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Abstract: Waste of electrical and electronic equipment (WEEE) is a constantly increasing component
of the total volume of municipal solid waste. E-waste streams are expected to continue escalating
in the near future. The underlining paradox lies in the fact that end-of-life electrical and electronic
equipment constitute a critical waste stream owing to the contained hazardous and toxic elements,
but they also present an important source of valuable raw materials. Therefore, identification of
alternative scenarios for integrated WEEE management is imperative. To that end, this research
develops a methodological approach that focuses on determining the optimal WEEE management
scheme, among available alternatives, applicable to the specific case of Greece. In particular, a binary
linear programming model is formulated that maximizes the performance of 9 alternative WEEE
management scenarios. The mathematical model considers 12 performance assessment criteria
identified across financial, technical, social, and environmental dimensions. Priority levels are
assigned to each criterion based on the input of 19 involved experts. A range of “what-if” analyses
indicate that mechanical recycling of WEEE, in tandem with exporting of residues, is the most efficient
e-waste management strategy in the case of Greece. The research findings indicate that the joint
cooperation of all stakeholders, together with political will and effectiveness, is required for the
integrated WEEE management at a national level.

Keywords: waste electrical and electronic equipment; e-waste management; decision support model;
mathematical programming; Greece

1. Introduction

Manufacturing of electrical and electronic equipment has emerged as one of the fastest growing
industrial sectors during the last decades [1,2], mainly because of the transition towards digitalization
and the ‘appetite’ of consumers for technology-driven applications. This trend has resulted in a rapid
increase in the amount of waste of electrical and electronic equipment (WEEE) generated internationally,
hence raising environmental concerns relating to both the production and use phase of products [3–6].
Indicatively, the global amount of WEEE generated in 2016 was about 44.7 million tons, or 6.1 kg per
inhabitant, while projections foresee that WEEE volumes will amount to 52.2 million tons by 2021,
corresponding to 6.8 kg per inhabitant [7]. From an economic point of view, the value of raw materials
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present in WEEE was evaluated at approximately €55 billion in 2016 [7]. However, only 20% (about
8.9 million tons) of the generated WEEE is collected and properly managed [7].

In this light, the environmental management of e-waste streams is of the upmost importance
because WEEE: (i) presents a constantly increasing component of the total volume of municipal solid
waste [8,9]; and (ii) is composed of valuable, scarce, and hazardous materials [10–15]. In order to reduce
the related waste management cost, in the European Union the Original Equipment Manufacturers
established Producer Responsibility Organizations (PROs) which are nonprofit organizations with the
responsibility to manage electrical and electronic equipment at the end of their useful life [16].

Integrated management of WEEE streams is feasible, despite the underlining technical complexity.
Efficient management of such particular wasted material assumes the consideration of a number of
financial, environmental, technical, and social criteria; the cooperation of all involved stakeholders,
along with political will and effectiveness, is also imperative [17]. To that end, alternative regulations
and practices for sustainable e-waste management exist, from reuse and recycling to the recovery of
valuable and scarce materials [18], rather than landfilling and exporting to developing countries [19].

Selection of an optimal scenario for WEEE management, under specific constraints, involves a
critical decision-making process for ensuring optimal efficiency. The principles of reuse, recycling,
and recovery need to be incorporated into any efficient WEEE management scheme to decrease
environmental impact and avoid depletion of natural resources. In addition, WEEE schemes need
to ensure that recycling fees for electrical and electronic equipment entering the market remain at
affordable rates for the consumers. In this context, several mutually conflicting criteria (e.g., financial,
technical, social, and environmental) need to be assessed in order to identify the best available
compromise. In this regard, leveraging the technical expertise and knowledge of key stakeholders
is crucial to inform the decision-making process over WEEE management, particularly in specific
national or regional settings.

In particular, Greece, a country with a gross domestic product severely affected by the financial
crisis in 2008, presented a drastically reduced WEEE generation rate over the post-crisis era [20].
The Greek law adopted the EU Directive 2002/96/EC for WEEE management, as outlined by the
Presidential Decree 117/2004: “Alternative Management of the Waste of Electrical and Electronic
Equipment”. This Directive aims to: (i) prevent the generation of WEEE; (ii) reduce the generated
e-waste volumes by encouraging reuse; (iii) reduce the resulting WEEE volumes through introducing
quotas for collection, recovery, and recycling; and (iv) reduce the amount of hazardous substances
present in WEEE. However, only 41.4% of the generated WEEE was collected, based on statistics
available for 2016; the country can be regarded as a low performer in terms of WEEE collection rate
considering that the corresponding average rate in Europe was 45% [21].

In this research we develop a methodological approach that focuses on the determination of
the optimal WEEE management scheme among alternative options, namely: (i) recycling; (ii) reuse;
(iii) disposal; and (iv) export. The analysis is based on the quantification of a number of mutually
conflicting performance assessment criteria (across financial, technical, social, and environmental
dimensions) and the selection of the optimal WEEE management scenario with the use of mathematical
programming. The proposed mathematical model considers a priority level assigned to each
performance criterion, based on the input of interviewed experts. The developed methodology
is demonstrated through its application to the case of Greece with the aim to address the following
research questions:

• Research Question 1—What is the mathematical formulation of a decision support model for the
assessment of alternative WEEE management scenarios under specific criteria?

• Research Question 2—What are recommended performance criteria for the assessment of
alternative WEEE management schemes?

• Research Question 3—Which could be a viable WEEE management strategy for the case of Greece?
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To respond to Research Question 1, we identified 9 potential scenarios for the management of
WEEE across the alternative options of recycling, reuse, disposal, and exporting. Thereafter, a binary
linear programming model was developed to optimize the performance of the identified scenarios.
In response to Research Question 2, the developed mathematical program was optimized in terms
of 12 selected criteria, under functional constraints. The assessment criteria are identified at the
financial, technical, social, and environmental domains. Furthermore, to address Research Question 3,
we contacted 19 experts in the field of WEEE management in Greece, and we performed “what-if”
sensitivity analyses through 18 different cases; the latter cases emanated from alternative combinations
of performance coefficients, as described in Section 4.

This research contributes to the Operations Research field by providing a binary linear
programming model for the assessment of alternative WEEE management scenarios via capturing a
range of assessment criteria. In addition, each performance criterion is assigned a priority level based
on input from key informants. The extant literature over WEEE management documents that studies
elaborating mathematical programming are rather myopic in scope, hence providing opportunities for
further and more inclusive research [22]. Additionally, performance assessment of alternative WEEE
management scenarios for the case of Greece, through mathematical programming capturing diverse
evaluation criteria, poses an original research contribution. Existing studies for the case of Greece
are either empirical [23] or focus only on retrieving an optimal solution with regard to: (i) location
of waste treatment plants [1]; (ii) transportation cost [17,24]; and (iii) management cost that captures
operational perspectives [25].

The rest of this paper is organized as follows. Section 2 presents the materials and methods
relevant to this research. In particular, the parameters and variables of the proposed decision
support mathematical model are detailed, while 9 examined WEEE management scenarios capturing
12 performance assessment criteria are exemplified. Section 3 presents the performance evaluation
of alternative WEEE management scenarios in terms of the selected criteria. Section 4 explores
“what-if” sensitivity analyses of the optimal solution and briefly discusses the insights of this research.
Conclusions, implications for practice, limitations, and future research perspectives are discoursed in
the final Section 5.

2. Materials and Methods

The methodological framework along with the decision support model, application scenarios,
and assessment criteria pertinent to this research are exemplified in the subsections that follow.
The methodological approach underpinning this research provides an easy-to-use decision support
tool for policymakers, institutional actors, and relevant stakeholders regarding the assessment of
alternative WEEE management policies. The developed mathematical model can be adapted to capture
the specific WEEE management characteristics relevant to the specific requirements and prioritization
of performance assessment criteria in selected regional settings.

2.1. Methodological Framework

The development of WEEE management systems has not been homogeneous but varies depending
on every country’s special characteristics, particular requirements, and existing infrastructure [26–31].
In addition, a constantly increasing number of developing countries are prohibiting imports of WEEE
within the context of the Basel Convention [19], a typical strategy explored by developed economies
thus far, hence motivating the establishment of robust national and/or local WEEE management
systems [32]. In this setting, a structured conceptual framework for the identification of the optimal
WEEE management scheme among available alternatives is herein presented. The approach was based
on the quantification of a number of mutually conflicting parameters and the hierarchical ranking of a
number of different WEEE management scenarios based on the characteristics of the area under study
with the use of a decision support model. The adopted conceptual framework for the evaluation of
alternative WEEE management scenarios is illustrated in Figure 1.
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Figure 1. Methodological framework for the evaluation of alternative waste of electrical and electronic
equipment (WEEE) management scenarios.

At the first step, alternative WEEE management scenarios were identified with reference to
recycling, reusing, disposing, and exporting [18]. In fact, 9 application scenarios were identified based
on the concepts of WEEE management (as detailed in Section 2.3), namely: (i) recycling (Rec1–Rec3,
three scenarios); (ii) reuse (Reu1–Reu2, two scenarios); (iii) disposal (Disp1–Disp2, two scenarios);
and exporting (Exp1–Exp2, two scenarios). The alternative scenarios were then evaluated on a range
of multiple criteria to enable robust a decision-making process [33]. Typically, such criteria cover
financial [34,35], technical [1,36], social [1,35], and environmental [34,35] constituents. In this research,
we identified 4 financial criteria, 3 technical criteria, 2 social criteria, and 3 environmental criteria that
were captured in the proposed mathematical program to support the operationalization of the results.
These assessment criteria were determined at the initial stage of the methodological process. Other
common methodology used in the hierarchical evaluation of WEEE management schemes refers to
data envelopment analysis (DEA) [33]; however, the use of DEA was out of the scope of this research.
In addition, in DEA methodology the results are sensitive to the selection of inputs and outputs.

Thereafter, the quantification of the criteria for the performance evaluation of the selected scenarios
is realized either quantitatively, by statistical analyses, or qualitatively, through interviewing experts
in the field. Owing to the lack of quantitative information for the assessment of the 9 identified
scenarios (i.e., Rec1, Rec2, . . . , Exp2) for the 12 different criteria, we performed a qualitative assessment.
Towards this direction, in order to assess the different criteria for the selected scenarios, 19 experts
were interviewed in 2 rounds following a Delphi approach. The informants, who represented expertise
on the waste management field from academia, industry, and the public sector, qualitatively assessed
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the proposed scenarios on a scale from 1 to 10. Moreover, the involved experts critically evaluated
the priority of each criterion (i.e., assigning priority levels from 1 to 3) for the overall effectiveness of
the scenarios.

Following, a mathematical model was formulated, which was further solved based on the
aforementioned performance assessment criteria in order to identify the optimal WEEE management
scenario. The robustness of the elaborated decision-making process was further supported by a
sensitivity analysis over the alternative WEEE management scenarios.

2.2. Decision Support Model

In this subsection, we present the proposed decision support model that addressed the optimal
selection of WEEE management scenarios under specific criteria. The objective function of the
proposed mathematical program aims to maximize the performance of the system by selecting the most
appropriate WEEE management scenario. To this effect, multiple groups of constraints are considered,
while assessment criteria are identified and divided into input and output variables; the assessment
criteria are further categorized into 3 priority levels (high priority level—level 1; medium priority
level—level 2; and low priority level—level 3). Below, we provide the related nomenclature of the
mathematical model:

i = 1, . . . , I: alternative solutions

and
j = 1, . . . , J: priority levels.

In Tables 1 and 2 we provide the nomenclature for the decision variables and the parameters of
the model, respectively.

Table 1. Nomenclature for the decision variables.

Variable Definition

Yi

Binary decision variable that determines the selection or not of solution i:
Yi = 0 the solution i is not recommended
Yi = 1 the solution i is proposed

Table 2. Nomenclature for the parameters of the model.

Parameter Definition

Gin+

j Desired value for input criteria with positive effect (in+) in priority level j
Gin−

j Desired value for input criteria with negative effect (in−) in priority level j
Gout+

j Desired value for output criteria with positive effect (out+) in priority level j
Gout−

j Desired value for output criteria with negative effect (out−) in priority level j
Pin+

i j Performance of solution i in input criteria with positive effect (in+) in priority level j
Pin−

i j Performance of solution i in input criteria with negative effect (in−) in priority level j
Pout+

i j Performance of solution i in output criteria with positive effect (out+) in priority level j
Pout−

i j Performance of solution i in output criteria with negative effect (out−) in priority level j
M A very large number (compared to the other parameters of the model)
e j Coefficient with a domain 0 to 1

Consequently, the following binary linear programming model is formulated:
Maximize:

I∑
i=1

J∑
j=1

Yi·

1− Pin−
i j

Gin−
j

+ I∑
i=1

J∑
j=1

Yi·

Pin+
i j

Gin+
j

− 1

 I∑
i=1

J∑
j=1

Yi·

1− Pout−
i j

Gout−
j

+ I∑
i=1

J∑
j=1

Yi·

Pout+
i j

Gout+
j

− 1


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Subject to: ∑I

i=1
Yi = 1; (1)

Pin−
i1 · Yi ≤ Gin−

1 , ∀i in priority level 1; (2)

Pout−
i1 · Yi ≤ Gout−

1 , ∀i in priority level 1; (3)

(1−Yi)·M + Pin+
i1 ≥ Gin+

1 , ∀i in prioritey level 1; (4)

(1−Yi)·M + Pout+
i1 ≥ Gout+

1 , ∀i in priority level 1; (5)

e j· Pin−
i j · Yi ≤ Gin−

j , ∀i in priority level j = 2, . . . , J; (6)

e j·Pout−
i j · Yi ≤ Gout−

j , ∀i in priority level j = 2, . . . , J; (7)

(1−Yi)·M + Pin+
i j ≥ Gin+

j ,∀i in priority level j = 2, . . . , J; (8)

(1−Yi)·M + Pout+
i j ≥ Gout+

j ,∀i in priority level j = 2, . . . , J; (9)

Yi ∈ 〈0 , 1〉. (10)

More specifically, constraint (1) ensures that only one scenario is selected. The group of constraints
(2)–(5) dealt with high priority level criteria. In particular, inequality (2) dictates that the performance
of the selected solution i in input criteria with negative effect (in−) in priority level 1 is less than the
desired value for the specific criteria. Inequality (3) ensures that the performance of the selected
solution i in output criteria with negative effect (out−) in priority level 1 is less than the desired value
for the specific criteria. Inequality (4) dictates that the performance of the selected solution i in input
criteria with positive effect (in+) in priority level 1 is greater than the desired value for the specific
criteria, while inequality (5) ensures that the performance of the selected solution i in output criteria
with positive effect (out+) in priority level 1 is greater than the desired value for the specific criteria.

Furthermore, the group of constraints (6)–(9) consider low priority level criteria. Especially,
inequality (6) dictates that the performance of the selected solution i in input criteria with negative
effect (in−) in low priority levels multiplied by a predefined coefficient is less than the desired value for
the specific criteria. Furthermore, inequality (7) ensures that the performance of the selected solution i
in output criteria with negative effect (out−) in low priority levels multiplied by a predefined coefficient
is less than the desired value for the specific criteria. Inequality (8) dictates that the performance of the
selected solution i in input criteria with positive effect (in+) in low priority levels is greater than the
desired value for the specific criteria multiplied by a predefined coefficient. In addition, inequality (9)
ensures that the performance of the selected solution i in output criteria with positive effect (out+)
low priority levels is greater than the desired value for the specific criteria multiplied by a predefined
coefficient. Finally, (10) is the binary constraint.

2.3. Application Scenarios

The presented methodological framework and the developed mathematical model were
implemented for the case of Greece. Alternative WEEE management scenarios are briefly described
in Table 3. In total, 9 scenarios were assessed. The scenarios were characterized by 4 discrete basic
concepts regarding the management of WEEE, namely:

• Recycling (Scenarios Rec1–Rec3)
• Reuse (Scenarios Reu1–Reu2)
• Disposal (Scenarios Disp1–Disp2)
• Exporting (Scenarios Exp1–Exp2).
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Table 3. Alternative WEEE management scenarios.

E-Waste Management Concept Scenario Description—Process Flow

Recycling

Rec1
Collection of e-waste→ Recycling and recovery of useful and precious
quantities→ Disposal of residues in landfills

Rec2
Collection of e-waste→ Recycling and recovery of useful and precious
quantities→ Incineration of residues

Rec3
Collection of e-waste→ Recycling and recovery of useful and precious
quantities→ Export of hazardous waste and residues

Reuse
Reu1

Collection of e-waste→ Control of reusability→ Recovery of devices or
components→ Disposal of residues in landfills or incineration

Reu2
Collection of e-waste→ Control of reusability→ Recovery of devices or
components→ Recycling-disposal of residues in landfill or incineration

Disposal Disp1 Collection of e-waste→ Disposal in landfills
Disp2 Collection of e-waste→ Incineration

Exporting
Exp1 Collection of e-waste→ Export of collected quantities for further processing

Exp2
Collection of e-waste→ Recovery of reusable materials and components→
Export of non-reusable material

2.4. Assessment Criteria

In order to compare the 9 alternative WEEE management scenarios on their efficiency, 12 criteria
were selected. The criteria were categorized into 4 basic thematic areas, namely financial, technical,
social, and environmental. The criteria selected are depicted in Table 4. As discussed in Section 2.2,
the assessment criteria were divided into input and output variables and were further categorized into
3 priority levels. To that end, in the case under study, criteria F1–F3 and T1–T2 were considered as
inputs to the decision support model, while criteria F4, T3, S1–S2, and E1–E3 were outputs. The priority
levels provided in Table 4 were an outcome of the engagement with 19 interviewed experts. In order to
allocate a priority level to each criterion, the mode values of the 19 responses were taken into account.

Table 4. Selected assessment criteria.

Thematic Area Criterion Description of Criterion Type Priority Level

Financial

F1 Investment cost Input (−) 1st
F2 Operational cost Input (−) 2nd
F3 Collection cost Input (−) 2nd
F4 Profit from reused products Output (+) 2nd

Technical
T1 Existence of infrastructure Input (+) 3rd
T2 Reliability and experience Input (+) 3rd
T3 Flexibility Output (+) 3rd

Social
S1 Social acceptance Output (+) 1st
S2 Employment opportunities Output (+) 3rd

Environmental
E1 Air, water and solid waste pollution Output (−) 2nd
E2 Noise and aesthetics pollution Output (−) 3rd
E3 Energy and material recovery Output (−) 3rd

3. Results

Following the conceptual approach depicted in Figure 1, the performances of 9 alternative WEEE
management scenarios were quantified for the 12 identified criteria. Moreover, for each criterion,
the desired value of performance was defined. For the study needs, the views and opinions of 19 experts
for the optimal WEEE management scenario for the case of Greece were assessed. Those experts,
representing academia, business, collective systems, and public authorities, were asked to indicate a
desired value of performance over the 12 criteria. In order to allocate a priority level to each assessment
criterion the mode values of the 19 retrieved responses were taken into account to reduce bias.

The resulting optimization model consists of 9 binary variables and 22 non-negativity constraints.
The mathematical model was solved on a computer with 3.6 GHz CPU and 16 GB RAM with the
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use of Microsoft Solver. The computational time was a few seconds for a variety of generated
problem instances, and, thus, the solution performance of the proposed model was deemed satisfactory.
The resulting average performances are illustrated in Table 5. The performance assessments and the
desired values for each scenario (for the selected criteria) resulted from the qualitative answers of
the experts provided on a scale of 1 to 10. For example, for the criterion F1 (i.e., investment cost)
scenario Rec2 (i.e., “Collection of e-waste→ Recycling and recovery of useful and precious quantities
→ Incineration of residues”) scored 6.7, which indicates the requirement for high capital expenditure
to develop the necessary infrastructure. On the contrary, scenario Disp1 (i.e., “Collection of e-waste
→ Disposal in landfills”), which was associated with WEEE landfilling, had an F1 score of 1.2, as the
required investment is not deemed substantial.

Table 5. Performance assessment matrix.

Scenario
Assessment Criterion

F1 F2 F3 F4 T1 T2 T3 S1 S2 E1 E2 E3

Rec1 4.8 4.2 5.0 1.0 6.3 3.6 3.1 4.1 5.2 4.0 3.7 2.2
Rec2 6.7 5.8 5.1 1.0 2.1 1.5 2.8 2.2 5.4 2.7 3.1 4.8
Rec3 1.9 1.3 4.2 1.0 6.3 2.7 3.0 2.6 2.8 1.3 1.2 1.2
Reu1 2.8 2.2 6.1 5.3 1.6 2.3 3.1 6.7 6.4 4.2 3.6 5.4
Reu2 5.7 5.9 6.1 5.3 1.6 2.3 3.1 6.7 6.4 3.6 3.4 6.2
Disp1 1.2 1.3 1.0 1.0 6.8 3.4 3.5 1.9 1.2 7.0 5.2 1.0
Disp2 5.8 2.5 1.0 1.0 1.7 2.6 2.6 1.4 1.4 6.4 4.9 2.2
Exp1 3.1 2.0 5.2 1.0 6.1 3.1 3.3 2.4 1.1 2.2 2.4 1.0
Exp2 3.6 5.1 6.1 5.3 1.6 2.3 3.1 6.4 6.2 4.0 3.2 5.8
Desired value 5.2 4.0 4.0 1.05 2.0 2.3 3.0 2.5 1.6 4.4 4.3 4.4

4. Discussion

Scenarios involving the co-incineration of WEEE (i.e., Rec2, Disp2) require a considerably high
investment cost which is attributed to the lack of relevant national infrastructure. Moreover, collection
cost is highly polarized between the recycling/reuse/export-based scenarios and the disposal-based ones
considering that in the later scenarios e-waste could be collected in bulk, thus significantly reducing
the relevant cost. Similarly, reuse-based scenarios (i.e., Reu1 and Reu2) as well as scenario Exp2, which
promote the reuse of components/equipment before exporting the majority of WEEE quantities to
other countries for further processing, present high values in terms of profit from reused products
(criterion F4). These scenarios also demonstrate good performance in regard to their social acceptance
and employment opportunities. The lack of companies and bodies operating in the second-hand
electronics market (i.e., reuse of components and/or equipment) in Greece, as well as the lack of
previous experience in WEEE co-incineration, decrease the corresponding technical criteria values for
scenarios Reu1, Reu2, Disp2, and Exp2.

An interesting “what-if” analysis involves exploring the sensitivity of the optimal solution on the
values of coefficient e in the second and third priority levels. More specifically, 18 different problem
cases were examined by considering alternative values and combinations for:

• coefficient e2 (second priority level) ranging from 0.10 to 0.95 with an increment step of 0.05;
• coefficient e3 (third priority level) ranging from 0.05 to 0.90 with an increment step of 0.05.

The optimal value of the objective function along with the recommended scenario for each
case are inserted in Table 6. The ‘Objective Function Value’ represents the outcome of the objective
function, taking into account the corresponding assessments for the criteria of the evaluated scenarios.
No physical interpretation can be attributed to the objective function value, but the value is calculated
as a comparative indicator for the effectiveness of the different scenarios. In Table 6, only the objective
function value for the optimal (most effective) WEEE management scenario is provided.
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Table 6. ’What-if’ analysis matrix.

Case Values for e2, e3 Recommended Scenario Objective Function Value

1
e2 = 0.10 Reu1 8.93e3 = 0.05

2
e2 = 0.15 Reu1 8.93e3 = 0.10

3
e2 = 0.20 Reu1 8.93e3 = 0.15

4
e2 = 0.25 Reu1 8.93e3 = 0.20

5
e2 = 0.30 Reu1 8.93e3 = 0.25

6
e2 = 0.35 Reu1 8.93e3 = 0.30

7
e2 = 0.40 Reu1 8.93e3 = 0.35

8
e2 = 0.45 Reu1 8.93e3 = 0.40

9
e2 = 0.50 Reu1 8.93e3 = 0.45

10
e2 = 0.55 Reu1 8.93e3 = 0.50

11
e2 = 0.60 Reu1 8.93e3 = 0.55

12
e2 = 0.65 Reu1 8.93e3 = 0.60

13
e2 = 0.70 Rec3 6.48e3 = 0.65

14
e2 = 0.75 Rec3 6.48e3 = 0.70

15
e2 = 0.80 Rec3 6.48e3 = 0.75

16
e2 = 0.85 Rec3 6.48e3 = 0.80

17
e2 = 0.90 Rec3 6.48e3 = 0.85

18
e2 = 0.95 Rec3 6.48e3 = 0.90

A noteworthy insight obtained from the conducted numerical analysis is the following: for higher
values of e2 and e3, the recommended scenario is Rec3 (i.e., collection of e-waste, recycling and recovery
of useful and precious quantities, and export of hazardous waste and residues), while for lower values
of e2 and e3, the selected scenario is Reu1 (i.e., collection of e-waste, control of reusability, recovery of
devices or components, and disposal of residues in landfills or incinerators).

5. Conclusions

WEEE management is a sufficiently studied issue in the extant scientific literature; existing
works approach the issue from a plethora of methodological angles depending on the research
objective and the nature of the study. Indicatively, Kumar and Dixit [37] identified 7 primary barriers
towards WEEE management in India and applied the decision-making trial and evaluation laboratory
(commonly known as DEMATEL) method to prioritize these barriers and further unveil any underlining
interdependencies. In this vein, Casey et al. [38] applied a quasi-ethnographic approach to examine
the behavior of Irish consumers towards the disposal of small WEEE. Furthermore, Ismail and
Hanafiah [39] reviewed a significant number of studies considering WEEE management from a life
cycle assessment viewpoint.
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Mathematical programming has been applied in the WEEE management field, but the scope of
the extant studies varies. Indicatively, Polat et al. [40] analyzed data from recycling companies in
Turkey and Germany; the authors developed a linear programming model for maximizing the profit of
a multiperiod WEEE recycling operations plan under uncertainty. Moreover, Messmann et al. [41]
developed a mixed integer, linear programming model that captured a European reverse network for
WEEE with the objective of maximizing economic (i.e., profit generated) and environmental (i.e., raw
materials used) performances. From a different standpoint, the present study contributes to the
Operations Research field by proposing a binary mathematical programming model that maximizes the
performance of alternative WEEE management schemes, particularly applicable to the case of Greece,
while further incorporating insights of experts in the field across a range of performance criteria.

In order to support the assessment of alternative WEEE management scenarios for the case of
Greece, this research grounded 3 research questions and applied alternative methodologies in an
attempt to answer them. In particular, to tackle Research Question 1, a binary linear programming
model is formulated that maximizes the performance of alternative WEEE management scenarios.
Furthermore, in response to Research Question 2, 12 criteria are identified across 4 basic thematic
areas, namely: financial, technical, social, and environmental. More specifically, the performance
assessment criteria are: (i) financial—investment cost, operational cost, collection cost, and profit from
reused products; (ii) technical—existence of infrastructure, reliability and experience, and flexibility;
(iii) social—acceptance and employment opportunities; and (iv) environmental—air, water and solid
waste pollution, noise and aesthetics pollution, and energy and material recovery. The assessment
criteria are divided into input and output variables and are further categorized into 3 priority levels.
Moreover, to address Research Question 3, the research findings indicate that for the case of Greece,
mechanical recycling of WEEE, while contemporarily exporting of residues, is the most efficient e-waste
management strategy.

5.1. Practical Implications

The methodological approach proposed in this research presents an easy-to-use tool for
decision-makers towards the selection of the most efficient WEEE management strategy, based
on the special requirements and the already developed infrastructure in an area under study. For the
case of Greece, mechanical recycling of WEEE, along with contemporarily exporting of residues,
is identified as the most efficient e-waste management strategy. The selection of this scenario is mostly
based on the grounds that such infrastructure (i.e., mechanical recycling of WEEE) is already in place [1]
at a national level, whereas Greece lacks adequate infrastructure for managing the residues resulting
from the mechanical recycling of WEEE. In this light, this particular alternative presents very good
performances in terms of financial criteria (both investment and operational costs). Reduced costs
would further result in proportional reduced recycling fees where customers would have to pay for
purchased goods, and this would, thus, create a more competitive electrical and electronic equipment
market at a national level.

The decision support model that is proposed through the presented framework takes into account
financial, technical, and environmental issues as well as social concerns. Towards this direction,
mechanical recycling is highly rated for its technical merits, further supported by the existence of
relevant infrastructure, the reliability and experience of the relevant PROs in Greece, and the inherent
flexibility of mechanical recycling to adapt to different technologies.

5.2. Limitations and Future Research Perspectives

The presented decision support system is successfully implemented for the case of Greece.
However, the procedure could be easily adopted—with slight modifications and adjustments to
the special requirements of the problem under consideration—in order to solve similar problems in
other countries. The methodological approach applied in this research is not limited to the specific
field of WEEE; it can be also used in order to assist environmental managers and decision-makers
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in their judgements towards the determination of optimal strategies for other waste streams
(e.g., construction and demolition waste) based on their efficiency. However, such a decision-making
process, notwithstanding the fact that they would not require significant changes to the proposed
conceptual framework, are not included in the present paper and constitute future research topics for
the authors.

Author Contributions: A.D. and C.A. conceived the general idea of the paper; C.A. designed the conceptual
system; A.D. and C.A. developed the model and performed the numerical analysis; All authors analyzed and
discussed the results; D.A., C.A., and N.T. wrote and revised the paper.

Funding: The authors wish to acknowledge financial support provided by the Special Account for Research Funds
of the Technological Education Institute of Central Macedonia, Greece, under grant SMF/LG/200219–75/05.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G. Decision support system for the optimal
location of electrical and electronic waste treatment plants: A case study in Greece. Waste Manag. 2010, 30,
870–879. [CrossRef] [PubMed]

2. Ongondo, F.O.; Williams, I.D.; Cherrett, T.J. How are WEEE doing? A global review of the management of
electrical and electronic wastes. Waste Manag. 2011, 31, 714–730. [CrossRef] [PubMed]

3. Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard.
Mater. 2003, 99, 243–263. [CrossRef]

4. He, W.; Li, G.; Ma, X.; Wang, H.; Huang, J.; Xu, M.; Huang, C. WEEE recovery strategies and the WEEE
treatment status in China. J. Hazard. Mater. 2006, 136, 502–512. [CrossRef]

5. Hischier, R.; Wäger, P.; Gauglhofer, J. Does WEEE recycling make sense from an environmental perspective?
The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic
equipment (WEEE). Environ. Impact Assess. Rev. 2005, 25, 525–539. [CrossRef]

6. Queiruga, D.; Walther, G.; Gonzalez-Benito, J.; Spengler, T. Evaluation of sites for the location of WEEE
recycling plants in Spain. Waste Manag. 2008, 28, 181–190. [CrossRef]

7. Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-waste Monitor–2017, United Nations
University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association
(ISWA). Bonn/Geneva/Vienna 2018. Available online: https://www.itu.int/en/ITU-D/Climate-Change/Documents/
GEM%202017/Global-E-waste%20Monitor%202017%20.pdf (accessed on 18 March 2019).

8. Bahers, J.-B.; Kim, J. Regional approach of waste electrical and electronic equipment (WEEE) management in
France. Res. Conserv. Recycl. 2018, 129, 45–55. [CrossRef]

9. Oguchi, M.; Sakanakura, H.; Terazono, A.; Takigami, H. Fate of metals contained in waste electrical and
electronic equipment in a municipal waste treatment process. Waste Manag. 2012, 32, 96–103. [CrossRef]

10. Betts, K. Producing usable materials from e-waste. Environ. Sci. Technol. 2008, 42, 6782–6783. [CrossRef]
11. Dimitrakakis, E.; Janz, A.; Bilitewski, B.; Gidarakos, E. Small WEEE: Determining recyclables and hazardous

substances in plastics. J. Hazard. Mater. 2009, 161, 913–919. [CrossRef]
12. Iakovou, E.; Moussiopoulos, N.; Xanthopoulos, A.; Achillas, C.; Michailidis, N.; Chatzipanagioti, M.

Multicriteria Matrix: A methodology for end-of-life management. Resources, Conserv. Recycl. 2009, 53,
329–339. [CrossRef]

13. Nnorom, I.C.; Osibanjo, O. Toxicity characterization of waste mobile phone plastics. J. Hazard. Mater. 2009,
161, 183–188. [CrossRef] [PubMed]

14. Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ.
2009, 408, 183–191. [CrossRef] [PubMed]

15. Zuidwijk, R.; Krikke, H. Strategic response to EEE returns: Product eco-design or new recovery processes?
Eur. J. Op. Res. 2008, 191, 1206–1222. [CrossRef]

16. Fleckinger, P.; Glachant, M. The organization of extended producer responsibility in waste policy with
product differentiation. J. Environ. Econ. Manag. 2010, 59, 57–66. [CrossRef]

http://dx.doi.org/10.1016/j.wasman.2009.11.029
http://www.ncbi.nlm.nih.gov/pubmed/20031385
http://dx.doi.org/10.1016/j.wasman.2010.10.023
http://www.ncbi.nlm.nih.gov/pubmed/21146974
http://dx.doi.org/10.1016/S0304-3894(03)00061-X
http://dx.doi.org/10.1016/j.jhazmat.2006.04.060
http://dx.doi.org/10.1016/j.eiar.2005.04.003
http://dx.doi.org/10.1016/j.wasman.2006.11.001
https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM%202017/Global-E-waste%20Monitor%202017%20.pdf
https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM%202017/Global-E-waste%20Monitor%202017%20.pdf
http://dx.doi.org/10.1016/j.resconrec.2017.10.016
http://dx.doi.org/10.1016/j.wasman.2011.09.012
http://dx.doi.org/10.1021/es801954d
http://dx.doi.org/10.1016/j.jhazmat.2008.04.054
http://dx.doi.org/10.1016/j.resconrec.2009.02.001
http://dx.doi.org/10.1016/j.jhazmat.2008.03.067
http://www.ncbi.nlm.nih.gov/pubmed/18448243
http://dx.doi.org/10.1016/j.scitotenv.2009.09.044
http://www.ncbi.nlm.nih.gov/pubmed/19846207
http://dx.doi.org/10.1016/j.ejor.2007.08.004
http://dx.doi.org/10.1016/j.jeem.2009.06.002


Sustainability 2019, 11, 3364 12 of 13

17. Achillas, C.; Vlachokostas, C.; Aidonis, D.; Moussiopoulos, N.; Iakovou, E.; Banias, G. Optimising reverse
logistics network to support policy-making in the case of electrical and electronic equipment. Waste Manag.
2010, 30, 2592–2600. [CrossRef]

18. Dias, P.; Bernardes, A.M.; Huda, N. Ensuring best E-waste recycling practices in developed countries:
An Australian example. J. Clean. Prod. 2019, 209, 846–854. [CrossRef]

19. Li, J.; Lopez, N.B.N.; Liu, L.; Zhao, N.; Yu, K.; Zheng, L. Regional or global WEEE recycling. Where to go?
Waste Manag. 2013, 33, 923–934. [CrossRef]

20. Namlis, K.-G.; Komilis, D. Influence of four socioeconomic indices and the impact of economic crisis on solid
waste generation in Europe. Waste Manag. 2019, 89, 190–200. [CrossRef]

21. Eurostat. Waste Electrical and Electronic Equipment (WEEE). Available online: https://ec.europa.eu/eurostat/
web/waste/key-waste-streams/weee (accessed on 15 May 2019).

22. Islam, M.T.; Huda, N. Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic
Equipment (WEEE)/E-waste: A comprehensive literature review. Res. Conserv. Recycl. 2018, 137, 48–75.
[CrossRef]

23. Karagiannidis, A.; Perkoulidis, G.; Papadopoulos, A.; Moussiopoulos, N.; Tsatsarelis, T. Characteristics of
wastes from electric and electronic equipment in Greece: Results of a field survey. Waste Manag. Res. 2005,
23, 381–388. [CrossRef] [PubMed]

24. Moussiopoulos, N.; Karagiannidis, A.; Papadopoulos, A.; Achillas, C.; Antonopoulos, I.S.; Perkoulidis, G.;
Vlachos, D.; Vlachokostas, C. Transportation cost analysis of the Hellenic system for alternative management
of Waste Electrical and Electronic Equipment. Int. J. Environ. Waste Manag. 2012, 10, 70–89. [CrossRef]

25. Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Perkoulidis, G.; Banias, G.; Mastropavlos, M. Electronic
waste management cost: A scenario-based analysis for Greece. Waste Manag. Res. 2011, 29, 963–972.
[CrossRef] [PubMed]

26. Cooper, T. WEEE, WEEE, WEEE, WEEE, all the way home? An evaluation of proposed electrical and
electronic waste legislation. Eur. Environ. 2000, 10, 121–130. [CrossRef]

27. Gottberg, A.; Morris, J.; Pollard, S.; Mark-Herbert, C.; Cook, M. Producer responsibility, waste minimisation
and the WEEE Directive: Case studies in eco-design from the European lighting sector. Sci. Total Environ.
2006, 359, 38–56. [CrossRef] [PubMed]

28. Mallawarachchi, H.; Karunasena, G. Electronic and electrical waste management in Sri Lanka: Suggestions
for national policy enhancements. Res. Conserv. Recycl. 2012, 68, 44–53. [CrossRef]

29. Queiruga, D.; González Benito, J.; Lannelongue, G. Evolution of the electronic waste management system in
Spain. J. Clean. Prod. 2012, 24, 56–65. [CrossRef]

30. Rousis, K.; Moustakas, K.; Malamis, S.; Papadopoulos, A.; Loizidou, M. Multi-criteria analysis for the
determination of the best WEEE management scenario in Cyprus. Waste Manag. 2008, 28, 1941–1954.
[CrossRef] [PubMed]

31. Torretta, V.; Ragazzi, M.; Istrate, I.A.; Rada, E.C. Management of waste electrical and electronic equipment in
two EU countries: A comparison. Waste Manag. 2013, 33, 117–122. [CrossRef]

32. Tanskanen, P. Management and recycling of electronic waste. Acta Mater. 2013, 61, 1001–1011. [CrossRef]
33. Sarkis, J. A comparative analysis of DEA as a discrete alternative multiple criteria decision tool. Eur. J. Op.

Res. 2000, 123, 543–557. [CrossRef]
34. Achillas, C.; Aidonis, D.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G.; Triantafillou, D. A multi-objective

decision-making model to select waste electrical and electronic equipment transportation media. Res. Conserv.
Recycl. 2012, 66, 76–84. [CrossRef]

35. Morris, A.; Metternicht, G. Assessing effectiveness of WEEE management policy in Australia. J. Environ.
Manag. 2016, 181, 218–230. [CrossRef] [PubMed]

36. Lu, B.; Yang, J.; Ijomah, W.; Wu, W.; Zlamparet, G. Perspectives on reuse of WEEE in China: Lessons from the
EU. Res. Conserv. Recycl. 2018, 135, 83–92. [CrossRef]

37. Kumar, A.; Dixit, G. Evaluating critical barriers to implementation of WEEE management using DEMATEL
approach. Res. Conserv. Recycl. 2018, 131, 101–121. [CrossRef]

38. Casey, K.; Lichrou, M.; Fitzpatrick, C. Treasured trash? A consumer perspective on small Waste Electrical
and Electronic Equipment (WEEE) divestment in Ireland. Res. Conserv. Recycl. 2019, 145, 179–189. [CrossRef]

39. Ismail, H.; Hanafiah, M.M. An overview of LCA application in WEEE management: Current practices,
progress and challenges. J. Clean. Prod. 2019, in press. [CrossRef]

http://dx.doi.org/10.1016/j.wasman.2010.06.022
http://dx.doi.org/10.1016/j.jclepro.2018.10.306
http://dx.doi.org/10.1016/j.wasman.2012.11.011
http://dx.doi.org/10.1016/j.wasman.2019.04.012
https://ec.europa.eu/eurostat/web/waste/key-waste-streams/weee
https://ec.europa.eu/eurostat/web/waste/key-waste-streams/weee
http://dx.doi.org/10.1016/j.resconrec.2018.05.026
http://dx.doi.org/10.1177/0734242X05054289
http://www.ncbi.nlm.nih.gov/pubmed/16200988
http://dx.doi.org/10.1504/IJEWM.2012.048145
http://dx.doi.org/10.1177/0734242X10389104
http://www.ncbi.nlm.nih.gov/pubmed/21242175
http://dx.doi.org/10.1002/1099-0976(200005/06)10:3&lt;121::AID-EET226&gt;3.0.CO;2-N
http://dx.doi.org/10.1016/j.scitotenv.2005.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16169574
http://dx.doi.org/10.1016/j.resconrec.2012.08.003
http://dx.doi.org/10.1016/j.jclepro.2011.11.043
http://dx.doi.org/10.1016/j.wasman.2007.12.001
http://www.ncbi.nlm.nih.gov/pubmed/18262405
http://dx.doi.org/10.1016/j.wasman.2012.07.029
http://dx.doi.org/10.1016/j.actamat.2012.11.005
http://dx.doi.org/10.1016/S0377-2217(99)00099-5
http://dx.doi.org/10.1016/j.resconrec.2012.01.004
http://dx.doi.org/10.1016/j.jenvman.2016.06.013
http://www.ncbi.nlm.nih.gov/pubmed/27353372
http://dx.doi.org/10.1016/j.resconrec.2017.07.012
http://dx.doi.org/10.1016/j.resconrec.2017.12.024
http://dx.doi.org/10.1016/j.resconrec.2019.02.015
http://dx.doi.org/10.1016/j.jclepro.2019.05.329


Sustainability 2019, 11, 3364 13 of 13

40. Polat, O.; Capraz, O.; Gungor, A. Modelling of WEEE recycling operation planning under uncertainty.
J. Clean. Prod 2018, 180, 769–779. [CrossRef]

41. Messmann, L.; Helbig, C.; Thorenz, A.; Tuma, A. Economic and environmental benefits of recovery networks
for WEEE in Europe. J. Clean. Prod. 2019, 222, 655–668. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jclepro.2018.01.187
http://dx.doi.org/10.1016/j.jclepro.2019.02.244
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Methodological Framework 
	Decision Support Model 
	Application Scenarios 
	Assessment Criteria 

	Results 
	Discussion 
	Conclusions 
	Practical Implications 
	Limitations and Future Research Perspectives 

	References

