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Abstract: Methanesulfonic acid (MSA) is used to recover silver (Ag) from solar cells by adding an
oxidizing agent. It is possible to regenerate by substituting of H+ for Ag+, and thus it can be reused
for additional reactions. However, MSA is highly hygroscopic, and as an oxidizing agent can easily
decompose in the acidic environment during Ag extraction, leading to dilution due to the formation
of H2O. This H2O in the MSA solution hinders the Ag extraction. In this study, we present a fractional
distillation process for restoring the reactivity of reused MSA solutions by reducing the H2O content.
Our results showed that the reactivity of the separated MSA was restored and Ag could be recovered
from the solar cell.
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1. Introduction

The disposal of wastes associated with end-of-life (EoL) photovoltaic (PV) modules is
problematic [1]. In general, the lifespan of a crystalline silicon (c-Si) PV module is 25–30 years,
and it has been installed since the 1990s [2]. This means that the disposal of EoL PV modules will
increase rapidly. In this regard, the IEA-PVPS (International Energy Agency-Photovoltaic Power
Systems Programme) and IRENA (International Renewable Energy Agency) reported that the global
waste generated from EoL PV modules is expected to reach 1.7–8 million tonnes by 2030 and
60–78 million tonnes by 2050 [3]. Therefore, a method to properly process PV modules is required. The
European Union published the 2012/19/EU Directive, which includes guidelines on the handling of EoL
PV modules. EoL PV modules are designated as waste electrical and electronic equipment (WEEE),
so programs must be in place for their collection, recovery, and recycling [4]. For this reason, many
recycling processes have been investigated for recovering valuable materials from PV modules with
different levels of technologies [5–9]. In general, c-Si PV modules mostly comprise a piece of glass with
aluminum frames, c-Si solar cells, an encapsulant, a back sheet, and a junction box. As Ag has a very
low total weight in a PV module, it has not been considered worth recovering [10]. However, Ag is a
very valuable material and has a relative value of almost half the cost of making PV modules [3]. For
this reason, some studies have reported on the recovery of Ag from PV module components [11–18],
including extraction with inorganic acid [17,18]. However, this method is not environmentally friendly,
as it results in the generation of waste solutions. Meanwhile, Yang et al. [19] reported the recovery of
Ag from c-Si solar cells by using eco-friendly methanesulfonic acid (MSA) solutions. MSA has a lot of
advantages; for example, it is easy to handle, and has high conductivity, high metal salt solubility, and
low toxicity [20]. However, since MSA is more expensive than conventional inorganic acids, a process
that can reuse MSA must be developed for MSA-based Ag recovery to be competitive. However, it is
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expected that the process of recovering Ag using MSA has a side reaction to generate H2O and the
reactivity of MSA will decrease. In addition, H2O is added during the process because MSA is highly
hygroscopic. In this study, we explored possibilities of MSA solution reuse after recovering Ag using
an MSA solution. Reusing the MSA can have significant economic improvements. Previous studies
have already reported that reusing an acid solution is of great economic value [21,22]. Moreover,
the economic value of Ag is large because, as previously mentioned, it is one of the most valuable
elements on Earth. For this reason, the recovery of Ag through MSA reuse is very meaningful from an
economic point of view. Meanwhile, previous studies have confirmed the side reactions in which H2O
is generated during the Ag recovery process using MSA. Because the generated H2O can lower the
acid concentration and decrease the reactivity, even if the metal solubility of the MSA is high, it can
have a negative effect on the reuse of the MSA solution. Therefore, the separation behavior of MSA
and H2O was investigated by fractional distillation. As a result, it was confirmed that MSA can be
reused using the optimum fractional distillation conditions. Finally, 2N grade Ag was recovered from
6′′ commercial solar cells by MSA solution with restored reaction by fractional distillation.

2. Materials and Methods

2.1. Recovery of Ag Using Reused Organic Solvent

A 6′′ mono c-Si commercial solar cell was applied to confirm the reuse of the MSA solution. The
solar cell was broken into many pieces, which were immersed in a reused MSA solution with H2O2

(30 wt.%) for 1–12 h. The ratio of reused MSA and H2O2 was used 90:10. The stirring speed was
80 RPM and the experiment proceeded at 25 ◦C.

2.2. Fractional Distillation of Organic Compounds

A 1:1 mixture of MSA and H2O was used to investigate the optimum conditions for the separation
behavior of H2O. A rotary evaporator (Hahnshin S&T HS-2005S-N, Gimpo-si, Korea) was used for the
separation experiment. First, the mixture of MSA and H2O was placed in a round flask and distilled at
80 RPM for 3 h. The heating medium was silicone oil and the temperature of the coolant was 4 ◦C. As
shown in Table 1, the heating temperatures of silicone oil for fractional distillation were 100, 150, and
200 ◦C and are indicated in (a), (b), and (c), respectively. The detailed experimental conditions are
shown in Table 1.

Table 1. Experimental conditions of the fractional distillation process. MSA: methanesulfonic acid.

Contents (a) (b) (c)

Distillation temperature (◦C) 100 150 200
Mixing ratio (MSA:H2O) 1:1

Heating medium Silicone oil
Time (hr) 3

Flask rotation speed (RPM) 80
Coolant temperature (◦C) 4

2.3. Recovery of Ag Using a Separated MSA Solution

After confirming the optimal conditions for fractional distillation, the Ag recovery process from
the solar cells was carried out until four times as described in Section 2.1. To recover Ag leached from
the solar cell, HCl (35 wt.%) was put into the MSA-based leach solution with stirring at 200 RPM for
1 h. The precipitated AgCl was separated by centrifugation device. Recovered AgCl was converted to
Ag metal powder by chemical wet process with stirring at 200 RPM for 1 h.

The concentration of Ag in the solution was analyzed by inductively coupled plasma atomic
emission spectroscopy (ICP-AES, Shimadzu ICPS-1000IV, Kyoto, Japan). Fourier-transform infrared
(FT-IR, Bruker ALPHA-P, Billerica, MA, USA) spectroscopy was used to investigate the qualitative
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analysis of fractionally separated MSA and distilled H2O. The phases of the recovered AgCl and
converted Ag powder were also analyzed by X-ray diffractometer (XRD, Rigaku DMAX-2500, Tokyo,
Japan). Glow discharge mass spectrometer (GDMS, Thermo VG 9000, Waltham, MA, USA) was used
to analyze the concentrations of the various impurities in the Ag metal powder.

3. Results and Discussion

3.1. Extraction Behavior of Ag Using Reused Organic Solution

In the previous experiment, MSA and H2O2 were mixed and the optimum process was
determined [19]. As shown in Figure 1, however, the reactivity of MSA for Ag extraction from
solar cells was significantly reduced. The solubility of the Ag in the reused solution was reduced by
about 15% even though the experiment was conducted for up to 12 h. This is because H2O was formed
as a side reaction in the Ag extraction process using MSA and H2O2. The mechanism of the chemical
reaction used to extract Ag with MSA and H2O2 is shown as follows [23].

2Ag + H2O2→ Ag2O + H2O (1)

Ag2O + 2CH3SO3H→ 2CH3SO3Ag + H2O (2)

2CH3SO3H + 2Ag + H2O2→ 2CH3SO3Ag + 2H2O (3)
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and the second used MSA.

The H2O generated by the side reaction lowers the concentration of MSA, which reduces the
extraction reactivity of Ag from the solar cell. In an acidic environment, in addition, H2O2 further
decomposes into H2O and O2 due in an acid-catalyzed reaction [24]. In an acidic solution, it is possible
for H2O2 to be decomposed and become diluted solution due to the formation of H2O [25].

H2O2 + H→ H2O + 1/2O2 + H (4)

It is important to develop methods to control the H2O in solution because it has very strong
effects on the physicochemical properties of acid [26]. Reduced reactivity with Ag in MSA solution is
attributed to an increased amount of H2O, which results in a lower Ag dissolution rate from the solar
cell. Also, MSA is hygroscopic and the process of extracting Ag requires a relatively long process time.
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Therefore, more H2O can be added to the MSA solution during the process. As a result, the reactivity
of reused MSA is significantly lowered in the Ag extraction process.

3.2. Fractional Distillation Behavior of an Organic Solvent and H2O Mixture

Table 2 shows the fractional distillation behavior according to process conditions. We can use this
process to separate a mixture of two miscible liquids that have boiling points that are different to each
other. This process is carried out using a rotary evaporator apparatus. This method can separate a
mixture of MSA (boiling point is about 290 ◦C) and H2O (boiling point is 100 ◦C) at 1 atm, respectively.
In the case of (a) and (b), the fractional distillation was not affected much. However, in the case of (c),
MSA and H2O were almost separated. In the case of (a) in which the fractional distillation temperature
was 100 ◦C, the distilled H2O was only 110 mL and the remaining MSA was 490 mL. In the case of
(b) in which the distillation temperature was 150 ◦C, it was confirmed that MSA still contained a
large amount of H2O, although the distilled H2O increased to 200 mL. In the case of (c) in which the
fractional distillation temperature was 200 ◦C, it was found that the distilled H2O was 290 mL and the
remaining MSA was 310 mL. It was confirmed that the amount of separated MSA did not change after
3 h in all conditions. It can be seen that a temperature of about 200 ◦C is required for the H2O mixed
with the MSA to be sufficiently separated.

Table 2. The amount of residual MSA and H2O distilled by the following process conditions: (a) 100 ◦C,
(b) 150 ◦C and (c) 200 ◦C.

Contents (a) (b) (c)

Residual MSA (mL) 490 400 310
Distilled H2O (mL) 110 200 290

Table 3 shows the location wavenumber and description of the MSA-H2O system to allow for
a better understanding of the FTIR analysis results. It is based on various literature cited [27–33].
The FTIR analysis results, which were obtained through before and after fractional distillation, are
shown in Figures 2 and 3. Pure MSA, MSA + H2O, and separated MSA were analyzed by FTIR to
investigate the reactivity behavior of MSA. Figure 2a shows typical FTIR peaks of pure MSA [25,26].
There were CH3 bands at 3030, 2940, 1415, and 980 cm−1, SO3 bands at 1320 and 1120 cm−1, a S–OH
stretch vibration at 880 cm−1, and a C–S stretch vibration at 760 cm−1, as shown in Table 3. In the case
of Figure 2b, the height of the FTIR peak was lowered overall, except for the C–S stretch vibration at
780 cm−1, because the MSA was mixed with H2O. In Figure 2c, on the other hand, we can see that the
result of the FTIR analysis line is located in the middle of Figure 2a,b at parts of the CH3 and SO3 band
and the C–OH stretch vibration at 3030, 2940, 1320, 1120, and 880 cm−1. It is considered that the result
of the restoration of the reactivity of MSA was due to fractional distillation. Generally, the intrinsic
physicochemical properties of the corresponding molecule can be confirmed by the wavenumber of
each IR absorption peak [34]. The f actor that determines the peak intensity in the infrared spectra is
the concentration of molecules in the sample [35]. In other words, the concentration of the sample is
related to the height of the FTIR peak. The height of the peak increases as the concentration of the
analytical sample increases. For this reason, the IR peak of Figure 2c, which corresponds to separated
MSA, is in the middle of Figure 2a (pure MSA) and Figure 2b (MSA mixed with H2O). This result
indicates that fractional distillation increases the MSA concentration, which means that the reactivity
with Ag can be restored. Meanwhile, pure H2O and distilled H2O by fractional distillation are shown
in Figure 3a,b. Pure H2O and distilled H2O showed differences in FTIR analysis results. First, the
height of the O–H stretch at 3320 cm−1 of the distilled H2O was found to be lower than that of pure
H2O, because the other components were mixed in the distilled H2O. In addition, the SO2 band was
found at 1180 cm−1, the SO3 band was found at 1050 cm−1 and the C-S vibration was found at 780 cm−1

in the FTIR analysis of the distilled H2O. This means that MSA is also decomposed during fractional
distillation process.
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Table 3. Location of relevant indicator bands in the MSA-H2O system.

Location Wavenumber (cm−1) Description

3000–3400 O–H stretch
3030 CH3 asymmetric stretch
2940 CH3 asymmetric stretch
1630 O–H bend
1415 CH3 asymmetric bend
1320 SO3 asymmetric stretch
1180 SO2 asymmetric stretch
1120 SO3 symmetric stretch
1050 SO3 symmetric stretch
980 CH3 rock
880 S–OH stretch
780 C–S symmetric stretch
760 C–S symmetric stretch
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3.3. Recovery of Ag from Organic Solvent with Restored Reactivity

We confirmed that concentration of MSA can be restored by fractional distillation as a result of
FTIR. Figure 4 shows the Ag extraction behavior by repeated use of MSA by ICP-AES analysis as a
function of the reaction time. The yellow dotted line in Figure 4 indicates that Ag is entirely dissolved
in the solution. From this, we can see that in all the cases where MSA was reused, the yellow line is
reached within 4 h. It is indicated that the reactivity of MSA and Ag was improved by all fractional
distillation experiments. In other words, the MSA concentration was restored through fractional
distillation, and it was confirmed that the Ag could be dissolved in the reused MSA.
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Figure 5 shows the XRD spectrums of AgCl recovered and Ag converted from AgCl by a wet
chemical process. The converted Ag powder only shows the phase of Ag. As a result, pure Ag powder
can be obtained using this simple chemical process. Table 4 provides a summary of the GDMS results
for the purity levels of the as-recovered Ag powders. It can be confirmed that the Ag metal converted
from AgCl had a purity of ~99.5% (2N), with an especially large amount of Cl and Pb present in the
recovered Ag as impurities. It is expected that Pb dissolved due to the reaction of MSA solution and
Pb. This is because Pb exists as a glass frit together with the Ag present in the solar cell [36]. Not only
Ag but Pb also dissolves well in the MSA and H2O2 solution [37]. The dissolved Pb is considered to be
precipitated together with PbCl2 when AgCl is leached by HCl [38]. For this reason, Pb and Cl were
detected as 480 ppm and 4000 ppm in the GDMS analysis, respectively. In addition, it is expected that
a large amount of Cl was detected in the Ag powder because not all of the AgCl was converted to Ag.
As a result, 2N-grade Ag could be recovered from solar cells and it would be possible to recover higher
purity Ag through the optimization condition of Ag conversion from AgCl and additional processes
such as the electrochemical method.
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Table 4. The purity levels of the as-recovered Ag powders.

Elements Concentration (ppmw) Elements Concentration (ppmw)

Be <0.001 Cr 0.76
B 0.89 Mn 0.42

Na 3.4 Fe 16
Mg 0.71 Co 0.01
Al 4.8 Ni 0.89
Si 65 Cu 2
P 38 Zn 0.36
S 0.5 Ga <0.1
Cl 4000 Ge <0.1
K 0.71 Ag Matrix
Ca 1.1 Sn 2.8
Ti 0.47 Pb 480

4. Conclusions

MSA, an environmentally friendly organic acid, was used to recover Ag from solar cells. MSA is
highly soluble, environmentally friendly, and easy to handle. However, when Ag is recovered using
MSA and H2O2, a side reaction that generates H2O occurs and H2O2 decomposes in H2O under acidic
conditions. Furthermore, because MSA is hygroscopic, the concentration of MSA decreased after the
Ag extraction reaction, and the reactivity with Ag decreased. In order to improve the reactivity with
Ag and to be able to reuse the MSA solution, fractional distillation was applied as a method to separate
MSA and H2O. MSA and H2O were separated at a fractional distillation temperature of 200 ◦C, and
MSA could be reused for recovering Ag. The Ag extracted from the solar cells was recovered in the
form of AgCl, and the Ag was converted through the chemical wet process. The purity of converted Ag
was 99.5%, and it was confirmed that Pb and Cl existed as impurities in the converted Ag. However,
it may be possible to recover higher purity Ag from solar cells through the optimization conversion
condition of Ag and additional process such as the electrorefining process.
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