
sustainability

Article

A DIY Approach for the Design of Mission-Planning
Architecture Using Autonomous Task–Object
Mapping and the Deployment Model
in Mission-Critical IoT Systems

Shabir Ahmad , Faisal Mehmood and Do-Hyeun Kim *

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea
* Correspondence: kimdh@jejunu.ac.kr

Received: 13 May 2019; Accepted: 28 June 2019; Published: 2 July 2019
����������
�������

Abstract: Recently, the World Economic Forum (WEF) highlighted mission-critical Internet of Things
(MC-IoT) applications as one of the six enablers of sustainable development of smart cities. MC-IoT
refers to systems which exacerbate properties like availability, reliability, safety, and security in an
application environment of heterogeneously connected physical things and virtual things whose
failure could lead to severe consequences such as life loss. The sole characteristic of the mission-critical
system is its compliance with real-time behavior. As a result of the critical nature of these systems, it is
essential to design the system with sufficient clarity so that none of the requirements is misinterpreted.
For this, the involvement of non-technical stakeholders and policymakers is crucial. Previous studies
on mission-critical structures mainly focus on the communication overheads, and overlook the design
and planning of them. Therefore, in this paper, we present an architecture which enables mission
planning on a do-it-yourself plane. We present a task–object mapping and deployment model where
different tasks are mapped onto virtual objects and deployed on physical hardware in a task–object
pair. The system uses semantic knowledge for autonomous task mapping and suggestions to further
aid the orchestration of the process. The tasks are autonomously mapped onto the devices based on
the correlation index; this is computed based on the attribute similarities, thus making the system
flexible. The performance of the proposed architecture is evaluated with different key performance
indicators under different load conditions and the response time is found to be under a few seconds
even at peak load conditions.

Keywords: Internet of Things; Mission-Critical Systems; smart space; Do-It-Yourself; embedded
devices; task mapping

1. Introduction

The World Economic Forum (WEF) has a vision to shape a sustainable and reliable digital future,
and the Internet of Things (IoT) is considered to be one of largest enablers for sustainable digital
transformation [1]. In recent years, there has been a shift from physical space to cyberspace [2],
with the sole aim to interconnect every physical thing to form a network of things (the IoT) [3–5].
The various enabling technologies proposed commonly include Quick Response (QR) codes ,and Radio
Frequency Identification (RFID) for the identification of things. Moreover, wireless sensor networks
and related networking technologies are exploited to interconnect these smart objects to form an
IoT space. The main motivation of the IoT is to enhance business processes concerning efficiency
and costs in enterprise systems [6–10]. Every physical object, in such a smart space, which connects
to the IoT is called an edge node which senses ambient scenarios and bridges the gap between the
real world and networks [11]. The massive number of links enables the interaction between edge

Sustainability 2019, 11, 3647; doi:10.3390/su11133647 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-8788-2717
https://orcid.org/0000-0002-8350-679X
http://dx.doi.org/10.3390/su11133647
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/11/13/3647?type=check_update&version=3

Sustainability 2019, 11, 3647 2 of 23

nodes in such IoT-empowered smart spaces. One of the recent advancements in the field of IoT
are mission-critical Internet of Things (MC-IoT) applications. In MC-IoT, operations are performed
in real-time by physical nodes and failure of the deadline could have severe consequences [12,13].
Apart from the real-time behavior of MC-IoT, these systems must exhibit properties such as safety,
interoperability, and security [14]. The use of cloud technologies has enabled intelligent IoT services as
it acts as a server to process and hosts a massive volume of contextual data emitting from edge-nodes
of the IoT [15]. The IoT and cloud are so often integrated and so have recently become known as the
Cloud of Things (CoT) [15–17].

A growing trend in CoT is to exploit the cloud as an open platform to connect every digital and
physical thing and host the massive amounts of contextual data that benefits from being connected.
Ericson estimates that more than 25 billion physical devices are expected to be connected to the
Internet by the end of 2020, and Cisco estimates that this number will grow to 500 billion by 2030 [18].
When considering IoT systems, regarding both the hardware and software, heterogeneity is very
important. In other words, very similar software functionalities are required to be deployed on
heterogeneous devices which have a confined set of common core features. Additionally, things may
be lightweight, thus having constrained resources and a minimal battery; this makes the situation even
more complex concerning the deployment and re-deployment of software functionalities on vastly
different devices with different capabilities. On the one hand, the enormous amount of heterogeneous
hardware empowering an IoT smart space brings forth an unprecedented opportunity to raise the
quality of life. On the other hand, the challenges of heterogeneity, run-time adaptability, privacy,
and context-aware processing need to be tackled in order to benefit from the advantages that the IoT
can potentially bring [19].

Among IoT systems, an important class is that of MC-IOT systems, i.e., IoT systems running
applications whose failure may have severe consequences [19]. As illustrated in a Hewlett Packard
Enterprise (HPE) report [5], a survey that involved 200 information technology and business
decision-makers, mission-critical computing is becoming increasingly important. As an example,
one of the respondents of the performed survey reported: “Without it [mission-critical computing] we
will cease to remain even reasonably competitive in our crowded market”. It is important to note that
in mission-critical applications every single element is critical, from the most straightforward RFID
tag to a database, to a robot. For what concerns user experience, damage to any of the elements in
the mission-critical system would produce the same effect. The design of mission-critical IoT, unlike
traditional mission-critical systems, is very challenging because of the non-deterministic delays of
networks. However, it also brings many benefits, as long as the missions are monitored and planned
remotely without being on premises. Therefore, in their design, the involvement of stakeholders is
more important than that of technical people.

The stakeholders of mission-critical applications are the general public who usually lack technical
depth, and in order to enable them to tinker with the design and planning of these critical systems,
a do-it-yourself (DIY) visual programming language needs to be adopted [20]. The DIY principal has
been gaining popularity in recent years. It not only enables the general public to design systems with
zero coding but also presents the architecture more robustly and cleanly. Different DIY-based systems
are presented in the literature which focus on the ease of the design process and enable non-technical
users to design systems without the need to dig deeper into the technical world [20]. As described,
mission-critical systems require a very clear and robust picture of the design and architecture due to
the severity of its consequences. Therefore, the DIY paradigm suits best for such systems. In this paper,
we present a multi-platform architecture which uses a DIY approach to design and monitor missions
in an autonomous and optimal way. The architecture employs autonomous task–object mapping and
deployment. The tasks are presented with the top-most virtual objects having a suggestion index
higher than others for autonomous mapping. The approach is adopted because the task and object
will form a small microservice which can be deployed on physical hardware. The size of the data is
very crucial in mission-critical systems due to the stringent requirements of time and performance.

Sustainability 2019, 11, 3647 3 of 23

Therefore, it is preferred to deploy a small message more often than a big chunk of the message.
A case study was performed on the proposed architecture which intelligently detects smoke in a smart
building and prevents the hazard of fire. The contributions of this paper include

• The design and implement a multi-platform architecture for mission planning and analysis based
on the DIY paradigm to encourage the involvement of non-technical people in mission design;

• The proposal of an intelligent task–object mapping model for microservice deployment to decrease
message size and improve efficiency;

• The implementation of a case study regarding the the proposed architecture to test its effectiveness.

The rest of the paper is organized as follows. Section 2 presents related work and outlines
the relevant research in MC-IoT and DIY-based IoT applications. Section 3 exhibits the proposed
system model and describes its various components. Section 4 portrays the design in terms of
mission-planning and interaction models. Section 5 discusses the implementation environment and
outlines the tools and technologies being used in this work. Section 6 presents a case study involving
smoke detection mission planning on the proposed architecture and illustrates the execution flow
of the system. Section 7 evaluates the performance of the system with state-of-the-art methods and
discusses its significance. Section 8 concludes the paper and identifies future directions of this work.

2. Related Work

The IoT is revolutionizing everything, and there are billions of IoT devices around us as a
consequence [18]. As part of this evolution, traditional consumer-based applications such as smart
homes based on applications and wireless body area networks are being shifted to mission-critical
applications such as remote surgery and remote energy distribution in a smart grid. With this
proliferation of applications, the requirements of mission-critical applications are starting to receive
special consideration and be seen as a distinct set in contrast to traditional consumer-based IoT
applications. One reason for this shift is that the devices involved in mission-critical applications
must work every time with a zero percent chance of failure. Failure could have severe consequences;
therefore, these applications have a specialized requirement in which not only the application architects
should be involved but also the stakeholders which are generally not technical people [21].

A variety of studies have been conducted in the area of mission-critical applications. One of
the important aspects of these applications is the communication delay [22]. With the advances in
5G networks and Industry 4.0, the design of MC-IoT systems gaining greater attention; this is partly
because the ultra-latency which 5G networks support will remove the hurdles which have long been
restricting these applications [22]. For instance, in [23], the authors focus on ensuring availability by
establishing alternative connectivity such as device-to-device and drone-assisted access to help achieve
the requirements of the MC-IoT. The data dissemination in MC-IoT is another challenge caused by
the message transfer delay between devices. The work carried out by Muhammad et al. [24] focuses
on data dissemination in an optimal way, finding the best tradeoff between conflicting performance
objectives such as spatial frequency reuse and transmission quality. Similar efforts [25–28] have been
made to improve the latency and to overcome the challenges to ensure communication; however, none
these studies consider the design aspects of these applications, instead focusing on the communication
layer of the design.

As far as the design of MC-IoT systems is concerned, it has been noted that ample clarity is very
important. The model-driven engineering approach has some presence in the literature regarding the
design of MC-IoT systems [14,19]. It has been stated that with this model-driven approach, the technical
challenges of MC-IoT system development can be achieved by utilizing features such as high-level
abstraction of heterogeneous devices, separation of concerns, self-adaptation, and reusability [14].
The problem with this is that although it is a very good idea, there are no case studies or instances
in which the effectiveness of MDE design of mission planning is assessed. Another paradigm worth
considering is the DIY approach [29]. As modern IoT applications demand the involvement of the

Sustainability 2019, 11, 3647 4 of 23

general public, and non-technical people have business shares, an approach to allow them to create
their own systems with minimal technical effort was developed [20,29]. This approach offers several
advantages: firstly, it gives the humans involved a sense of creativity and achievement. Secondly,
regarding the economic interests of the stakeholders, it allows them to interact with the actual system
rather than just giving mere feedback. Accordingly, it has been stated in the literature that the end users
should be involved in the creation process, thus giving them the power to discover new things [30,31].

Numerous notable open-source tools propose utilizing the DIY approach and enabling the masses
to become involved in the creation process. In the field of electronic device design, open-source
hardware boards are used, which enable the general public to tinker with them and express themselves.
Raspberry PI [32] and Arduino [33] are among the leading examples. On the software end, there are
many open-source tools to facilitate the end users in the process of making. SAM [34], Node-RED [35],
Glue.thing [36], and Super stream collider [37] are some of the leading tools which allow drag-and-drop
features which facilitate coder and end-users who have little technical knowledge. Despite the above
studies, there is very little focus on the design of MC-IoT applications using the DIY approach.
This paper proposes a toolbox for mission planning which supports DIY features and at the same time
stores the configuration in the cloud to enable triggering and monitoring of the devices from anywhere.
This, to the best of authors’ knowledge, is the first approach of its kind. A comparative analysis of the
proposed system with reference to existing state-of-the-art (SoA) methods is shown in Table 1.

Table 1. Overview of the state-of-the-art (SoA) methods with reference to the proposed architecture.

SoA Goal PoC MC-IoT
Support

DIY
Support

Open
Source

Target
Audience

General
Purpose

[23] Mobility in MC-IoT applications No Yes No Partial Users No

[24] Optimal Data Dissemination in MC-IoT
networks

No Yes No No Users No

[26] General-purpose plateform for low-powered,
reliable, and guaranteed real-time data
dissemination and analysis

Yes Yes No No Users Yes

[27] Designs a protocol for MC-IoT applications
to model deterministic latency and improved
throughput

No Yes No Yes Application
Designer

No

[25] Proposes uses of edge computing to optimize
the latencies in communication

Yes Yes No No Application
Designer

No

[14,19] Proposed a Model-Driven approach for the
design of MC-IoT applications

No Yes No No Application
Designer

Yes

[20] Remote Monitoring and Configuration in
Smart Space

Yes No Yes Yes General
Public

Yes

[34] Provide SAM template to setup business cases Yes No Yes Yes General
Public

Yes

[35] IoT Application Service Composition Yes No Yes Yes General
Public

Yes

[36] Wiring data of web-enabled IoT devices Yes No Partial Yes General
Public

Partial

[37] Web-based interface for building IoT mashups Yes No Yes Yes General
Public

Yes

Proposed
System

Enabling the envolvement of stakeholders in
the design of MC-IoT applications

Yes Yes Yes Yes General
Public

Yes

3. Proposed System Model

In this paper, the author proposes a novel architecture which consists of three main components.
The first one is a DIY-based toolbox aimed at assisting the overall mission design. The DIY
approach is used because MC-IoT applications have very clear requirements and have to be evaluated
before deployment on actual physical devices. The DIY approach, in this regard, is the preferred
approach because once the requirements are clear, the design is straightforward, even by the general
public. The proposed design is shown in Figure 1. The mission-planning toolbox has a registry
of mission-critical devices. It creates tasks based on the profile of these devices. The tasks are

Sustainability 2019, 11, 3647 5 of 23

autonomously mapped onto the device virtual representations based on an approach which will be
described in the subsequent section. The configuration is stored in a cloud-based web server. The web
server is where the end users can interact and monitor their applications. The system makes use
of modularization and has three different sub-modules. In the next subsections, each sub-module
is illustrated.

Mission Planning
Toolbox

(Composition Toolbox)

Administrator

Web Server

IoT
Nodes

C
o
m

p
o
site

M
o
n
ito

r

C
o
m

m
a
n
d

Command

Monitor
H

TT
P C

o
m

m
a
n
d

1

3

4

Manual1 Semi-Intelligent2 Autonomous3

H
T
T
P
 C

o
m

m
a
n
d

Figure 1. Proposed architecture overview.

3.1. Cloud-Based Web Server

The cloud-based web server is a central repository for all the configuration, and additionally,
the number of operations that have been performed. Figure 2 shows the expanded version of the
cloud-based web server. There are four main sub-modules: Profile Receiver, Profile Parser, Mission
Planning, Client Application.

Sustainability 2019, 11, 3647 6 of 23

Client Application

Service 1 Service N

T VO T VO

uService A uService B

uS A uS B uS C uS N

Ontology
Database

T
T

T

VO

VO

VO Reasoner

SPARQL

Mission Planner

Device ManagerVO Manager

Task Generator
Task

Orchestrator

Profile Receiver

Profile Parser

Figure 2. Inner view of cloud-based web server.

The profile receiver receives input data, which contains resources information and the services.
The input data is composed of virtual objects (VO) in eXtensive Markup Language (XML) format.
A VO has resource name, resource location, resource URI, and properties.The XML format of the
configuration of the service is the combination of the resources needed to perform a useful operation.
The combination of these operations which are deployed as a unit is called microservice denoted
by uS and uService in figure. The interface through which the communication occurs from the
mission-planning toolbox is two-fold: DIY to the web server using web sockets and DIY to the IoT
server based on Raspberry PI using XML Constrained Application (CoAP) commands. Finally, the IoT
server to the web server using HTTP requests and queries the string parameters. The profile parser
parses the request and gives it to the mission-planning toolbox. The data passed is in the form of XML,
or a query string, and the protocols used are HTTP and CoAP. The data which are passed include
resources ID, location, and URI on the IoT server. The interface through which data are shared also
has two forms: web sockets for web transfer, and General Purpose Input/Output (GPIO) for IoT
server. The data is parsed and presented in a more useful way for visual representation and persisted
on a web-based MySQL database. The mission-planning sub-module provides the overall logic for
mission planning. The input data for the mission-planning sub-module are sensors and services,
and the output data are actuators. The data are represented in the form of XML. The interfaces are
web-browsers for the web end and GPIO for the IoT server. Lastly, the client application module
which is an abstract view for the end users where end users can plan their missions and leverage
the application power to enable their critical missions and plan them accordingly. The data on this
layer is visualized using better User Experience (UX) interfaces to provide them with an easy way
to interact with the underlying system. Interfaces are well designed using the latest front-end tools
such as bootstrap and HTML5/CSS3. The configuration objects which are created as a result of the
drag-and-drop operation in the DIY toolbox are represented in XML and passed to the web end which

Sustainability 2019, 11, 3647 7 of 23

in turn represents it in an interactive UX interface for sufficient clarity of the mission to the users.
In this layer, the client can also plan their mission by adding the mission statement and the necessary
resources needed for the mission.

3.2. Mission-Planning Toolbox

The second vital module of the proposed system is the DIY-based mission-planning toolbox.
The architecture of the mission-planning toolbox is represented in Figure 3.

R1 R2 R3 R4 R5 Rn-1R6 Rn

G1 G2 G3

Service 1 Service n

T(1,1) T(1,2) T(1,n) T(n,1) T(n,2) T(n,n)

Cloud Based Task
Generation

IoT Gateway

IoT Resource

Task Allocation

Application
Service 1 Service 2 Service 3 Service n

T1 T2 T3 T4 T5 T6 T7 T8 Tn

Service

Task

Consist of

Belongs to

Task

Resource

accesses

Gateway

Resource

Connected to

Task
ProfileRecieves

Resource

Task

Assigned to

Gateway
Connected to

Figure 3. Layer representation of the proposed architecture.

The mission-planning toolbox is also a layered architecture. The top layer is the service layer,
which provides mission-critical services to end users. The mission-critical services’ configuration is
stored in the cloud-based web server. In the cloud-based web server, the tasks are generated based on
specific requirements such as device profile and service description. Beneath the cloud layer is the IoT
gateways layer, which is responsible for managing the gateways. The gateways are important because
tasks are mapped onto the virtual objects using the nearest gateway. Every gateway has specific
physical resources associated with it. A physical resource can be managed by a gateway, but the
same resource can communicate with a different gateway. Finally, the task allocation layer is the
layer which performs task allocation to the physical resources. For every layer, semantic vocabularies
are maintained which serve a repository for the metadata of that layer. This helps in task allocation,
for example finding the overall information such as which resource is connected to which gateway.

3.3. Raspberry PI-Based IoT Gateway

The third vital module is the IoT gateway, which in most cases is the bridge between the
application and the embedded IoT resources. There are numerous roles of the IoT gateway, one
of which is the protocol conversion. For instance, the industry standard application protocol is HTTP,
but for constrained devices, the optimized and lightweight CoAP is preferred. Thus, the role of the
gateway is to translate one request into another, making the process transparent to the users. For this,

Sustainability 2019, 11, 3647 8 of 23

the IoT server is deployed as part of the gateway to listen to HTTP requests and translate them into
CoAP commands to operate the connected IoT resources such as sensors and actuators.

4. System Design

In this section, the design and architecture of the proposed system is discussed in terms of the
modular model which is discussed in Section 3. The primary role of the architecture is the use of tasks
to design and plan missions. The design part of the mission includes task generation, task mapping,
and allocation. In the following subsections the approach for mission planning is illustrated.

4.1. Task Mapping and Allocation Model

In this paper, the motivation is a clear design of mission-planning systems. For this, a task–object
method is proposed. The tasks and objects belong to the mission are received, and the mapping is
performed. The mapping is performed using two methods: manual and autonomous. In manual
mapping, the mission-planning toolbox has a plan in which the visual programming tool is integrated
to enable DIY makers to perform drag and drop operations. We use JSPlumb javascript library to serve
this purpose. In autonomous mapping, the mapping is performed according to the highest suggestion
index for a virtual object. Supposing we have a vector Vo, representing the virtual representation of
the IoT resource, hereafter called virtual object, and a vector τ, representing a task:

Vo =

id

name
methods

attributes
tags

and

τ =

id

title
period

execution
tags

 (1)

Suggestion Index η for task τi is a function of the attributes name, methods, attributes, and tags of
any virtual object Vo. In this work, the suggestion index is computed on the basis of task name, tags
and the methods of VOs. Let ω be the similarity index vector [ωn ωm ωat] which contains weights
for name correlation, methods correlation, and attributes correlation. A user-defined constant α is
multiplied with ω to boost the value according to the case explained in the lemmas listed beneath.

Lemma 1. If a task name contains the sensor name, it has the highest correlation with the virtual object. For task
τi, the similarity index ωn is found as:

ωn(τi) = σ(τi[title], Vo[name]) ∀ Vo.

For name, the value of α is set as 0.5 and is given the highest boost among all others.

ωn(τi) = αωn(τi) where α = 0.5.

Lemma 2. If a task name has matching keywords with the virtual object methods name, it has second
best correlation.

ωm(τi) = σ(τi[title], Vo[methods]) ∀ Vo.

For methods, the value of α is set as 0.25 as methods correlation has got lower priority than that of name.

Sustainability 2019, 11, 3647 9 of 23

ωn(τi) = αωn(τi) where α = 0.25.

Lemma 3. If a task name has matching attributes with a virtual object, it also contributes but to a less extent.

ωa(τi) = σ(τi[title], Vo[attributes]) ∀ Vo.

For attributes, the α value is set as 0.1 because it plays a lesser role in finding the correlation.

ωn(τi) = αωn(τi) where α = 0.1.

Lemma 4. Tags of tasks are the keywords which are associated with tasks. Similarly, tags are also stored for
indexing virtual objects. The number of similar tags in both contributes to the suggestion index, but a number of
dissimilar tags also play a role in computing suggestion node.

ωa(τi) = σ(τi[tags], Vo[tags])− 1
σ−1(τi[tags], Vo[tags])

∀ Vo.

For tags, the value of α is set as 0.5 and is considered of equal importance as name.

ωt(τi) = αωn(τi) where α = 0.5.

On the basis of the above lemmas, the suggestion index η for τi is computed as follows:

η[τi] =
4

∑
j=0

ωj.

The flow of operations in planning missions and task–object mapping is described in Figure 4.
The mission-planning toolbox is responsible for the making and planning of the missions and

the mapping and allocation of the tasks on IoT virtual objects through the mission plan. The mission
plan connects with the cloud-centric application to get the mission object using a RESTful Application
Programming Interface (API) . The mission object has reference to the tasks and virtual objects which
are relevant to the received mission. The received data are parsed, and tasks and objects are created.
The mapping plan is then populated with the tasks and virtual objects on the left and right end,
respectively. The suggestion index is computed for each task and appended with the task to facilitate
manual mapping and autonomous mapping. Once the mapping is done, it has been asserted if a
certain object has more than one task, then the scheduling algorithm comes into place to provide
consensus among tasks of that particular object. If one-to-one mapping is done, then the tasks are
allocated and deployed on the physical devices. Different device-specific function calls are considered
for the proper execution of the tasks on the physical resources. The mission is evaluated against its
goal and policies, and if the policies and goals are not met, it calls the task–object mapping back.

Sustainability 2019, 11, 3647 10 of 23

Mission Planning Toolbox

Connect To Cloud-Centric Web
Application

Receive Missions and
Respective Tasks and VOS

Parse/Create Tasks and Virtual
Objects for each mission

Sort and Sequence All Resource
in Mapping Plan

Task-to-Object Mapping

Multiple Tasks
on a Virtual Object

Deploy Mapped Task on
Devices

Scheduling Algorithm

Function Calls

Execution at Remote Devices Evaluate

Mission Goal

Policies

EndEnd

Figure 4. Flow of operation in planning missions and task–object mapping.

4.2. Task–Object Semantic Modeling and Inference

A knowledge base of semantic models of the proposed system is maintained. The knowledge base
is stored using the Protege ontology editor. The knowledge base contains individuals for tasks, virtual
objects, tags, and their relationship information. The inference system based on tag mapping provides
the candidate virtual object for the task. The semantic representation of the ontology is provided in
Figure 5. In Protege, every class is a subclass of the owl:thing class. In this architecture, there is a class
for the mission which represents the semantic modeling of the mission and its ontology. A mission has
a goal which must be achieved. In addition to the goal, a mission has a set of policies such as security,
maximum latency, reliability, etc. Similarly, the Quality of Service (QoS) of the mission is also one of
the major things that need to be considered. A mission is composed of many services, each of which
consists of tasks. Each task is mapped onto a certain virtual object. A virtual object has two subclasses,
namely sensor and actuator. There are several individuals created for the task, mission and sensors.
The corresponding XML representation for the Ontology Web Language (OWL) graph is shown in
Figure 5b.

Sustainability 2019, 11, 3647 11 of 23

(a) Ontology graph (b) XML representation

Figure 5. Semantic modeling of proposed system.

4.3. Interaction Model

One of the vital factors in the design of any architecture is the analysis of the interaction among
its different modules. This interaction can be best described using a Unified Modeling Language
(UML) sequence diagram. In this subsection, we describe the interaction of a sequence among various
processes of the proposed system. The proposed system communicates across two main subsystems,
i.e., the embedded plane and mission-planning plane. On the mission-planning plane, tasks are
generated, mapped, and the configuration is stored. The tasks are then allocated based on the persisted
configuration. The sequence diagram is shown in Figure 6. As can be seen, in this work, we have two
main subsystems. The embedded plane and mission-planning plane. In the IoT Gateway, which hosted
on the embedded plane, resides a Flask-based IoT server which at first initializes and registers the
physical devices connected with it. The devices can be sensors and actuators. The registry information
is passed onto the application. The bootstrapper component of the application is the central place
which runs for the whole lifespan of the application. The bootstrapper prepares the tasks’ parameters
and passes them to the task generator. The task generator creates the tasks in loop based on the
parameters passed to it by the the bootstrapper. Once the tasks are created and persisted, the resultant
task data are loaded to the mapper. The physical device data is also loaded to the bootstrapper which
in turn passed to the VO composer. The VO composer creates virtual objects based on the physical
device information and passes it to the mapper. The mapper passes all the data to the correlator
module which analyzes the tasks with the provided VO and returns the correlation index. On the
basis of the correlation index, the tasks are mapped onto the best virtual objects. The information is
communicated to the task scheduler which schedules the tasks and returns the status information to
the bootstrapper, which in turn passes it to the IoT gateway. The IoT gateway uses the information to
deploy the correct task on the physical devices.

Sustainability 2019, 11, 3647 12 of 23

Tasks
Generator

Tasks
Generator

Vo
Composer

Vo
Composer

MapperMapper Tasks
Scheduler

Tasks
Scheduler

Add Task

Load Task to Mapper
(XML)

Compose
Virtual Objects

Load Vos

Load Parameter
Data

Map VOs to Tasks

Schedule
Tasks

Store VO
Data

Task
Bootrstapper

Task
Bootrstapper

Login

Prepare Tasks
Parameters

loop: Create Task

Parameter:Number, Task Name, Tags,
Period, Type

loop: Create Task

Parameter:Number, Task Name, Tags,
Period, Type

Load Tasks

Load Vos

Store Mapping Information

Save Correlation Data

Load Candidate Mapped Tasks

Store Scheduling Information

ActuatorsActuators SensorsSensors
IoT

Gateway
IoT

Gateway

Deploy To IoT Server

Initialize Server

Register
 Resources

Register
RequestRegister

Request

Load Physical Device
Data

Load Physical Device
Data

Deploy Task
Deploy Task

Embedded Device Plane Mission Planning Plane

loop: Correlate All Tasks with VO

ParameterTasks, VO

loop: Correlate All Tasks with VO

ParameterTasks, VO

Find Correlation
Index

Search
best Ci

Figure 6. Sequence of operation among different subsystems of the proposed architecture.

5. Implementation Details

The proposal of each novel piece of architecture is illustrated with the model, architectural design,
and then finally by the implementation. In the previous sections, we discussed the modeling of the
system and the design considerations of the architecture. In this section of the paper, we summarize the
technologies and tools utilized while implementing this work. As described in Figure 1, the proposed
architecture has three sub-modules: mission-planning, the cloud web server, and the IoT gateway.
Therefore, the implementation tools are summarized in their respective tables. Table 2 reviews the
tools and technologies utilized for the IoT gateway which is based on Raspberry PI model B. Physical
IoT resources such as sensors and actuators are connected with IoT gateway. Furthermore, the IoT
server is deployed on the gateway to listen to the request from cloud-based wep client application.
The server is implemented in Python 3. We use a popular Model View Controller (MVC) framework
built on top of Python 3, named as Flask.

Sustainability 2019, 11, 3647 13 of 23

Table 2. Overview of implementation technologies for IoT gateway based on Raspberry.

Component Description

Hardware Raspberry PI 3 Model B
OS Raspbian
Memory 1 GB
IoT Server Flask Webserver
Physical IoT Resources RGB LED, Fan, Temperature Sensor, Humidity Sensor, Breadboard
Additional Add-ons GPIO, Untangle for XML Parsing, Jinja Template
Editors Vim, Sublime Text 3, PyCharm
Programming Language Python 3

The second sub-module of the proposed architecture is the cloud-based web server. Table 3
summarizes the technologies and tools used in it. The application is hosted on Amazon Web
Service Elastic Compute 2 (AWS EC2). It is implemented using Python 3 as in the case of the IoT
gateway. The Front End User Interface (UI) is implemented using Bootstrap 3, which is a responsive
design-based framework.

Table 3. Technology stack of cloud-centric web applications.

Component Description

Operating System Linux AWS EC2 Compute Node
IDE Sublime Text 3, PyCharm, IDLE
Programming Language Python 3
Framework Flask, Javascript, HTML5, CSS3
Libraries MySQLAdapter , Bootstrap3, Jinja3 for templating
Core Programming Language Python 3
Browser Chromium, Google Chrome, Firefox, Safari
Server Apache Webserver
Persistence MySQL
Semantic Modeling Protege 5.2
Visualization OWLViz, OntoGraf

The last sub-module of the architecture is shown in Table 4, which shows the technology stack
used to implement the mission-planning toolbox utilizing the DIY approach. The prime role of
this sub-module is to allow users to configure the system without any real programming skills.
For this, an HTML 5 canvas is provided where the mission configuration is developed by simple
drag-and-drop features.

Table 4. Technology stack of mission-planning toolbox.

Component Description

Operating System Windows 8, 64 bits
CPU Intel (R) Core(TM) i5-4570 CPU @ 3.20 GHz
Primary Memory 12 GB
IDE PyCharm
Programming Language Python 3.6
Framework Flask 2
Communication RESTFul API
Libraries Jinja 2, HTML 5, CSS3, Bootstrap 4, jPlumb
Persistence MySQL
Additional Tools PHPMyAdmin, MobaXterm

The technology stack for each sub-module is selected considering its compatibility with the
features of the MC-IoT applications. For instance, Python 3 was used as a core programming language;
it is backed in many recent research studies because of its equal popularity in research projects as
well as in development [20]. Moreover, Flask architecture is selected because it is very lightweight,
and consequently the response time is minimal. For the cloud, EC2 is used rather than dedicated
IoT services such as AWS IoT or Azure IoT because the proposed system utilizes the cloud to persist
and monitor the missions remotely, i.e., without the need of being on the premises. Thus, using such
specialized services would have been overkill for such a job. Finally, for the DIY components, JSPlumb
is used because it is really flexible and easy to use. It has a robust API and customization of the existing

Sustainability 2019, 11, 3647 14 of 23

features is easy. It is a JavaScript library, thus mitigating the need to install any additional tools to run
it because of the native support of JavaScript in every client browser.

6. Intelligent Smoke Detection and Notification Case Study

To assess the significance of the proposed system, a proof-of-concept case study was implemented
utilizing the proposed architecture. A simple mission was considered, whose goal was the detection
and notification of smoke in a smart home to prevent it from fire hazards. Many resources, like buzzer
actuator, temperature sensor, humidity sensor, C02 gas sensor, and pressure sensor were used and
deployed to detect smoke and set off the alarm. The mission is summarized in Table 5.

Table 5. Intelligent smoke detection and notification mission overview.

Attribute Value

Goal To prevent hazards occurring as the result of a fire
Policies Security, Efficiency, Scalability, QoS
Services Smoke Detection, Alarm Notification
Microservice getTemperature->TemperatureSensor, getHumidity->HumiditySensor, getPressure->PressureSense,

getCurrentGas->GasSensor, ringBuzzer->BuzzerActuator, turnLEDRED->RGBLed
Tasks Get Current Temperature, Get Pressure, Get Current Atmosphere Gas, Get Current Humidity, Ring Buzzer,

Turn LED green, Turn LED Red
Virtual Objects PressureSensor, HumiditySensor, GasSensor, RGBLed, BuzzerAlarm
Gateways Raspberry PI, Flask
Physical Object BMP(180) Sensor Kit, MQ-2 Gas Sensor, RGB Led, VersaSense Buzzer Actuator

In order to execute the mission on the proposed prototype, mission tasks were added. IoT
resources were registered and virtualized to generate virtual objects. The tasks were mapped onto
virtual objects based on the correlation index. Once the mapping was done, the mapping pairs were
deployed on physical IoT resources. In the following subsection, the flow of the mission addition and
execution is illustrated.

Execution Flow

First off, the mission related entities were generated which include tasks, virtual objects, and the
mapping methods to form the microservices. The cloud-based web application has numerous modules
for task management, mission management, and virtual objects management. Figure 7 shows a web
form in which different entities are added. Figure 7a shows an interface for task addition whereas
Figure 7b shows an interface for virtual object creation.

(a) Task adding interface (b) Virtual object adding interface

Figure 7. Tasks and virtual objects management.

Sustainability 2019, 11, 3647 15 of 23

Each form has attributes relevant to the entity being added. A task can have tags, period,
execution (periodic tasks only), and arrival time. Additionally, if the event-driven checkbox is marked,
the following three attributes will be ignored. For virtual objects, information about tags, methods,
properties, and URI are stored. This toolbox has the RESTFul endpoint, which exposes the data in XML
format to the mission-planning toolbox. Once the tasks and virtual objects are added, the next step is
the mapping of tasks on virtual objects based on the correlation among them. The mapping is done in
a DIY plane which enables stakeholders to configure and make microservices. This plane is also called
the task–object deployment plane. In this plane, the left side is populated with tasks while the right
side is populated with virtual objects. The mission plane gets these data using RESTful API from the
cloud-based web application. Once the tasks are mapped using JSPlumb drag-and-drops, the mapping
configuration is persisted in the MySQL database against the mission. In the mapping process, the tasks
can be mapped either in a manual fashion or in an automatic way. In manual mapping, suggestions
are shown against each task along with the index of the suggestion. The mapping plane can consider
the suggestions or can withdraw in case the suggestions are not fully accurate. The highest suggestion
index represents the virtual object which is the most suitable for the designated task. Suggestions
are based on the similarity index of names, methods, and attributes of the task and the common tags
among them. Figure 8 shows the mission-planning interface for the smoke detection and notification
case study.

In the task–object deployment plane, as discussed in the earlier sections, the task can be mapped
manually or autonomously. The manual mapping is necessary because of the critical nature of IoT
missions: a small error can lead to a hazardous situation. In manual mapping, suggestions are
shown against each task along with the index of the suggestion. The mapping plane can consider the
suggestions or can withdraw in case the suggestions are not fully accurate. The highest suggestion
index represents the virtual object which is the most suitable for the designated task. Suggestions
are based on the similarity index of names, methods, and attributes of the task and the common tags
among them. Figure 8 shows the mission-planning toolbox. Figure 8a shows the mapping plane
and the resultant MySQL persistence. Figure 8b is a screenshot taken from the mission-planning
toolbox which contains sensor and actuator tasks and the virtual objects along with their suggestions
relevant to the case being presented. Lines are drawn from tasks to virtual objects. The task is mapped
onto a virtual object and is stored in cache temporarily. Once the manual mapping button is clicked,
the configuration of the plumbing is persisted in the database. In case of an autonomous mapping,
once the respective button is clicked, every task is mapped onto the virtual object which has the highest
suggestion index. If plumbing is done before the autonomous mapping, the configuration will be
ignored. For instance, in Figure 8b, it is evident that each task has a suggestion box which shows the
top 3 virtual objects. For instance, the monitorHumidity task has three virtual objects suggestions
listed. The highest of them is the Humidity sensor with the value 0.39. Similarly, for all the remaining
tasks, the respective suggestion boxes provide an idea of the candidate virtual object.

Sustainability 2019, 11, 3647 16 of 23

GetCurrentHumidity

TurnOnFan

GetCurrentTemp

Task n

Fan Actuator

SensorPack

VO 3

VO 4

Mapping Plane

Tasks Virtual Objects

(a) Mapping plane and configuration persistence

(b) Correlation index-based suggestions

Figure 8. Pictorial representation of mission planning with mapping plane and JSPlumb.

Once the task–object deployment is done, the resultant [task-vo] pair is persisted, which is called
a microservice. The term microservice is used because the pair is an atomic deployable operation for
achieving the mission goal and is very lightweight. These microservices are deployed on physical
IoT resources as shown in Figure 9. The microservices are deployed in the form of HTTP requests.
The gateway has Flask, a server which listens to the HTTP requests. The cross-platform requests are
performed using the Cross Origin Request Service (CORS) module of Flask, which in addition to the
policy checking also validates and executes the request if authorized. The gateway receives the request
and gives the command to IoT resources.

Sustainability 2019, 11, 3647 17 of 23

Figure 9. Microservice deployment interface.

The tasks are deployed on their respective physical devices once the deploy button is clicked. Since
most of the microservices are polling tasks, they are deployed once and then repeatedly monitored
to detect the event, which is the presence of smoke. The RGB led and Buzzer alarm are event-driven
tasks which are only executed if smoke is detected.

7. Performance Evaluation and Discussion

For mission-critical IoT systems, one of the most important factors is the performance of the
system. These systems should meet the properties of real-time systems, and thus, the response time of
these should be minimal enough to satisfy real-time constraints. We compared the proposed platform
with two relevant state-of-the-art solutions. The first solution is purely designed for MC-IoT systems,
whereas the second solution is more of a DIY platform claiming to be generic for most of the categories
of IoT systems. To test the performance of the proposed system, we simulated these systems for
50 virtual users and investigated the average response time and throughput of the respective systems.
For this, the open-source tool Blazemeter was used. We recorded sample cross-domain requests using
Apache JMeter and imported them into Blazemeter, which in turn simulated the script for a set of
virtual users. The test statistics were recorded and visualized in graphical form, as shown in Figure 10.
Figure 10a illustrates the throughput of the proposed system in comparison with the two approaches.
It is evident that for 50 users, the throughput was approximately 55 tasks per second on average.
In other cases, the throughput was on average approximately 47 and 33, which is less than the proposed
system by some margin. However, there were occasional spikes for the proposed system, which show
that for specific requests, the throughput was better by an even greater margin. The response time
over time was also recorded, as shown in Figure 10b. Much like with the throughput, the response
time for the proposed system was lower than the corresponding systems. Despite the aim of MAC on
Time (MoT) being latency optimization, the average response time was marginally lower than MoT.
The reason for this is that the proposed system uses a very lightweight microservice, which reduces
the latency on the communication medium and thus results in an overall lower response time. From
these results, we see that it does not entirely outperform the existing systems, but given the range of
applications, it can be considered a much better architecture for MC-IoT applications.

Sustainability 2019, 11, 3647 18 of 23

20

30

40

50

60

70

80

90

100

2
8

:2
5

.2

2
8

:2
6

.7

2
8

:2
7

.9

2
8

:2
9

.4

2
8

:3
0

.6

2
8

:3
2

.1

2
8

:3
3

.3

2
8

:3
4

.8

2
8

:3
6

.0

2
8

:3
7

.8

2
8

:3
9

.0

2
8

:4
0

.5

2
8

:4
1

.7

2
8

:4
2

.9

2
8

:4
4

.4

2
8

:4
5

.6

2
8

:4
7

.1

2
8

:4
8

.3

2
8

:4
9

.8

2
8

:5
1

.0

2
8

:5
2

.5

2
8

:5
3

.7

2
8

:5
4

.9

2
8

:5
6

.4

2
8

:5
7

.6

2
8

:5
9

.1

2
9

:0
0

.3

2
9

:0
1

.8

2
9

:0
3

.0

2
9

:0
4

.8

2
9

:0
6

.0

2
9

:0
7

.2

2
9

:0
8

.7

2
9

:1
0

.2

2
9

:1
1

.7

2
9

:1
3

.2

N
o

 o
f

Ta
sk

s

Elapsed Time (Granularity :100 ms)

Throughput (Executed Tasks Per Second)

DIY Configuration Platform MoT Proposed System

(a) Throughput for 50 users

0

100

200

300

400

500

600

700

800

900

1000

2
8

:2
5

.0

2
8

:2
7

.0

2
8

:2
9

.0

2
8

:3
1

.0

2
8

:3
3

.0

2
8

:3
5

.0

2
8

:3
7

.0

2
8

:3
9

.0

2
8

:4
1

.0

2
8

:4
3

.0

2
8

:4
5

.0

2
8

:4
7

.0

2
8

:4
9

.0

2
8

:5
1

.0

2
8

:5
3

.0

2
8

:5
5

.0

2
8

:5
7

.0

2
8

:5
9

.0

2
9

:0
1

.0

2
9

:0
3

.0

2
9

:0
5

.0

2
9

:0
7

.0

2
9

:0
9

.0

2
9

:1
1

.0

2
9

:1
3

.0

2
9

:1
5

.0

2
9

:1
7

.0

2
9

:1
9

.0

2
9

:2
1

.0

2
9

:2
3

.0

2
9

:2
5

.0

2
9

:2
7

.0

2
9

:2
9

.0

2
9

:3
1

.0

2
9

:3
3

.0

2
9

:3
5

.0

2
9

:3
7

.0

2
9

:3
9

.0

2
9

:4
1

.0

2
9

:4
3

.0

2
9

:4
5

.0

R
o

sp
o

n
se

 T
im

e
 (

m
s)

Elapsed Time (Granularity: 100 ms)

Response Time Over Time
Proposed System MoT DIY Configuration Platform

(b) Response time for 50 users

Figure 10. Performance evaluation of proposed system w.r.t to the state-of-the-art methods.

Another crucial factor is the reliability of the system, which is vital for MC-IoT applications.
An engine health test was performed to find the condition of the engine. The engine refers to the
occupancy rate of network I/O, Memory, CPU, and connections. These attributes forecast the reliability
of the system. For mission-critical applications, the engine health is of vital importance, given its
critical nature. An overloaded engine must be avoided, otherwise it can lead to an unsafe state in
which the mission can fail on any of its crucial requirements. The result of the engine health test for
the proposed system is shown in Figure 11. It is evident that the CPU always remained below 5%
and the maximum network I/O took 8 KB/Sec, which is very low. Similarly, the main memory was
occupied to 10% on average irrespective of the increase in the number of connections, which proves
that the system is stable and can respond even if the load increases. The per-request statistics of
the test are summarized in Table 6. We evaluated the performance against parameters like average
response time, maximum response time, average latency, standard deviation, 90% Line, 99% Line,

Sustainability 2019, 11, 3647 19 of 23

average throughput, and error rate. These are standard benchmarking parameters of apache jMeter for
evaluating the performance of the test.

N
etw

ork I/O

C
P

U
 /

M
em

or
y C

onnections

Network I/O Memory CPU Connections

02:36 02:37 02:38 02:39 02:40
0 KB/Sec

2 KB/Sec

4 KB/Sec

6 KB/Sec

8 KB/Sec

10 KB/Sec

0 %

2.5 %

5 %

7.5 %

10 %

12.5 %

0

1.5

3

4.5

6

7.5

Figure 11. Engine health analysis.

From the above simulation, it is proved that the proposed system is very reliable in terms of load
and scalability which is crucial for any mission-critical planning system.

Sustainability 2019, 11, 3647 20 of 23

Table 6. Load testing statistics overview.

Label Name Samples Avg
Response Time 90line 99line Max

Response Time
Avg
Latency stDev Duration Avg

Bytes
Avg
Through-put

Errors
Rate

ALL 4531 0.77 2 5 56 1 1.59 1200 12.8 3.776 2
addtask 660 0.385 1 1 53 1 2.143 1200 1.5 0.55 1
add- virtual- obj 660 0.489 1 1 4 1 0.552 1176 1.8 0.561 2.5
deploy- tasks 640 0.456 1 1 1 1 0.498 1167 1.102 0.548 0.6
gentasks 644 0.474 1 1 6 1 0.569 1171 1.105 0.55 1.2
map- tasks 1287 0.459 1 1 5 1 0.532 1173 2.205 1.097 2.1
Test 640 2.697 5 6 56 1 2.718 1167 6.613 0.548 1.5

Sustainability 2019, 11, 3647 21 of 23

8. Conclusions

In this paper, we consider the design aspects of an MC-IoT system; this field has received very
little attention despite many studies focused on MC-IoT. Herein, we propose an approach based
on a well-known DIY paradigm focused on letting the general public, such as the stakeholders,
become involved in the design process, helping to achieve sufficient clarity, which is required for
MC-IoT systems. We propose a mapping plane to autonomously map tasks onto virtual objects based
on the best correlation with the devices. The tasks are deployed in the form of very lightweight
microservices, which are simply references to the task and the device URI. We have utilized a modern
programming language for long-term support of the proposed architecture. The architecture is further
illustrated with a case study, which is a simple surveillance mission of smoke detection on a smart
home. The performance was analyzed and compared with two state-of-the-art methods and was
simulated under severe load conditions using Blazemeter load testing. It was found that it performs
better in terms of throughput and response time than its counterparts. The engine test also indicated
that it always remains in a stable region irrespective of the load. In this work, we considered the
design of MC-IoT and considered the data size and load of the system. Future works regarding this
paper will target other characteristics such as the security and heterogeneity of the devices in a more
dynamic context.

Author Contributions: S.A. conceived the idea for this paper, designed the experiments and wrote the paper;
F.M. assisted in model designing and experiments. D.-H.K. conceived the overall idea of Cloud-Centric
Mission-Critical IoT planning, and proof-read the manuscript.

Acknowledgments: This research was supported by Energy Cloud R&D Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Science, ICT (2019M3F2A1073387), and this research was
supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.2018-0-01456, AutoMaTa: Autonomous Management framework based on
artificial intelligent Technology for adaptive and disposable IoT). Any correspondence related to this paper should
be addressed to Dohyeun Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Internet of Things Guidelines for Sustainability. 2018. Available online: http://www3.weforum.org/docs/
IoTGuidelinesforSustainability.pdf (accessed on 25 June 2019).

2. Da Xu, L. Enterprise systems: State-of-the-art and future trends. IEEE Trans. Ind. Inform. 2011, 7, 630–640.
3. Vermesan, O.; Friess, P.; Guillemin, P.; Gusmeroli, S.; Sundmaeker, H.; Bassi, A.; Jubert, I.S.; Mazura, M.;

Harrison, M.; Eisenhauer, M.; et al. Internet of things strategic research roadmap. Internet Things-Glob.
Technol. Soc. Trends 2011, 1, 9–52.

4. Friess, P. Internet of Things-Global Technological and Societal Trends from Smart Environments and Spaces to Green
ICT; River Publishers: Aalborg, Denmark, 2011.

5. Xia, F.; Yang, L.T.; Wang, L.; Vinel, A. Internet of things. Int. J. Commun. Syst. 2012, 25, 1101. [CrossRef]
6. Guo, B.; Zhang, D.; Wang, Z.; Yu, Z.; Zhou, X. Opportunistic IoT: Exploring the harmonious interaction

between human and the internet of things. J. Netw. Comput. Appl. 2013, 36, 1531–1539. [CrossRef]
7. Leu, J.S.; Chen, C.F.; Hsu, K.C. Improving heterogeneous SOA-based IoT message stability by shortest

processing time scheduling. IEEE Trans. Serv. Comput. 2014, 7, 575–585. [CrossRef]
8. Ding, Y.; Jin, Y.; Ren, L.; Hao, K. An intelligent self-organization scheme for the internet of things.

IEEE Comput. Intell. Mag. 2013, 8, 41–53. [CrossRef]
9. Vlacheas, P.; Giaffreda, R.; Stavroulaki, V.; Kelaidonis, D.; Foteinos, V.; Poulios, G.; Demestichas, P.; Somov, A.;

Biswas, A.R.; Moessner, K. Enabling smart cities through a cognitive management framework for the internet
of things. IEEE Commun. Mag. 2013, 51, 102–111. [CrossRef]

10. Lazarescu, M.T. Design of a WSN platform for long-term environmental monitoring for IoT applications.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 45–54. [CrossRef]

11. Lima, D.F.; Amazonas, J.R. TCNet: Trellis Coded Network-Implementation of QoS-aware Routing Protocols
in WSNs. IEEE Lat. Am. Trans. 2013, 11, 969–974.

http://www3.weforum.org/docs/IoTGuidelinesforSustainability.pdf
http://www3.weforum.org/docs/IoTGuidelinesforSustainability.pdf
http://dx.doi.org/10.1002/dac.2417
http://dx.doi.org/10.1016/j.jnca.2012.12.028
http://dx.doi.org/10.1109/TSC.2013.30
http://dx.doi.org/10.1109/MCI.2013.2264251
http://dx.doi.org/10.1109/MCOM.2013.6525602
http://dx.doi.org/10.1109/JETCAS.2013.2243032

Sustainability 2019, 11, 3647 22 of 23

12. Ahmad, S.; Malik, S.; Ullah, I.; Fayaz, M.; Park, D.H.; Kim, K.; Kim, D. An Adaptive Approach Based on
Resource-Awareness Towards Power-Efficient Real-Time Periodic Task Modeling on Embedded IoT Devices.
Processes 2018, 6, 90. [CrossRef]

13. Ahmad, S.; Malik, S.; Kim, D.H. Comparative Analysis of Simulation Tools with Visualization based on
Real-time Task Scheduling Algorithms for IoT Embedded Applications. Int. J. Grid Distrib. Comput. 2018,
11, 1–10. [CrossRef]

14. Ciccozzi, F.; Crnkovic, I.; Di Ruscio, D.; Malavolta, I.; Pelliccione, P.; Spalazzese, R. Model-driven engineering
for mission-critical iot systems. IEEE Softw. 2017, 1, 46–53. [CrossRef]

15. Aazam, M.; Khan, I.; Alsaffar, A.A.; Huh, E.N. Cloud of Things: Integrating Internet of Things and cloud
computing and the issues involved. In Proceedings of the 11th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), Islamabad, Pakistan, 14–18 January 2014; pp. 414–419.

16. Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services.
In Proceedings of the International Conference on Contemporary Computing and Informatics (IC3I), Mysore,
India, 27–29 November 2014; pp. 874–878.

17. Petrolo, R.; Loscri, V.; Mitton, N. Towards a smart city based on cloud of things, a survey on the smart city
vision and paradigms. Trans. Emerg. Telecommun. Technol. 2017, 28, e2931. [CrossRef]

18. How Far is the Hype of IoT. 2016. Available online: https://www.rcrwireless.com/20160628/opinion/
reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10 (accessed on 15 March 2019).

19. Ciccozzi, F.; Spalazzese, R. MDE4IoT: Supporting the internet of things with model-driven engineering.
In Proceedings of the International Symposium on Intelligent and Distributed Computing; Springer: Berlin, Germany,
2016; pp. 67–76.

20. Ahmad, S.; Hang, L.; Kim, D.H. Design and Implementation of Cloud-Centric Configuration Repository for
DIY IoT Applications. Sensors 2018, 18, 474. [CrossRef] [PubMed]

21. 3 Tips to Succeed in Mission-Critical IoT. Available online: https://www.rs-online.com/designspark/3-tips-
to-succeed-in-mission-critical-iot (accessed on 15 March 2019).

22. Zhang, Q.; Fitzek, F.H. Mission critical IoT communication in 5G. Future Access Enablers of Ubiquitous and
Intelligent Infrastructures; Springer: Berlin, Germany, 2015; pp. 35–41.

23. Orsino, A.; Ometov, A.; Fodor, G.; Moltchanov, D.; Militano, L.; Andreev, S.; Yilmaz, O.N.; Tirronen, T.;
Torsner, J.; Araniti, G.; et al. Effects of Heterogeneous Mobility on D2D-and Drone-Assisted Mission-Critical
MTC in 5G. IEEE Commun. Mag. 2017, 55, 79–87. [CrossRef]

24. Farooq, M.J.; ElSawy, H.; Zhu, Q.; Alouini, M.S. Optimizing mission critical data dissemination in massive
IoT networks. In Proceedings of the 15th International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOpt), Paris, France, 15–19 May 2017; pp. 1–6.

25. Orsino, A.; Farris, I.; Militano, L.; Araniti, G.; Andreev, S.; Gudkova, I.; Koucheryavy, Y.; Iera, A. Exploiting
d2d communications at the network edge for mission-critical iot applications. In Proceedings of the 23th
European Wireless Conference European Wireless 2017, Dresden, Germany, 17–19 May 2017; pp. 1–6.

26. Daneels, G.; Municio, E.; Spaey, K.; Vandewiele, G.; Dejonghe, A.; Ongenae, F.; Latré, S.; Famaey, J. Real-Time
data dissemination and analytics platform for challenging IoT environments. In Proceedings of the Global
Information Infrastructure and Networking Symposium (GIIS), St. Pierre, France, 25–27 October 2017;
pp. 23–30.

27. Hassan, G.; Hassanein, H.S. MoT: A deterministic latency MAC protocol for mission-critical IoT applications.
In Proceedings of the 14th International Wireless Communications & Mobile Computing Conference
(IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 588–593.

28. Wu, N.; Liang, Q. Sparse nested cylindrical sensor networks for Internet of mission critical things.
IEEE Internet Things J. 2018, 5, 3353–3360. [CrossRef]

29. Valderrama, C.; Vachaudez, J.; Bettens, F.; Vinci dos Santos, F.; Menezes, N.; Roelands, M.
Architecting the Internet of Things: The DiY Smart Experiences Project: A European Endeavour
Removing Barriers for User-generated Internet of Things Applications. Archit. Internet Things 2011,
doi:10.1007/978-3-642-19157-2_11.

30. Gama, K.; Touseau, L.; Donsez, D. Combining heterogeneous service technologies for building an Internet of
Things middleware. Comput. Commun. 2012, 35, 405–417. [CrossRef]

31. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

http://dx.doi.org/10.3390/pr6070090
http://dx.doi.org/10.14257/ijgdc.2018.11.2.01
http://dx.doi.org/10.1109/MS.2017.1
http://dx.doi.org/10.1002/ett.2931
https://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
http://dx.doi.org/10.3390/s18020474
http://www.ncbi.nlm.nih.gov/pubmed/29415450
https://www.rs-online.com/designspark/3-tips-to-succeed-in-mission-critical-iot
https://www.rs-online.com/designspark/3-tips-to-succeed-in-mission-critical-iot
http://dx.doi.org/10.1109/MCOM.2017.1600443CM
http://dx.doi.org/10.1109/JIOT.2017.2736645
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.1016/j.comnet.2010.05.010

Sustainability 2019, 11, 3647 23 of 23

32. PI, R. What is Raspberry PI? 2015. Available online: https://www.raspberrypi.org/help/what-is-a-
raspberry-p/ (accessed on 11 January 2019).

33. Arduino. 2015. Available online: http://www.arduino.cc/ (accessed on 11 January 2019).
34. SAM: The Ultimate Internet Connected Electronics Kit. 2015. Available online: https://www.

kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki (accessed on
11 January 2019).

35. Heath, N. How IBM’s Node-RED is Hacking Together the Internet of Things. 2015. Available online:
http://www.techrepublic.com/article/node-red/ (accessed on 11 January 2019).

36. Kleinfeld, R.; Steglich, S.; Radziwonowicz, L.; Doukas, C. glue. things: A Mashup Platform for wiring the
Internet of Things with the Internet of Services. In Proceedings of the 5th International Workshop on Web of
Things, Cambridge, MA, USA, 8 October 2014; ACM: New York, NY, USA, 2014; pp. 16–21.

37. Quoc, H.N.M.; Serrano, M.; Le-Phuoc, D.; Hauswirth, M. Super stream collider–linked stream mashups for
everyone. In Proceedings of the Semantic Web Challenge Co-Located with ISWC2012, Boston, MA, USA,
11–15 November 2012.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.raspberrypi.org/help/what-is-a-raspberry-p/
https://www.raspberrypi.org/help/what-is-a-raspberry-p/
http://www.arduino.cc/
https://www.kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki
https://www.kickstarter.com/projects/1842650056/sam-the-ultimate-internet-connected-electronics-ki
http://www.techrepublic.com/article/node-red/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed System Model
	Cloud-Based Web Server
	Mission-Planning Toolbox
	Raspberry PI-Based IoT Gateway

	System Design
	Task Mapping and Allocation Model
	Task–Object Semantic Modeling and Inference
	Interaction Model

	Implementation Details
	Intelligent Smoke Detection and Notification Case Study
	Performance Evaluation and Discussion
	Conclusions
	References

