
e 

te
m

pe
ra

tu
re

 (°
C
)

Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov

Figure 3. (a) Average daily irradiance; and (b) average temperatures of selected mining sites
in Uzbekistan.

2.3. System Design

Installation of PV systems (1 MW capacity) was considered at each site. As the renewable energy
certificates (REC) policy is not yet applied in Uzbekistan, certification weights were not included in
estimations. To analyze system parameters, up-to-date cost of natural gas (1000 sum/m3) and electricity
(370 sum/kWh) reported by Uzbekenergo Joint Stock Company of Uzbekistan were applied [42], and
they were used in calculations of annual power production and GHG emissions, which were exchanged
into USD by the conversion ratio provided by the National Bank of Uzbekistan [43].

A fixed facility system was installed with a 40◦ slope, and the azimuth was set to the south.
A 4926 m2 area was required to install the proposed PV system. The parameters of the PV system and
inverter are given in Table 2.
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Table 2. The characteristics of the photovoltaic (PV) system (1 MW) considered in the study.

Item Parameter Value

Photovoltaic

Material mono-Si
Model Sunpower, mono-Si-SPR-X20-250-BLK

Total units 4000
Capacity per unit (kW/unit) 250

Total capacity (kW) 1000
Efficiency (%) 20.3

Frame area (m2) 1.157
Nominal operating cell temperature (◦C) 45

Miscellaneous losses (%) 1

Inverter

Model Sunpower, SPR-12000f
Efficiency (%) 95.5

Total units 80
Capacity per unit (kW/unit) 12.5

Miscellaneous losses (%) 0

RETScreen software tool, developed by Natural Resources Canada (NRC), was used to conduct
power production, emissions, and economic analyses of the PV system installation. Previous studies
used RETScreen to evaluate power production analyses in potential mining districts of South Korea [24].
The PV system was designed as an off-grid system to support the energy needs of a mining site.

2.4. Assessments

The formulas used for the system analysis in RETScreen tool are explained for a better
understanding of the assessment concept and process flow of analysis. The algorithm of electricity
generation estimation is expressed in the following equation:

EA = Ht × S× ηr × ηinv ×
[
1− βp × (Tc − 25)

]
×

(
1− λp

)
× (1− λc). (1)

Here, EA stands for the total power generated by the system, Ht is the amount of all-sky solar
radiation received by solar unit per hour (kWh/m2/h), S is the surface area of the solar panel (in this case
1.157 m2), ηr is the efficiency of solar module conversion (which is between 0–1), ηinv is the efficiency of
the inverter module, Bv means the temperature coefficient of the PV module, Tc means the average
temperature of the solar cell (◦C), and λp and λc represent loss coefficients due to dirt, rain, or snow for
the solar module and inverter, respectively [44]. The information shown in Tables 1 and 2 was used in
estimations by applying Equation (1).

RETScreen software follows emissions against Kyoto Protocol regulations. Analysis of GHG
emission was conducted to compare the emission outputs before and after the PV system was applied.
The amount of reduced GHG emission per year was estimated with a comparison equation of the
baseline and proposed case system conditions as follows:

GN = ES × 10−3
×G× (1 + β). (2)

In Equation (2), GN is the reduction of greenhouse gas per year (tons CO2/year), G is the GHG
emission factor of each country, and β is the electricity lost in transmission and distribution (T&D) for
the proposed system. A GHG emission factor, in the case of an electricity production system that used
conventional technologies for all types of fuel for solar and wind projects in Uzbekistan, was proposed
at an estimated 0.551 metric tons CO2/MWh by the Asian Development Bank [45], and this value was
used in this study. In addition, the average transmission and distribution loss rate of Uzbekistan was
reported as 8.83% and was used for analysis in this study [46].
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The capacity factor of the solar projects was measured as a percentage according to the total
produced energy by the plant compared to its energy generation at full capacity (the typical capacity
factor for PV systems ranges from 5% to 20%).

The NPV (USD) of the project was calculated as the mean financial factor by applying the
following formula:

NPV =
∑N

t=1

Et −Ct

(1 + r)t −C0, (3)

where N is the system operating period (y), Et is the yearly revenue from the electricity sales (USD),
Ct is the operating cost of the system per year, r is the social discount rate, and C0 refers to the
initial installation costs of the PV system. Plant lifetime was determined at 30 y according to the
National Renewable Energy Laboratory (NREL) proposal [47]. For the economic assessments of the PV
system installation, the installation cost of fixed-tilt PV systems ($1.85/kW) and annual operation and
management costs for PV systems ($9.92/kW/year) proposed by the International Energy Agency were
applied [48]. The inflation rate of Uzbekistan in 2018 of approximately 14% [49] and the average social
discount rate of developing countries of 10% [50] were also applied. From previous renewable projects,
the government share was 30%, and 70% of project funds were covered by debts [37].

The IRR is the cash flow discount rate that causes the NPV of the project to equal zero, which was
calculated from Equation 1 as zero. The payback period is the number of years taken for the revenue
cash flow to equal the total investment, and it can be identified by calculating N in Equation (3).

3. Results

The financial feasibility indicators of the 1 MW PV system installations in the eight selected mining
sites in different provinces are shown in Figure 4, and energy generation and GHG emission reduction
results of the RETScreen assessments are presented in Table 3.

Table 3. Energy- and emission-related results from photovoltaic system potential analyses.

Site Capacity Factor
(%)

Annual Electricity
Generation (MWh/year)

Annual Greenhouse Gas
(GHG) Reduction (tCO2) Gasoline (L)

Sarmich 18.5 1619 891.8 383,198
Ingichka 19.1 1676 923.3 396,701
Kuytosh 17.9 1572 866.4 372,250
Sherobod 17.7 1555 856.6 368,060
Yakhton 19 1660 914.8 393,044

Chorkesar 18.4 1612 888.2 381,630
Chauli 19 1668 918.8 394,783

Tebinbuloq 19.2 1685 928.5 398,955

The capacity factor of the solar plant in the Tebinbuloq mining site was the highest in this study,
and this site also had the highest annual electricity generation among the eight studied areas. The
1 MW PV system installation at the site of the Tebinbuloq steel deposit in Karakalpak was capable of
producing 1685 MWh of electricity annually, which would consequently reduce CO2 emissions by
928.5 metric tons and was equivalent to saving 398,955 L of gasoline. The second highest production
was identified in the Samarkand province at the Ingichka volframus mine, which had annual reductions
of approximately 1676 MWh energy and 923.3 metric tons CO2 emissions. Moreover, both mining sites
showed identical IRR (11.9%) and project payback periods (13.2 years), while the NPV values were
similar at 2.217 million USD for the Tebinbuloq mining site and 2.191 million USD for the Ingichka
volframus mine.

Although relatively high annual average temperatures and daily irradiances were recorded in
the Sherobod deposit of the Surkhandarya province, the results showed that production and other
assessment elements of project feasibility were the lowest.
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Tebinbuloq is the largest iron ore deposit in Uzbekistan, with an annual capability of steel
production estimated at 1.5 million tons, which satisfies the annual steel consumption of Uzbekistan [51].
The project of “Construction of a mining and metallurgical complex based on the Tebinbuloq deposit”
is currently in the project investment phase, and launch of the complex operation is expected to
commence in 2024 [52].

The average revenue of electricity export from the PV system installed in the Tebinbuloq site was
calculated at more than 84,000 USD. In addition, the infrastructure of this mineral deposit was highly
suitable for a PV system because it had the shortest distance (2 km) to the transmission line among the
eight studied sites, a water reservoir was available for water supply, and it was close to the highway
(within 5 km).
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Overall, the results showed between 13.2 and 14.1 y project payback period for the 1 MW PV
system with capacity factors between 18.4% and 19.2% as well as IRR values between 11.2% and 11.9%.

4. Discussion

Currently, only six sites have solar measurements available from meteorological stations in
Uzbekistan: Solar Village Tashkent, Karmana, Dagbit, Pap, Sherobod, and Guzar [37] (Figure 5).
Among the eight mining districts considered for PV system feasibility analysis in this study, no solar
measurement data currently exists for Bukhara, Jizzakh, and Karakalpak provinces. The types of
sensors deployed for solar irradiance measurements in solar assessments from existing weather
stations and their characteristics are listed in Table 4. The duration of solar irradiance in these solar
measurement stations is measured daily and collected in monthly and yearly meteorological books for
statistical use [53].
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Table 4. Technical parameters of solar measurement sensors used in ground meteorological stations
of Uzbekistan.

Parameter
Sensor

Kipp & Zonen CM3 LiCOR LI200X

Manufacturer Kipp & Zonen LI-COR, Inc.
Operating range (W/m2) 0–2000 0–3000

Accuracy (%) ±10 ±5
Type Thermopile pyranometer Silicon photocell pyranometer

Analysis showed that the GHI at the Chauli mine site in the Tashkent region was higher than other
study areas, despite the fact that the site was located in a region with relatively low solar irradiance.
Taking into account that Tebinbuloq mine was located in an area where ground measurements for solar
radiance were not conducted, the Chauli mine, which was located close to the solar measurements,
was selected. Therefore, ground-based measurement data from the Tashkent-Yuzni meteorological
station in Tashkent, and satellite-based solar data used in previous analytical processes for the same
site, were compared to assess precision and accuracy (Figure 6).

From the current situation in Uzbekistan, solar energy feasibility assessments based on ground
measurements are valid only at some sites, which limits further solar project feasibility analyses in other
areas. Figure 6 shows that correlation between the two sets of solar measurement data (ground-based
and satellite-based records of GHI) is highly accurate; hence, satellite-based measurements can be
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considered in solar project analysis studies where ground measurements are not applicable or cannot
be obtained.Sustainability 2019, 11, x FOR PEER REVIEW 7 of 15 
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5. Conclusions

This study focused on the installation of fixed-tilt PV systems (1 MW) at eight mining sites
in Uzbekistan and estimating annual power production, GHG emission reductions, and financial
aspects. Power production ranged from 1555 to 1685 MW/m2 per year, with the highest recorded at the
Tebinbuloq mining site and the lowest production at the Sherobod mine. The IRR and payback period
at Tebinbuloq and Ingichka were identical (11.9% and 13.2 y, respectively), while the Tebinbuloq mining
site, which is the largest iron ore deposit in the country and is located in Karakalpak autonomous
Republic of Uzbekistan, was the most promising site for PV system installations.

Despite the highly suitable geographical location of countries in Central Asia for solar energy
harvesting, there are a few limitations in solar project feasibility analyses because climate data collection
is scarce. Data are available only at six meteorological stations throughout Uzbekistan. Most areas can
be assessed for solar project potential only by using remotely measured data as a typical approach,
which was investigated in this study. Since this study covers only the initial calculation of the PV
system projects, i.e., without considering land suitability and green energy revenues from the renewable
energy certificates (REC), a more accurate analysis is required prior to final decisions being made.
However, the accuracy of satellite-based measurements is highly suitable for further deployment in
solar projects where ground-based measurements are unreliable.
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