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Abstract: Substituting a single large power grid into various manageable microgrids is the emerging
form for maintaining power systems. A microgrid is usually comprised of small units of renewable
energy sources, battery storage, combined heat and power (CHP) plants and most importantly,
an energy management system (EMS). An EMS is responsible for the core functioning of a microgrid,
which includes establishing continuous and reliable communication among all distributed generation
(DG) units and ensuring well-coordinated activities. This research focuses on improving the
performance of EMS. The problem at hand is the optimal scheduling of the generation units and
battery storage in a microgrid. Therefore, EMS should ensure that the power is shared among different
sources following an imposed scenario to meet the load requirements, while the operational costs of
the microgrid are kept as low as possible. This problem is formulated as an optimization problem.
To solve this problem, this research proposes an enhanced version of the most valuable player
algorithm (MVPA) which is a new metaheuristic optimization algorithm, inspired by actual sporting
events. The obtained results are compared with numerous well-known optimization algorithms to
validate the efficiency of the proposed EMS.

Keywords: microgrid; distributed generation; most valuable player algorithm; optimal
energy management

1. Introduction

The alarming rise in carbon emissions means production of clean energy is required urgently.
The recent incorporation of both large and small renewable energy sources into the existing power
system is a positive step towards decarbonizing our power generation, however, much effort is still
required to address the challenges directly associated with widespread penetration of such energy
sources. In addition to reducing carbon emissions, these efforts are primarily targeted to produce a
sustainable energy supply.

Location-based renewable energy sources have naturally become an alternative power source
within the microgrid, which is constituted of distributed generation (DG) units, storage devices,
and loads. There is a tendency for the microgrid to operate in both islanded and grid-connected modes.
Determining an optimal share of power produced by available DGs in a microgrid is a challenge and
has remained one of the most interesting and important topics of research.

In literature, various performance attributes of microgrids were optimized using different
optimization algorithms. Power generation scheduling was optimized in [1] using an artificial fish
swarm algorithm (AFSA), whereas, in [2], day-a-head optimized scheduling was presented using a
harmony search (HS) and differential evolution (DE) algorithms. Reference [3] solved the economic
power dispatch using four algorithms, namely, the direct search method, particle swarm optimization
(PSO), lambda logic, and lambda iteration. In reference [4], additive-increase-multiplicative-decrease
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algorithms were used to optimize power sharing among active DGs. In order to determine the optimal
component sizing in a microgrid, the mixed integer linear programming (MILP) method has been
used to model the microgrid components with consideration of demand response [5]. In another
study [6], similar sizing problems of microgrid components were solved using a genetic algorithm
(GA) and the energy management issue was formulated using MILP. In addition to component sizing,
system configuration was optimized in [7] using the multi-objective PSO by taking into account
production cost, reliability, and environmental impact. The studied system comprised of a diesel
generator, solar panels, wind turbines, and battery storage. Several methods have also been used
for optimizing multi variable problems of energy management systems (EMS) in microgrids [8–13].
Wang et al. [14] investigated EMS of a microgrid with multi period optimization problems using an
MPI based PSO algorithm and concluded that the proposed algorithm could be effectively used to
improve the operation time.

Four techniques were used in [15] to determine the optimized operational strategy for an entire day
based on least operating cost and minimum carbon emissions. These techniques were a non-dominated
sorting genetic algorithm (NSGA), multi-objective PSO, multi-objective uniform water cycle algorithm
(WCA), and normal constraint algorithm. Reference [16] presented a real time EMS that had the
tendency to optimally minimize carbon emissions and energy cost, and simultaneously maximized the
power coming from renewable DGs using binary PSO. An improved binary PSO with double-structure
coding was applied to optimize a microgrid operation [17]. In this research, the effectiveness of the
proposed algorithm was verified based on the simulation results. Another real time EMS was also
proposed by applying multi-objective PSO for an islanded microgrid [18]. Compared with a multi
objective GA, the proposed algorithm creates faster computation. A multi-objective PSO algorithm
was later modified to optimize the operation of the system with minimum energy consumption,
cost, and emissions [19]. It was found that the proposed multi-objective PSO could be validated for
multi variable EMS of a factory. The optimal power control strategy for a standalone microgrid was
developed and presented in [20] where optimized gains of a proportional-integrator controller of
inverter-based DGs using hybrid big bang-big crunch (BB–BC) algorithm were found.

With the aim of adjusting microgrid generation to energy demand, numerous technical studies
have been carried out to improve energy management with penetration of renewable energy sources
combined with energy storage devices in microgrids [21–25]. Alvarez et al. [26] conducted an
optimization of micro sources in a DG microgrid in terms of emission and fuel consumption costs.
This work showed a faster response of microgrid management with better micro source stability and
global cost. Another study, [27], evaluated optimal energy management in an isolated microgrid with
renewable energy sources (i.e., PV and wind power plants) using pumped-storage and demand response.
Through this research, technical and economic performances of the system were significantly improved
by implementing demand response and optimal scheduling of the pumped-storage. Kim et al. [28]
evaluated the acceptability and stability of a hybrid microgrid system to provide power supply for
Gasado Island in South Korea. It showed that the system is not only stable but also capable of predicting
the electricity supply and demand, managing the batteries charge/discharge, and controlling the
distributed generators with lower costs and higher renewable energy fraction. Meanwhile, a technical
analysis of a hybrid system was performed for electricity shortage conditions caused by a disaster [29].
The hybrid system is off-grid and consists of conventional and renewable energy sources and energy
storage system. As a result, the renewable energy sources can provide backup power supply in the
absence of conventional energy sources during disaster. The authors in another study [30] analyzed
optimal energy management of a renewable-based microgrid using a PSO algorithm combined with
a primal-dual interior point and concluded that the proposed robust model effectively solved the
microgrid energy management problems by minimizing operation costs and satisfying the PVs
insolation limitation and the microgrid physical constraints.

In reference [31], a robust management system was proposed for a microgrid in the presence of
high penetration of renewable DGs. This system tended to minimize the microgrid’s running and
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worst-case transaction costs, along with the utility of the dispatchable loads while considering the
stochastic nature of DGs. Reference [32] presented a model for stochastic microgrid energy scheduling
with the primary goal of minimizing anticipated running costs and power losses. Plug-in electric
vehicles, storage devices, and DGs were taken into consideration while modeling the microgrid.
In another study [33], several forecasting methods were applied to optimize the EMS of distributed
energy resources. In reference [34], the charging and discharging rates of batteries were controlled
to optimize energy management in a microgrid constituted of renewable energy sources and storage
devices. For optimal energy management, a drop-based controller was utilized, whereas, for power
distribution among charging stations, an aggregator was used. Ultimately the power was distributed
among charging stations subjected to their droop participation. The Markov decision process (MDP)
was used to formulate multi-energy systems scheduling in [35], where the decision space and large
state of MDP were solved using a rollout algorithm. Wind power, batteries, and combined heat and
power (CHP) were used to model a microgrid in grid connected mode. Reference [36] proposed a
memory-based GA to minimize costs by optimally distributing power among DGs connected in a
microgrid. An algorithm was implemented on the microgrid consisting of solar plants, wind plants,
and CHP. Chen et al. [37] evaluated a mutual dependency of cogeneration units and proposed a direct
search method to solve the CHP dispatch problem. A number of studies have been done to verify the
proposed approach. Another study [38] analyzed the effect of distributed energy resources integration
in an industrial microgrid and proposed a model with onsite generation, i.e., CHP and a wind turbine,
which was applied to a manufacturing facility. In a recent study [39], optimization of energy, heat,
and demand in a microgrid was conducted using a mathematical model based on MILP with the aim
of minimizing the operational cost.

In this paper, we propose an efficient energy management system (EEMS) for the optimal
scheduling of different sources in a microgrid, considering the intermittent behavior of renewable
energy sources, with and without storage resources. The developed system can efficiently manage the
energy under different scenarios. This EEMS uses an enhanced version of the most valuable player
algorithm (EMVPA) to minimize the operating cost of the microgrid.

The remainder of this paper is organized as follows. The investigated microgrid is introduced in
Section 2. The details of the energy management strategy are described in Section 3. The problem
formulation for minimizing operating cost is presented in Section 4 and the optimization algorithms
are proposed in Section 5. Results and discussion are provided in Section 6 and finally, conclusions are
drawn in Section 7.

2. Description of the Microgrid

In this paper, a microgrid with a certain number of sources is considered, consisting of wind
energy plants, solar PV plants, CHP, storage batteries and utility, as well as an EMS responsible
for coordination of all components of the microgrid (Figure 1). The microgrid can be operated in
grid-connected mode or disconnected (islanded) mode.
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3. Efficient Energy Management System (EEMS)

An EMS is required to coordinate the energy share among different sources of the microgrid
based on the selected scenario. The word “efficient,” added to the EMS, demonstrates the proposed
work uses EMVPA to make EMS operations more efficient in terms of running costs. The energy
management strategy used in this study is represented by the flowchart given in Figure 2, which allows
an operator to manage the microgrid using one scenario from the three defined scenarios. For all three
scenarios, the main sources of energy are renewable sources. It is worth mentioning that, although
three scenarios are investigated in this paper, more scenarios can be added to the EEMS. All proposed
scenarios are described in the following subsections.

3.1. Scenario 1

All DGs can only be operated within their respective minimum and maximum limits.
Moreover, there is no power that can be transferred from the utility or the main grid. Thus, the microgrid
operates in islanded mode.

3.2. Scenario 2

All DGs can work within their limits and the microgrid can buy limited power from the utility
only when DGs cannot supply the requested load.

3.3. Scenario 3

The microgrid has the facility of storage batteries and all DGs can work within their limits.
The microgrid can buy limited power from the utility only when DGs and battery cannot supply the
requested load. As shown in Figure 2, it is pertinent that if the generated power from DGs is greater
than the load, the surplus energy is used to charge the battery bank. In the case where the battery bank
is fully charged, no extra power will be generated from the DGs. On the other hand, if the power
generated by DGs is less than the requested load, the deficit of power is provided by the battery bank.
If DGs and the battery bank cannot supply the load, the deficit of power is bought from the main grid.
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4. Optimization Problem

As aforesaid, the role of the EMS is to optimally schedule the different sources of the microgrid
based on the selected scenario for each hour in order to minimize the operating cost of the microgrid
under some constraints. This can be formulated mathematically as an optimization problem which is
described in the following subsections.

4.1. Objective Function

The objective function of the considered optimization problem can be approximated by a quadratic
nonlinear function as follows [39]:

Ci(t) = αi × Pi(t)
2 + βi × Pi(t) + γi (1)

where, i denotes the number of DG units under consideration, C and P represent the cost in $ and
power generated in MW on an hourly basis, respectively. DG technology and fuel cost are incorporated
in coefficients α, β, and γ, where α, specifically, is used to introduce DG related nonlinearity.

4.2. Design Variables

For this optimization problem, power generated by each DG is taken as a design variable.
A solution is initially proposed in a vector form containing all design variables and given to the
optimizer to optimize the solution in upcoming iterations and find a vector that contains the optimally
distributed power output from each generator. A solution vector x, for n wind energy plants, m PV
plants and k CHP, is given in the following expression:

x =
[
Pwp1, Pwp2, . . . Pwpn, Psp1, Psp2, . . . Pspm, PCHP1, PCHP2, . . . PCHPk

]
(2)
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where Pwp, Psp, and PCHP represent the power from wind energy plants, solar PV plants and
CHP, respectively.

4.3. Constraints

4.3.1. Power Balance

The power produced by the EEMS must be equal to the requested load at any instant. This can be
represented by the following equation:

NDG∑
i=1

Pi(t) + PBattery(t) + PGrid(t) = PL(t) (3)

where PL(t) is the total power required by the load at instant (t), PBattery(t) is the power of storage batteries,
and PGrid(t) is the power from the grid at instant (t). It is worth to mention that, PBattery and PGrid

depend on the selected scenario. For example, for Scenario 1, there is no storage device used and the
microgrid is not allowed to buy power from the main grid. For Scenario 2, there is no battery; however,
when the DGs cannot supply the requested load at a given time the deficit of power is bought from the
grid. Finally, for Scenario 3, there are batteries (that can charge and discharge) and if there is deficit in
accumulative power of DGs and battery, the power needed will be provided by the main grid.

4.3.2. Power Limits

Each DG source is limited by a maximum value and a minimum value that can vary from one
instant to another. This constraint can be expressed as follows:

Pi min(t) ≤ Pi(t) ≤ Pi max(t) (4)

where Pi min(t) is the minimum value of power of ith DG at instant (t) and Pi max(t) is the maximum
value of power of ith DG at instant (t).

4.3.3. Battery Limits

The batteries are considered in this work as a secondary source of power. They can charge and
discharge within a given range. Therefore, we can write the following constraint:

PDischarge min(t) ≤ PBattery(t) ≤ PCharge max(t) (5)

where PDischarge min(t) is the minimum discharging value allowed for the batteries at time (t) and
PCharge max(t) is the maximum charging capacity of the batteries.

5. Optimization Algorithms

To solve the considered optimization problem, an enhanced version of the MVPA is developed.
This transforms the EMS system into a more efficient one; i.e., EEMS. In the following two sections,
the classical version of the MVPA and the enhanced version will be explained. It is worth explaining
here that using an enhanced version of the MVPA, which is a modern metaheuristic, instead of any
other classical method is motivated by the advantages of modern metaheuristics over classical methods.
Among these advantages is their ability to adapt to any problem with no/or few modifications, which
allows them to be easily applied to different scenarios.

5.1. Most Valuable Player Algorithm

The MVPA is a new metaheuristic optimization algorithm developed by Bouchekara [40], inspired
by sports events. The main step in the MVPA is a population of players that compete individually to
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win the Most Valuable Player (MVP) trophy and collectively to win the championship. One important
feature of the MVPA is that it has no internal parameter to tune. In [41], a comparative study was carried
out between metaheuristic algorithms inspired by sports events including the MVPA. The MVPA
has been ranked first for unimodal problems and equally ranked first with two other algorithms for
multimodal problems. In reference [42] the MVPA was used for circular antenna arrays optimization
to maximize sidelobe levels reduction.

The flowchart of the MVPA is shown in Figure 3a. The inputs needed by the MVPA are:

• The objective function (noted as ObjFunction) which can be a mathematical explicit function or a
more complicated one;

• The dimension of the problem (noted as ProblemSize) which represents the number of design
variables of the treated problem;

• The number of players which is equivalent to the population size in other population-based
optimization algorithms (noted as PlayersSize);

• The number of teams in the league noted as (TeamsSize); and
• The maximum number of fixtures (noted as MaxNFix) which is equivalent to the maximum

number of iterations in other optimization algorithms.

The main output of the MVPA is the best solution obtained for the treated problem i.e., the MVP.
However, the other outputs can easily be obtained, for example, the value of the best objective function
obtained or the evaluation of this last value during the optimization process.

After reading the inputs, the MVPA starts with the initialization step as shown in Figure 3a. In this
first step the players (i.e., solutions) are spread out randomly within the search space. In the second
step, the players are regrouped to form TeamsSize teams followed by the most important step for the
MVPA, the competition step.

The pseudocode of the competition step is given below:

for i = 1: TeamsSize

Teams selection
TEAMi = Select the team number i from the league’s teams
TEAMj = Randomly select another team j from the league’s teams where
j , i

Individual competition
TEAMi = TEAMi +rand×

(
FranchisePlayeri − TEAMi

)
+2 × rand × (MVP− TEAMi)

Collective competition

if TEAMi wins against TEAMj
TEAMi = TEAMi + rand×(
TEAMi − FranchisePlayerj

)
else

TEAMi = TEAMi + rand×(
FranchisePlayerj − TEAMi

)
end if

end for

The competition step, as detailed in the pseudocode given above, starts with the selection of the
first team TEAMi (all teams are selected one after another as for the first team) and the opponent team
TEAMj which is selected randomly from the poll of teams where j , i. In the individual competition
phase, players compete and try individually to become their teams’ franchise players (the best player
of their teams) and then to win the MVP trophy i.e., to become the league’s best player. In the collective
competition phase, TEAMi plays against TEAMj and the players of TEAMi are updated based on the
results of the game. Teams aim to win the championship.

After the competition step, the players are checked and if any player is outside the search space,
it is brought back to the crossed bound. This step is called check bounds in the flowchart of Figure 3a.
Then, the objective function values of the players are compared to their initial values. If a player improves
in the competition step, he is kept, otherwise the initial player is kept. This is called the greediness step in
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the flowchart of Figure 3a. After that, the last two steps aim to apply elitism and then remove duplicate
players, respectively. Finally, if a predefined stopping criterion (or more generally a set of predefined
criteria) is met, the process stops otherwise returns to Step 3 and iterates again following the same steps.

5.2. Enhanced Most Valuable Player Algorithm

The flowchart of the EMVPA is shown in Figure 3b. The EMVPA has the same structure as the MVPA,
however, for the EMVPA a second league is created and after each iteration the best players of this league
are traded to teams in the first league while the worst players are moved to the second league. As can be
seen from Figure 3b, the EMVPA starts with the initialization step followed by the team formation step
described above. After that, a second league (smaller than the main league) is created. Then, once the
competition and check-bound steps are finished, players are exchanged between the two leagues. In this
step the worst players of the main league are moved to the second league while the best players of the
second league are moved to the first. Finally, the algorithm iterates Steps 4 to 6 until the desired number of
iterations is reached. It is worth mentioning that, steps such as the ‘application of greediness’, ‘application
of elitism’ and ‘remove duplicates’ are removed in the enhanced version of the MVPA.
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6. Results and Discussion

The performance of the EEMS based on the proposed EMVPA is tested using two different microgrid
systems. The obtained results are then compared with the performance of EMS using the MVPA, PSO,
GA, black hole (BH) algorithm, artificial bee colony (ABC), and electromagnetism-like mechanism (EM)
algorithm in order to assess the performance of the proposed EEMS. In the simulation, each algorithm is run
30 times, and the best results of each algorithm are reported. All algorithms (except MVPA and EMVPA)
are initialized with a population size of 50. For MVPA and EMVPA, PlayersSize = 100 and TeamsSize = 20.
Moreover, the maximum number of iterations is set at 1000 for all algorithms and for all cases.

It must be noted that the developed codes and programs are run using MATLAB software on
Core i7 @ 2.50 GHz, 8 GB RAM machine.

6.1. Microgrid #1

The first microgrid investigated in this paper is shown in Figure 4. This microgrid consists of a
load area represented by the IEEE 37-bus test system, five DGs, a CHP, and a storage battery source.

The individual maximum capacities of CHP, each PV, and wind energy plant are 1000 kW, 250 kW,
and 750 kW, respectively. The CHP can run at full capacity for the entire day, i.e., it can provide
1000 kW at any time, however, due to the intermittency of renewable energy sources, the power output
from wind and PV plants is irregular. The power availability for each DG per hour in a running day is
shown in Figure 5 [4]. The battery has a storage capacity of 300 kWh.
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The load demand follows an hourly trend, given in Table 1 [4]. It can be noted that the
load peaks between hour 18 and hour 23. The electricity price (from the main grid) is given in
Table 1. Furthermore, the coefficients of the cost function of different DGs are tabulated in Table 2 [4].
These coefficients are based on the technology used for each DG.
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Figure 5. Hourly availability of power by intermittent DGs [4].

Table 1. Load demand [4] and electricity price per hour.

Hour Load (kW) Electricity Price ($/kWh)

1 1471 0.043
2 1325 0.035
3 1263 0.026
4 1229 0.022
5 1229 0.022
6 1321 0.038
7 1509 0.043
8 1663 0.07
9 1657 0.28

10 1643 0.744
11 1643 0.744
12 1652 0.744
13 1666 0.28
14 1639 0.744
15 1642 0.372
16 1640 0.363
17 1676 0.112
18 1920 0.077
19 2214 0.065
20 2382 0.079
21 2382 0.235
22 2327 0.1
23 2174 0.056
24 1903 0.048
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Table 2. Cost coefficients of DG [4].

Plant WP1 WP2 WP3 PV1 PV2 CHP

α 0.0027 0.0028 0.0026 0.0055 0.0055 0.0083
β 17.83 17.54 17.23 29.3 29.58 75.73
γ 4.46 4.45 4.44 4.45 4.46 5.21

6.1.1. Case 1 (Scenario 1)

It is assumed that renewable energy sources will never run out and, therefore, the microgrid will
never need to rely on battery storage, virtual power plants, or the utility grid. The optimization results
for the first scenario are presented in Table 3. In this table, the first column represents the hour of the
day, the second set of columns represent the power of each unit, the third set of columns represents the
cost needed to generate the required power for each unit, and the last column represents the total cost
of generating the required load at each hour.

Figure 6 shows the optimal energy management among all DGs as optimized by the EMVPA,
MVPA, PSO, GA, BH, ABC, and EM, over the course of 24 hours. Basically, these graphs indicate the
power produced by each DG at a given hour. It can be noted that for all algorithms, the sum of power
produced by all DGs equals the load demand, maintaining the load demand balance.

The total costs per hour obtained by the EMS using different algorithms are given in detail in
Table 4 which are also illustrated in Figure 7. The last row of this table gives the total cost for 24 hours.
Total cost obtained using the EMVPA is $1184.18, which is the lowest among the tested algorithms.
The second-best algorithm for Case 1 is PSO which gives a total cost of $1230.709, while the third
algorithm, the ABC, gives a total cost of $1323.594. It can also be seen from Table 4 that the EMVPA
achieved better results at any hour, which gives the minimum cost of EEMS, being the best power
system scheduling solution at any instant.
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Table 3. Optimal energy management (powers and costs) obtained by the EEMS using EMVPA for Case 1.

Hour
Power (kW) Cost ($)

Total Cost ($)
WP1 WP2 WP3 PV1 PV2 CHP WP1 WP2 WP3 PV1 PV2 CHP

1 351 690 430 0 0 0 10.719 16.554 11.849 0 0 0 39.122
2 615 710 0 0 0 0 15.426 16.905 0 0 0 0 32.331
3 563 700 0 0 0 0 14.499 16.729 0 0 0 0 31.229
4 529 700 0 0 0 0 13.893 16.729 0 0 0 0 30.622
5 649 580 0 0 0 0 16.033 14.624 0 0 0 0 30.657
6 471 680 170 0 0 0 12.859 16.378 7.369 0 0 0 36.606
7 478 680 351 0 0 0 12.983 16.378 10.488 0 0 0 39.850
8 428 700 535 0 0 0 12.092 16.729 13.659 0 0 0 42.480
9 422 735 500 0 0 0 11.985 17.343 13.056 0 0 0 42.384
10 383 750 510 0 0 0 11.289 17.607 13.228 0 0 0 42.124
11 440 690 513 0 0 0 12.306 16.554 13.280 0 0 0 42.139
12 615 667 370 0 0 0 15.426 16.150 10.815 0 0 0 42.392
13 649 642 375 0 0 0 16.033 15.712 10.902 0 0 0 42.646
14 682 562 200 147 48 0 16.621 14.308 7.886 8.757 5.880 0 53.453
15 702 655 0 135 150 0 16.978 15.940 0 8.406 8.897 0 50.221
16 715 656 24.950 122 122.050 0 17.210 15.957 4.870 8.025 8.070 0 54.132
17 697 661 140 97 81 0 16.889 16.045 6.852 7.292 6.856 0 53.934
18 713 666 385 0 0 156 17.174 16.133 11.074 0 0 17.024 61.405
19 725 660 620 0 0 209 17.388 16.028 15.124 0 0 21.038 69.577
20 650 672 660 0 0 400 16.051 16.238 15.813 0 0 35.503 83.605
21 678 670 710 0 0 324 16.550 16.203 16.675 0 0 29.747 79.175
22 682 665 750 0 0 230 16.621 16.115 17.364 0 0 22.628 72.729
23 691 645 700 0 0 138 16.782 15.764 16.502 0 0 15.661 64.709
24 504 680 719 0 0 0 13.447 16.378 16.830 0 0 0 46.655
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Table 4. Total cost per hour obtained by the EMS using tested algorithms for Case 1.

EMVPA MVPA PSO GA BH ABC EM

1 39.122 39.172 39.122 46.999 44.557 39.241 47.422
2 32.331 36.590 32.331 42.318 46.246 36.588 41.890
3 31.229 35.653 31.278 42.729 49.520 36.566 43.255
4 30.622 30.645 30.622 41.653 42 35.042 41.267
5 30.657 30.663 30.657 50.974 45.034 35.096 40.695
6 36.606 45.128 36.613 46.338 45.977 43.162 42.595
7 39.850 39.938 39.953 58.745 51.906 44.410 50.187
8 42.480 55.093 47.158 58.655 60.901 47.079 57.563
9 42.384 53.346 47.349 59.139 58.794 52.454 58.157

10 42.124 52.650 47.188 59.429 59.710 46.973 58.546
11 42.139 55.690 46.647 58.287 65.156 48.325 59.173
12 42.392 53.266 48.685 60.439 59.135 53.752 59.903
13 42.646 47.844 47.279 57.679 61.281 53.768 57.399
14 53.453 63.523 53.453 63.713 68.693 65.085 92.087
15 50.221 65.096 53.757 68.912 64.259 54.586 59.931
16 54.132 65.927 54.132 66.193 68.696 59.799 59.456
17 53.934 70.984 59.726 66.129 81.586 62.367 78.585
18 61.405 73.136 68.308 91.969 82.236 64.055 91.664
19 69.577 81.472 69.578 97.152 97.700 77.199 98.356
20 83.605 84.283 83.605 88.555 97.660 84.494 104.155
21 79.175 79.272 79.175 92.646 92.320 79.412 104.322
22 72.729 74.843 72.729 79.393 80.878 76.817 94.007
23 64.709 68.251 64.709 91.059 77.448 66.764 82.545
24 46.655 46.694 46.655 66.587 53.742 60.560 54.157

Total cost ($) 1184.177 1349.159 1230.709 1555.692 1555.435 1323.594 1577.317
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6.1.2. Case 2 (Scenario 2)

The load given in Table 1 is assumed to be increased by 10% and the CHP is not operated. Table 5
provides the optimization results for this case. It can be seen that the EEMS buys power from the main
grid only when there is a deficit of power (in hour 5 and hour 6, for instance). In such cases all DGs
must run at their maximum capacity.

The results obtained using the EMVPA are compared with the results optimized by the other
algorithms as shown in Table 6 and Figure 8. The total cost obtained by the EEMS using the EMVPA is
the lowest (equally with PSO) among the tested algorithms at $1132.384. The initial version of the
MVPA ranks third at an operating cost of $1137.679.

6.1.3. Case 3 (Scenario 3)

The operating strategy of this case is identical to that of the case using Scenario 2 in the
previous subsection. However, this case differs from Case 2 in that the storage capability is available.
The optimization of the microgrid under Scenario 3 was completed and the results are provided in
Table 7. It can be noted that when there is a surplus of power from the DGs, the battery is charged on
an hourly basis, as for hour 1 and hour 2. However, the battery cannot exceed its maximum charging
capacity. For this reason, the battery is no longer being charged in hour 3 and hour 4. Moreover, when
there is a deficit of power from the DGs sources, in hour 6 for example, the battery is discharged
and used as a second source of power after DGs. However, when the DGs and battery together
cannot supply the load, the power is bought from the grid; hours 19 and 20 serve as an example for
this situation.

The total costs per hour obtained by the EMS using the investigated algorithms are tabulated in
Table 8 and sketched in Figure 9. The total cost obtained using the EMVPA is $1144.694, which is the
lowest cost among the algorithms. The second-best algorithm for Case 3 is the PSO which gives a total
cost of $1144.695, whilst the third algorithm is the MVPA, which has a total cost of $1154.013. It can also
be seen from Table 8 that the EMVPA achieved better results than the tested algorithms at any hour.
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Table 5. Optimal energy management (powers and costs) obtained by the EEMS using EMVPA for Case 2.

Hour Power (kW) Cost ($)
Total Cost ($)

WP1 WP2 WP3 PV1 PV2 Grid WP1 WP2 WP3 PV1 PV2 Grid

1 498.100 690 430 0 0 0 13.342 16.554 11.849 0 0 0 41.745
2 302.500 710 445 0 0 0 9.854 16.905 12.108 0 0 0 38.866
3 689.300 700 0 0 0 0 16.752 16.729 0 0 0 0 33.481
4 651.900 700 0 0 0 0 16.085 16.729 0 0 0 0 32.814
5 670 580 21 0 0 80.900 16.407 14.624 4.802 0 0 1.554 35.833
6 560 680 170 0 0 43.100 14.446 16.378 7.369 0 0 1.412 38.193
7 628.900 680 351 0 0 0 15.674 16.378 10.488 0 0 0 42.541
8 594.300 700 535 0 0 0 15.057 16.729 13.659 0 0 0 45.445
9 587.700 735 500 0 0 0 14.940 17.343 13.056 0 0 0 45.339
10 547.300 750 510 0 0 0 14.219 17.607 13.228 0 0 0 45.054
11 604.300 690 513 0 0 0 15.236 16.554 13.280 0 0 0 45.069
12 720 667 370 60.200 0 0 17.299 16.150 10.815 6.214 0 0 50.479
13 710 642 375 105.600 0 0 17.121 15.712 10.902 7.544 0 0 51.278
14 682 562 200 147 166 45.900 16.621 14.308 7.886 8.757 9.370 29.668 56.943
15 702 655 75 135 155 84.200 16.978 15.940 5.732 8.406 9.045 27.212 56.101
16 715 656 25 122 135 151 17.210 15.957 4.871 8.025 8.453 47.606 54.516
17 697 661 140 97 110 138.600 16.889 16.045 6.852 7.292 7.714 13.469 54.792
18 713 666 385 62 86 200 17.174 16.133 11.074 6.267 7.004 13.334 57.652
19 725 660 620 20 50 360.400 17.388 16.028 15.124 5.036 5.939 20.363 59.514
20 650 672 660 0 0 638.200 16.051 16.238 15.813 0 0 43.991 48.102
21 678 670 710 0 0 562.200 16.550 16.203 16.675 0 0 114.987 49.428
22 682 665 750 0 0 462.700 16.621 16.115 17.364 0 0 40.260 50.101
23 691 645 700 0 0 355.400 16.782 15.764 16.502 0 0 17.269 49.049
24 694.300 680 719 0 0 0 16.841 16.378 16.830 0 0 0 50.049
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Table 6. Total cost per hour obtained by the EMS using tested algorithms for Case 2.

EMVPA MVPA PSO GA BH ABC EM

1 41.745 41.745 41.745 41.754 41.764 41.745 41.748
2 38.866 38.867 38.866 38.872 38.912 38.866 38.888
3 33.481 33.481 33.481 37.806 37.819 33.486 37.840
4 32.814 32.814 32.814 32.827 37.241 32.834 37.240
5 35.833 35.833 35.833 35.833 35.781 35.833 35.833
6 38.193 38.193 38.193 38.193 38.105 38.193 38.193
7 42.541 42.541 42.541 47.021 47.038 42.554 47.098
8 45.445 45.445 45.445 54.414 54.656 50.026 54.556
9 45.339 45.339 45.339 54.746 54.808 50.601 55.134

10 45.054 49.869 45.054 54.695 54.656 50.797 55.212
11 45.069 45.088 45.069 54.735 54.918 50.781 54.744
12 50.479 50.484 50.479 55.396 56.027 55.402 55.082
13 51.278 51.735 51.278 55.893 56.615 55.950 55.756
14 56.943 56.943 56.943 56.931 56.233 56.943 56.943
15 56.101 56.101 56.101 56.093 55.409 56.101 56.101
16 54.516 54.516 54.516 54.509 53.884 54.516 54.516
17 54.792 54.792 54.792 54.786 54.389 54.792 54.792
18 57.652 57.652 57.652 57.644 56.778 57.652 57.652
19 59.514 59.514 59.514 59.514 58.866 59.514 59.514
20 48.102 48.102 48.102 48.102 47.878 48.102 48.102
21 49.428 49.428 49.428 49.428 49.201 49.428 49.428
22 50.101 50.101 50.101 50.101 50.021 50.101 50.101
23 49.049 49.049 49.049 49.049 48.865 49.049 49.049
24 50.049 50.049 50.049 50.049 49.839 50.049 50.050

Total cost ($) 1132.384 1137.679 1132.384 1188.392 1189.702 1163.316 1193.572
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Table 7. Optimal energy management (powers and costs) obtained by the EMS using EMVPA for Case 3.

Hour
Power (kW) Cost ($)

Total Cost ($)
WP1 WP2 WP3 PV1 PV2 Battery Grid WP1 WP2 WP3 PV1 PV2 Grid

1 665.0 690.0 430.0 0.0 0.0 0.0 0.0 16.318 16.554 11.849 0 0 0 44.721
2 435.6 710.0 445.0 0.0 0.0 166.9 0.0 12.227 16.905 12.108 0 0 0 41.240
3 689.3 700.0 0.0 0.0 0.0 300.0 0.0 16.752 16.729 0 0 0 0 33.481
4 651.9 700.0 0.0 0.0 0.0 300.0 0.0 16.085 16.729 0 0 0 0 32.814
5 670.0 580.0 21.0 0.0 0.0 300.0 0.0 16.407 14.624 4.802 0 0 0 35.833
6 560.0 680.0 170.0 0.0 0.0 219.1 0.0 14.446 16.378 7.369 0 0 0 38.193
7 672.0 680.0 351.0 0.0 16.0 176.0 0.0 16.443 16.378 10.488 0 4.933 0 48.243
8 659.2 700.0 535.0 0.0 0.0 235.1 0.0 16.215 16.729 13.659 0 0 0 46.603
9 587.7 735.0 500.0 0.0 0.0 300.0 0.0 14.940 17.343 13.056 0 0 0 45.339

10 547.3 750.0 510.0 0.0 0.0 300.0 0.0 14.219 17.607 13.228 0 0 0 45.054
11 604.3 690.0 513.0 0.0 0.0 300.0 0.0 15.236 16.554 13.280 0 0 0 45.069
12 720.0 667.0 370.0 60.2 0.0 300.0 0.0 17.299 16.150 10.815 6.214 0 0 50.479
13 710.0 642.0 375.0 105.6 0.0 300.0 0.0 17.121 15.712 10.902 7.544 0 0 51.278
14 682.0 562.0 200.0 147.0 166.0 300.0 0.0 16.621 14.308 7.886 8.757 9.370 0 56.943
15 702.0 655.0 75.0 135.0 155.0 254.1 0.0 16.978 15.940 5.732 8.406 9.045 0 56.101
16 715.0 656.0 25.0 122.0 135.0 169.9 0.0 17.210 15.957 4.871 8.025 8.453 0 54.516
17 697.0 661.0 140.0 97.0 110.0 18.9 119.7 16.889 16.045 6.852 7.292 7.714 11.632 54.792
18 713.0 666.0 385.0 62.0 86.0 0.0 200.0 17.174 16.133 11.074 6.267 7.004 13.334 57.652
19 725.0 660.0 620.0 20.0 50.0 0.0 360.4 17.388 16.028 15.124 5.036 5.939 20.363 59.514
20 650.0 672.0 660.0 0.0 0.0 0.0 638.2 16.051 16.238 15.813 0 0 43.991 48.102
21 678.0 670.0 710.0 0.0 0.0 0.0 562.2 16.550 16.203 16.675 0 0 114.987 49.428
22 682.0 665.0 750.0 0.0 0.0 0.0 462.7 16.621 16.115 17.364 0 0 40.260 50.101
23 691.0 645.0 700.0 0.0 0.0 0.0 355.4 16.782 15.764 16.502 0 0 17.269 49.049
24 700.0 680.0 719.0 0.0 0.0 0.0 0.0 16.942 16.378 16.830 0 0 0 50.151
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Table 8. Total costs per hour obtained by the EMS using tested algorithms for Case 3.

EMVPA MVPA PSO GA BH ABC EM

1 44.721 44.721 44.721 44.721 44.594 44.721 44.721
2 41.240 41.240 41.240 41.350 41.412 41.312 41.296
3 33.481 33.482 33.481 37.842 37.829 37.824 37.921
4 32.814 32.814 32.814 37.258 37.238 32.824 37.257
5 35.833 35.833 35.833 35.833 35.757 35.833 35.833
6 38.193 38.193 38.193 38.193 38.059 38.193 38.193
7 48.243 48.243 48.243 48.242 47.849 48.243 48.243
8 46.603 46.603 46.603 55.931 56.656 51.129 55.627
9 45.339 45.339 45.339 54.533 54.662 50.313 55.305

10 45.054 49.737 45.054 55.163 54.434 45.081 55.116
11 45.069 45.133 45.069 54.810 54.999 50.330 55.587
12 50.479 50.561 50.479 56.093 56.304 51.404 55.815
13 51.278 55.767 51.278 56.621 56.649 52.049 56.061
14 56.943 56.943 56.943 56.938 56.072 56.943 56.943
15 56.101 56.101 56.101 56.092 55.302 56.101 56.101
16 54.516 54.516 54.516 54.509 53.931 54.516 54.516
17 54.792 54.792 54.792 54.786 54.389 54.792 54.792
18 57.652 57.652 57.652 57.644 56.778 57.652 57.652
19 59.514 59.514 59.514 59.514 58.866 59.514 59.514
20 48.102 48.102 48.102 48.102 47.878 48.102 48.102
21 49.428 49.428 49.428 49.428 49.201 49.428 49.428
22 50.101 50.101 50.101 50.101 50.021 50.101 50.101
23 49.049 49.049 49.049 49.049 48.865 49.049 49.049
24 50.150 50.151 50.151 50.151 49.839 50.151 50.151

Total cost ($) 1144.694 1154.013 1144.695 1202.903 1197.586 1165.605 1203.325

Figure 9. Total cost per hour obtained by the EMS using tested algorithms for Case 3.
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6.2. Microgrid #2

To assess the performance of the proposed EEMS on a large-scale test system, a second microgrid
is considered as shown in Figure 10. The microgrid consists of a load area represented by the 141-bus
test system with 14 DGs, a CHP, and a storage battery source. The data used for the second system is
given in Tables 9 and 10.

Sustainability 2019, 11, x FOR PEER REVIEW 21 of 28 

6.2. Microgrid #2 

To assess the performance of the proposed EEMS on a large-scale test system, a second microgrid 
is considered as shown in Figure 10. The microgrid consists of a load area represented by the 141-bus 
test system with 14 DGs, a CHP, and a storage battery source. The data used for the second system is 
given in Table 9 and Table 10. 

 
Figure 10. Schematic of power system with fourteen DGs and 141-node test feeder. 

Figure 10. Schematic of power system with fourteen DGs and 141-node test feeder.



Sustainability 2019, 11, 3839 21 of 28

Table 9. Load demand [43] and electricity prices per hour.

Hour Load (kW) Electricity Price ($/kW h)

1 3482 0.043
2 2946 0.035
3 2761 0.026
4 2558 0.022
5 2541 0.022
6 2616 0.038
7 3635 0.043
8 4339 0.07
9 4748 0.28

10 5100 0.744
11 5231 0.744
12 5306 0.744
13 5454 0.28
14 5215 0.744
15 5363 0.372
16 5383 0.363
17 5198 0.112
18 5051 0.077
19 4496 0.065
20 5275 0.079
21 5479 0.235
22 5536 0.1
23 5370 0.056
24 4611 0.048

Table 10. Cost coefficients of DG.

Plant WP1 WP2 WP3 WP4 WP5 WP6 PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 CHP

α 0.0027 0.0028 0.0026 0.0028 0.0026 0.0026 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0083
β 17.83 17.54 17.23 17.54 17.23 17.23 29.3 29.58 29.3 29.58 29.3 29.58 29.3 29.58 75.73
γ 4.46 4.45 4.44 4.45 4.44 4.44 4.45 4.46 4.45 4.46 4.45 4.46 4.45 4.46 5.21

Case 4 (Scenario 3)

This case simulates the operating strategy of Scenario 3 in Figure 2, as analyzed in Case 3 of
microgrid #1. The optimization results obtained using the EMVPA are provided in detail in Tables 11
and 12. It can be seen from Table 11 that when the capacity of the DGs is greater than the load,
the battery is charged in hour 1 and hour 18. The grid is needed only when the DGs and battery cannot
supply the requested power as given in hours 15, 16, and 17.

The total costs obtained by the EMS using the investigated algorithms are shown in Table 13.
A simple comparison between the different algorithms shows that the EMVPA has the lowest total
cost of $ 3883.633 followed by the PSO and the ABC, which give $3940.981 and $3989.233, respectively.
This result again demonstrates the superiority of the EEMS based on the EMVPA compared to the
other algorithms.
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Table 11. Optimal energy management (powers) obtained by the EMS using EMVPA for Case 4.

Hour WP1 WP2 WP3 WP4 WP5 WP6 PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 CHP Battery Grid

1 665 689.972 430 690 690 430 0 0 0 0 0 0 0 0 187.028 0 0
2 0 710 437.592 648.137 705.271 445 0 0 0 0 0 0 0 0 0 300 0
3 661 700 0 700 700 0 0 0 0 0 0 0 0 0 0 300 0
4 458 700 0 700 700 0 0 0 0 0 0 0 0 0 0 300 0
5 670 579.350 0 580 580 0 0 0 0 0 0 0 0 0 131.650 300 0
6 406.007 679.993 170 680 680 0 0 0 0 0 0 0 0 0 0 300 0
7 672 672.772 317 679.755 680 351 0 14.855 0 15.973 0 0 0 0 231.646 300 0
8 668 700 535 700 700 535 10 72 0 72 0 0 0 0 347 300 0
9 723 735 496.003 733.011 735 499.993 57.667 91.517 0 0 0 16.097 0 91.964 568.749 300 0
10 715 750 506.635 750 749.441 510 99.480 117.569 0 118 41.036 110.046 19.780 117.904 495.109 300 0
11 674.770 689.972 513 690 689.985 513 123 142 123 142 123 0 100.213 142 565.060 300 0
12 720 667 370 667 667 370 140.897 144.450 139.038 156 140.996 156 141 0 826.619 300 0
13 710 642 375 642 642 375 149 166 149 166 149 166 149 160.826 813.174 300 0
14 682 562 200 562 562 200 147 166 147 166 147 166 147 166 1000 300 0
15 702 655 75 655 655 75 135 155 135 155 135 155 135 155 1000 105 281
16 715 656 25 656 656 25 122 135 122 135 122 135 122 135 1000 0 622
17 697 661 140 661 661 140 97 110 97 110 97 110 97 110 1000 0 410
18 713 666 385 666 666 385 62 86 62 86 62 86 62 86 1000 0 0
19 554.010 660 620 660 660 619.991 0 0 0 0 0 0 0 0 1000 22 0
20 650 672 660 672 672 660 0 0 0 0 0 0 0 0 1000 300 0
21 678 670 710 670 670 710 0 0 0 0 0 0 0 0 1000 11 360
22 682 665 750 665 665 750 0 0 0 0 0 0 0 0 1000 0 359
23 691 645 700 645 645 700 0 0 0 0 0 0 0 0 1000 0 344
24 700 680 719 680 680 719 0 0 0 0 0 0 0 0 733 0 0
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Table 12. Optimal energy management (costs) obtained by the EMS using EMVPA for Case 4.

Hour WP1 WP2 WP3 WP4 WP5 WP6 PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 CHP Grid Total Cost ($)

1 16.318 16.553 11.849 16.554 16.554 11.849 0 0 0 0 0 0 0 0 19.374 0 109.052
2 0 16.905 11.980 15.819 16.822 12.108 0 0 0 0 0 0 0 0 0 0 73.634
3 16.247 16.729 0 16.729 16.729 0 0 0 0 0 0 0 0 0 0 0 66.435
4 12.627 16.729 0 16.729 16.729 0 0 0 0 0 0 0 0 0 0 0 62.815
5 16.407 14.613 0 14.624 14.624 0 0 0 0 0 0 0 0 0 15.180 0 75.448
6 11.700 16.378 7.369 16.378 16.378 0 0 0 0 0 0 0 0 0 0 0 68.204
7 16.443 16.252 9.902 16.374 16.378 10.488 0 4.899 0 4.932 0 0 0 0 22.753 0 118.422
8 16.372 16.729 13.659 16.729 16.729 13.659 4.743 6.590 0 6.590 0 0 0 0 31.489 0 143.289
9 17.353 17.343 12.987 17.309 17.343 13.056 6.140 7.167 0 0 0 4.936 0 7.180 48.284 0 169.097
10 17.210 17.607 13.170 17.607 17.597 13.228 7.365 7.938 0 7.951 5.652 7.715 5.030 7.948 42.707 0 188.722
11 16.492 16.553 13.280 16.554 16.554 13.280 8.054 8.660 8.054 8.660 8.054 0 7.386 8.660 48.005 0 198.247
12 17.299 16.150 10.815 16.150 16.150 10.815 8.578 8.733 8.524 9.075 8.581 9.075 8.581 0 67.816 0 216.344
13 17.121 15.712 10.902 15.712 15.712 10.902 8.816 9.370 8.816 9.370 8.816 9.370 8.816 9.217 66.797 0 225.449
14 16.621 14.308 7.886 14.308 14.308 7.886 8.757 9.370 8.757 9.370 8.757 9.370 8.757 9.370 80.948 0 228.778
15 16.978 15.940 5.732 15.940 15.940 5.732 8.406 9.045 8.406 9.045 8.406 9.045 8.406 9.045 80.948 90.814 317.827
16 17.210 15.957 4.871 15.957 15.957 4.871 8.025 8.453 8.025 8.453 8.025 8.453 8.025 8.453 80.948 196.098 417.782
17 16.889 16.045 6.852 16.045 16.045 6.852 7.292 7.714 7.292 7.714 7.292 7.714 7.292 7.714 80.948 39.844 259.545
18 17.174 16.133 11.074 16.133 16.133 11.074 6.267 7.004 6.267 7.004 6.267 7.004 6.267 7.004 80.948 0 221.751
19 14.339 16.028 15.124 16.028 16.028 15.123 0 0 0 0 0 0 0 0 80.948 0 173.617
20 16.051 16.238 15.813 16.238 16.238 15.813 0 0 0 0 0 0 0 0 80.948 0 177.339
21 16.550 16.203 16.675 16.203 16.203 16.675 0 0 0 0 0 0 0 0 80.948 73.631 253.087
22 16.621 16.115 17.364 16.115 16.115 17.364 0 0 0 0 0 0 0 0 80.948 31.237 211.880
23 16.782 15.764 16.502 15.764 15.764 16.502 0 0 0 0 0 0 0 0 80.948 16.715 194.743
24 16.942 16.378 16.830 16.378 16.378 16.830 0 0 0 0 0 0 0 0 60.725 0 160.462
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Table 13. Total cost per hour obtained by the EMS using tested algorithms for Case 4.

EMVPA MVPA PSO GA BH ABC EM

1 109.052 131.097 109.051 149.420 140.238 119.882 146.214
2 73.634 88.327 73.632 104.006 93.852 88.178 87.882
3 66.435 75.267 75.082 104.293 99.423 86.126 108.663
4 62.815 81.638 71.697 101.301 93.807 83.835 97.278
5 75.448 109.561 87.637 105.112 106.625 83.099 112.875
6 68.204 100.136 68.226 96.122 93.333 72.623 88.867
7 118.422 128.738 126.987 158.330 154.699 124.681 165.397
8 143.289 174.430 151.824 189.479 190.573 158.646 195.657
9 169.097 179.052 173.734 210.983 203.663 174.360 206.838

10 188.722 204.723 186.305 209.471 216.408 181.923 217.271
11 198.247 208.734 197.381 222.841 221.767 194.220 222.691
12 216.344 220.478 219.896 229.937 220.997 213.539 226.406
13 225.449 228.701 229.613 234.735 220.379 225.563 234.122
14 228.778 228.778 228.778 225.685 210.226 228.778 228.778
15 227.013 227.013 227.013 224.785 213.111 227.013 227.013
16 221.684 221.684 221.684 219.751 206.573 221.684 221.684
17 219.701 219.701 219.701 217.352 206.913 219.701 219.701
18 221.751 221.751 221.751 219.166 208.851 221.751 221.751
19 173.617 187.769 175.060 209.117 208.643 187.023 208.273
20 177.339 177.339 177.339 177.125 171.369 177.339 177.339
21 179.457 179.457 179.457 179.331 173.082 179.457 179.457
22 180.644 180.644 180.644 180.422 173.329 180.644 180.644
23 178.028 178.028 178.028 177.809 169.839 178.028 178.028
24 160.462 160.502 160.462 169.719 174.178 161.139 164.167

Total cost ($) 3883.633 4113.548 3940.981 4316.291 4171.878 3989.233 4316.997

6.3. Daily Cost Reduction Analysis

Table 14 presents the percentage of daily cost reduction obtained using EMVPA compared with
the remaining algorithms. It can be observed from this table that the EMVPA presents high-cost
reductions for Case 1 and Case 4 and moderate cost reductions for Case 2 and Case 3. The highest cost
reduction percentage is obtained for Case 1 compared to the EM. For Case 2 and Case 3, the results of
the EMVPA and the PSO are almost identical. These results confirm the superiority of the EMVPA
compared with the other algorithms at optimizing the energy management of microgrids.

Table 14. Comparison of daily cost reduction using EMVPA with the other algorithms.

Case MVPA PSO GA BH ABC EM

Case 1 12.229% 3.781% 23.881% 23.868% 10.533% 24.925%
Case 2 0.465% 0.000% 4.713% 4.818% 2.659% 5.126%
Case 3 0.808% 0.000% 4.839% 4.417% 1.794% 4.872%
Case 4 5.589% 1.455% 10.024% 6.909% 2.647% 10.039%

Moreover, it is worth mentioning that, for microgrid #1 the calculation speed of the EMVPA is
around 12 s per hour while for the calculation speed for microgrid #2 is around 23 s per hour.

7. Conclusions

In this paper, an EEMS based on an enhanced version of the most valuable player algorithm
is proposed and developed to optimize the operation of a microgrid by minimizing the operating
cost. The EEMS aims to schedule different sources of energy based on a selected scenario. In the first
scenario, the power generated from DGs is always greater than the requested load. In the second
scenario, the EEMS can buy energy from the grid only when the DGs cannot supply the requested load.
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In the last scenario, a battery storage is added to the microgrid, which is the second source of power
after DGs, while the main grid is the last option. It is obvious that more scenarios can be added to the
EEMS in the future.

In comparison to other optimization algorithms, the proposed EEMS using the EMVPA achieves
better results and can determine the optimal scheduling of different DGs, battery storage, and the power
needed from the grid based on the selected scenario. Moreover, four cases for two different microgrids
were investigated. For Case 1, the daily cost reduction varies from 3.781% for the PSO (the second-best
method after the EMVPA) to 24.925% for the EM (the worst method for this case). Likewise, for Case 2,
it varies from 0% for the PSO to 5.126% for the EM. For Case 3, it varies from 0% for the PSO to 4.872%
for the EM. Finally, for Case 4, the daily cost reduction varies from 1.455% for the PSO to 10.039%
for the EM. Furthermore, it is found that the EEMS using the proposed EMVPA provides the most
cost-effective solution for each hour ensuring its efficacy and robustness. Since energy markets are
moving towards real-time pricing, such a modified approach is highly desirable to effectively address
power-sharing problems.

The optimization results using the proposed method is expected to give an optimal energy
management system strategy, which will assist energy practitioners in managing generation units
and energy storage devices in renewable energy based microgrids. Furthermore, the results of this
study may have implications for future implementation of microgrid projects and renewable energy
resources development in general.

Further research is recommended in the following areas: Additional scenarios can be investigated
and the influence of the efficiency of forecasting models can be assessed, while unbalanced microgrid
systems can also be investigated. Also, uncertainty modeling of load demands and renewable
generation can be included in these models.
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Nomenclature

ABC Artificial bee colony
AFSA Artificial fish swarm algorithm
BB–BC Big bang-big crunch
BH Black hole algorithm
C Cost in $
CHP Combined heat and power
DE Differential evolution
DG Distributed generation
EM Electromagnetism-like mechanism
EMS Energy management system
EMVPA Enhanced most valuable player algorithm
GA Genetic algorithm
HS Harmony search
MaxNFix Maximum number of fixtures which is equivalent to the maximum number of iterations
MDP Markov decision process
MILP Mixed integer linear programming
MVPA Most valuable player algorithm
NSGA Non-dominated sorting genetic algorithm
ObjFunction Objective function
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P Power generated in MW
PBattery(t) Power of storage batteries at instant (t)
PCharge max(t) Maximum charging capacity of the batteries at time (t)
PDischarge min(t) Minimum discharging value allowed for the batteries at time (t)
PGrid(t) Power from the grid at instant (t)
Pi max(t) Maximum value of power of ith DG at instant (t)
Pi min(t) Minimum value of power of ith DG at instant (t)
PL(t) Total power required by the load at instant (t)
PlayersSize Number of players which is equivalent to the population size
ProblemSize Dimension of the problem
PSO Particle swarm optimization
PV Photovoltaic
TeamsSize Number of teams in the league
WCA Water cycle algorithm
α, β, and γ Cost coefficients
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