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Abstract: Given the current lack of accessibility research on road networks in 36 major cities in China,
the accessibility and its spatial difference were measured by using space syntax and Moran index. The
purpose is to provide an important decision-making basis for the Chinese government to grasp the
accessibility level of China’s urban roads in general and formulate urban traffic development policies.
The results show that the mean value of the global integration average is only 1.0009, indicating that
the accessibility level is not optimistic in general. The accessibility of 36 major cities was divided into
four levels: very low, low, high, and very high. Only four cities, namely Beijing, Shijiazhuang, Xi’an,
and Zhengzhou, were at a very high level. The spatial differences of accessibility presented a spatial
pattern of “middle-high, east-middle, and west-low”. The global integration average, intelligibility,
and synergy had significant global spatial autocorrelation, while the local spatial agglomeration
distributions of these three indexes were dominated by high-high types. The five cities of Beijing,
Shijiazhuang, Hohhot, Taiyuan, and Zhengzhou constituted the core area of high-value clustering of
local spatial autocorrelation and presented a spatial form of inverted “T” shape. The research still
has some limitations. The reasons for the low accessibility of developed cities, such as Guangzhou
and Nanjing, are worth further analysis. Besides, the main possible influencing factors affecting
accessibility, such as urban road density and spatial form, are also worthy of further analysis.
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1. Introduction

Road network is the backbone of urban space development and construction by supporting the
flow of people and vehicles as the basic channel; it plays a critical and core role in urban economic and
social development. Since Hansen first proposed the concept of traffic “accessibility” in 1959, that is,
the size of interaction chance between nodes in road network and travel convenience from departure to
destination [1], traffic accessibility research has rapidly become an important part of urban and regional
planning, traffic planning, urban geography, traffic geography, and other related disciplines [2]; it is
also a core index to evaluate the degree of traffic network accessibility, and the higher the value, the
better the connectivity of the road network will be [3]. If the accessibility of urban road network is
worse, it can lead to urban congestion and large emissions of automobile exhaust, and even increase the
risk of air pollution. This poses a serious challenge to the sustainable development of urban ecological
environment. On the other hand, accessibility reflects the relative location value of a certain location
within a city and the convenience of integration into social and economic activities from the perspective
of economic and social development [4]. The development of the urban economy and society is
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inseparable from the flow of people, vehicles, and various material resources in space. Without the
support of the urban road network, the process of production, consumption, and transportation in the
urban economy and society cannot be successful. If the accessibility of urban road network is worse,
it will increase the time cost, transaction cost, and production cost of travel and transportation, which
will reduce the opportunity of economic and social exchanges among different people and regions,
and ultimately reduce the operational efficiency of the urban economic and social system and the
ability of the city to create various kinds of wealth. This also poses a great challenge to the sustainable
development of the urban economy and society. Therefore, the accessibility level of a road network is
an important factor affecting the sustainable development of cities.

To this day, rich achievements have been made in traffic accessibility studies, including basic
theory research [5,6], spatial patterns and evolution analysis of accessibility [7,8], relevant influencing
mechanisms of accessibility [9], and technical method of accessibility measurement [10–12]. Accessibility
measurement is the core issue, and other related research should be based on measurement. Although
accessibility has been thoroughly studied in the past 60 years, it has not yet been unified in the
accessibility measurement method. The current methods mainly represent accessibility by calculating
the travel time, such as the shortest travel time and the weighted average travel time [13]. Since the
1980s, Bill Hiller has put forward and developed the theory of Spatial Syntax [14,15]. After entering
the 21st century, especially since 2010, the theory of Spatial Syntax has been introduced into the study
of accessibility measurement of the urban road network and has achieved rich results [16–21]. As a
new method of accessibility measurement, Spatial Syntax theory provides a new measurement model.
It should be pointed out that the applications of the Space Syntax theory in the accessibility study
mainly focuses on the accessibility of a specific city [22,23], region, and other single space [24,25], but
there is still a lack of comparative study on traffic accessibility of multiple cities, such as 36 major cities
in China in this paper, by using the Space Syntax techniques. Therefore, as a useful exploration and
attempt of accessibility measurement research, this paper applies the Spatial Syntax theory to measure
the accessibility of road networks of 36 major cities in China, which will expand the application scope
of Spatial Syntax theory in accessibility measurement by extending it from a traditional single city to
multiple cities. It is hoped that this will provide a methodological reference for the study of accessibility
measurement based on Spatial Syntax.

For Chinese cities, with the rapid increase of urban area and population, the accessibility level
of China’s urban road network is not optimistic. Urban congestion caused by poor accessibility has
become one of the important problems that restrict the sustainable development of Chinese cities.
Automobile exhaust has become one of the main sources of urban air pollution in China, which
has brought serious harm to human health and urban ecological environment [26]. When traffic
congestion occurs, the time of vehicle exhaust emission is greatly prolonged, and air pollution is more
intense. Urban traffic congestion and air pollution show a high degree of correlation [27]. The Chinese
government has attached great importance to the accessibility of urban road networks in recent years.
In February 2016, the Central Committee of the Communist Party of China and the State Council
issued Some Opinions on Further Strengthening the Management of Urban Planning and Construction, which
clearly put forward the need to “form a complete road network and improve road accessibility”; it can
be seen that the accessibility of the urban road network has been highly valued at the national level.

Based on this understanding, this paper presents a study on the accessibility of 36 major cities in
China, using the Space Syntax technology to quantitatively measure the accessibility of each urban
road network, analyze the characteristics of spatial differences of accessibility, and then put forward
strategies and suggestions to improve accessibility. The research can not only enrich the content system
of traffic accessibility research but also provide decision-making information regarding the sustainable
development of urban traffic planning and construction in China. The methods part of the paper gives
the principle and calculation formula of Space Syntax techniques. The case study part analyzes the
road network accessibility level and spatial difference of 36 major cities in China. The conclusion part
gives the research conclusion and points out the future research direction.
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2. Methodology

Providing a physical carrier for human spatial movement is the fundamental purpose of the
urban road network. The relationship between road, space, and people is the focus of accessibility
study; it also constitutes an integrated unity of subjectivity and objectivity. The Space Syntax theory
is a classical theory to explore and characterize this relationship [28–30]. The spatial syntactic
model subtly represents the relationship between roads, space, and people through a series of
measurable quantitative indicators. Commonly used Space Syntax indicators include Ci (Connection),
Ii (Integration), Intelligibility, and Synergy. Where Ci is the connection of the ith cell space, which is
equal to the number of other cell spaces connected with i. The larger the Ci, the closer the relationship
between ith space and other spaces, and the better is the accessibility.

To calculate the Integration degree, the Depth value must be calculated first. The Depth D is an
important intermediate variable for calculating the integration index; it refers to the minimum number
of connection steps (the shortest distance) of a certain unit space to all other unit spaces. The Mean
Depth value MDi is usually used to represent the average minimum number of connecting steps from
unit space i to all other unit spaces, the calculation formula is:

MDi =

n∑
j=1, j,i

di j

n− 1
(1)

where the numerator represents the total Depth value of unit space i, dij represents the Depth of i to j
(j , i), namely the minimum number of connection steps from i to j. The sum of the minimum number
of connection steps from i to all other nodes is the total Depth of i. n is the total number of nodes
in the urban space, and (n − 1) indicates that at most (n − 1) nodes are connected with i. Moreover,
Integration degree Ii is the most commonly used and most effective syntax indicator, and it represents
the degree of aggregation or dispersion between a unit space and all other spaces or parts of space
within a few steps from it. The Integration degree and Mean Depth are greatly affected by the number
of nodes in space. To eliminate the interference of redundant nodes, Space Syntax standardizes Mean
Depth with relative asymmetric value (RAi) and real relative asymmetric value (RRAi).

RAi =
2(MDi − 1)

n− 2
RRAi =

RAi
Dn

(2)

Dn =
2
{
n
[
log2

(
(n+2)

3

)
− 1

]
+ 1

}
(n− 1)(n− 2)

(3)

where MDi is the Mean Depth and n is the total number of nodes in the urban spatial structure. The
reciprocals of RAi and RRAi are used to represent the Global Integration degree Ii and the Local
Integration degree LIi of the unit space I, to conform to the conventional rule of “the larger the value,
the greater the integration degree”, namely:

Ii =
1

RAi
LIi =

1
RRAi

(4)

The degree of Integration reflects the accessibility and convenience of the space unit and the ability
to gather attractive flow and logistics, which in turn reflects the centrality of a unit space relative to the
rest of the unit space. When the degree of Integration is greater than 1, and the value is larger, the
accessibility and agglomeration of the space are stronger, and vice versa. Besides, the Integration core
is also an important concept, which is defined as adding the Integration Ii of all unit spaces to obtain
a total value I, and sorting Ii in descending order, from the maximum value begins to accumulate
downwards, when the accumulated value reaches at least 5% of the total value I, the unit space set
participating in the accumulation at this time can constitute an integrated core. In theory, the integrated
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core has the strongest attraction in the urban space and will be the most accessible area in the urban
transportation network.

There is a correlation between local variables (Ci, LI) and the overall variable (I), that is, space
with good local accessibility has higher overall accessibility. To quantitatively describe the relationship
between part and the whole, Space Syntax provides two evaluation indicators of Intelligibility and
Synergy. Intelligibility is the discriminant coefficient (R2) of the linear fitting equation of Global
Integration (y) and Connection (x). The higher the value, the easier the space is understood by the
person walking through it, and the more it is possible to infer the overall structural features of the
space from the locally acquired spatial connection information (the number of other spaces seen in the
local space that intersect with the space), and the easier it is to form a humanized, recognizable spatial
structure. Synergy is the discriminant coefficient (R2) of the linear fitting equation of Global Integration
degree (y) and Local Integration degree (x). The higher the value, the overall space is perceived by
local space accessibility. The greater the ability to communicate, the more the local spatial structure
helps to establish a global picture of the entire space system. In general, the degree of Intelligibility
and Synergy is greater than 0.5, the Intelligibility and Synergy are better, and vice versa.

The above-mentioned spatial syntactic indicators represent the functional relationship between
the urban road networks and their ability to bring together people flow and vehicles flow, which
further forms the level of urban traffic accessibility. The spatial syntactic indicator is an inherent
attribute of the urban road network. Through revealing this inherent attribute, we can analyze the
social attributes, such as accessibility, convenience, and agglomeration, of urban traffic. Among the
spatial syntactic indicators, connection value is the most critical one. It is the basis of calculating other
syntactic indicators, and its value affects all other syntactic indicators. If the connection value of a
road is greater than 1, it indicates that it is connected to at least one other road. Generally, road with
high connection value has high integration, which is a road network system with good intelligibility,
and vice versa. At the same time, as an objective quantitative value, the Integration degree is the core
index. Like the traditional travel time index, the Integration degree provides a new way to represent
the accessibility level of the urban road network. Generally, if the Integration degree of a road is
greater than 1, it indicates that the level of accessibility is good, and the larger the value, the better the
accessibility. When the Integration degree is less than 1, the accessibility is poor, and the smaller the
value, the worse the accessibility.

In summary, the key to accessibility measurement by using Spatial Syntax lays in calculating the
Integration degree index of each road. The general calculation method and process can be summarized
as follows: Firstly, the Mean Depth value is calculated by formula (1); secondly, the standardized Mean
Depth values are obtained by formula (2) and formula (3); Finally, the formula (4) is applied to calculate
the Global Integration degree Ii and the Local Integration degree LIi, thus realizing the quantitative
measurement on the accessibility of the urban road networks.

3. Study Area and Data

The study presented in this paper took the road networks of the built-up area in the central districts
of 36 major cities in China as the research object, including four municipalities, five municipalities
with independent planning status, and 27 provincial capital cities (See Table 1 for details). These
36 cities have accumulated 23% of the national population with a land area of 5.5% of the national
land size, creating 40% of the national GDP. As a whole, 36 cities are the concentrated representative
of 656 cities in China [31]. Each of them is the central city in the region, even at the national level,
and plays a central leading role in national and regional economic and social development. At the
same time, the road network planning and construction of these 36 cities are also the targets of the
Chinese government’s key monitoring [32], but there is still a lack of quantitative measurement and
comparative analysis of the accessibility of the road networks in these 36 cities.
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Table 1. List of 36 major cities in China.

Types City

Municipalities Beijing, Tianjin, Shanghai, Chongqing

Municipalities with Independent planning status Dalian, Qingdao, Ningbo, Shenzhen, Xiamen

Provincial capital

Shijiazhuang, Taiyuan, Hohhot, Shenyang,
Changchun, Harbin, Nanjing, Hangzhou, Hefei,
Fuzhou, Nanchang, Jinan, Zhengzhou, Wuhan,

Changsha, Guangzhou, Nanning, Haikou, Chengdu,
Guiyang, Kunming, Lhasa, Xi’an, Lanzhou, Yinchuan,

Xining, Urumqi

From the perspective of urban sustainable development, 36 major cities in China, which have
been taken as the research object, are typical and representative. As mentioned above, the accessibility
level of a road network is an important factor affecting the sustainable development of cities. This is
particularly remarkable in 36 cities. Compared with other cities in China, these 36 cities are subject to
different degrees of traffic congestion and air pollution caused by poor accessibility. More importantly,
behind the poor accessibility and traffic congestion is the huge waste of energy and the aggravation
of pollution. “Poor accessibility–Congestion–Waste–Pollution” has formed a vicious circle in these
36 cities. This not only causes the continuous deterioration of the urban ecological environment but
also leads to the decline of various functions of urban economy and society, which has become one
of the main obstacles to the sustainable development of 36 cities. When accessibility is poor, traffic
congestion is more likely to occur and more exhaust will be generated, which can further aggravate
urban air pollution and affect the sustainable development of urban ecological environment. Taking
PM2.5, the most common urban air pollutant in China, as an example, automobile exhaust emissions
have become an important source of PM2.5 in 36 cities. The automobile exhaust emissions in Beijing,
Shanghai, Hangzhou, Jinan, Guangzhou, and Shenzhen are the primary sources of PM2.5, accounting
for 45.0%, 29.2%, 28.0%, 32.6%, 21.7%, and 52.1%, respectively. The automobile exhaust emissions
in Nanjing, Wuhan, Changsha, Ningbo, and Shijiazhuang are the second-largest sources of PM2.5,
accounting for 24.6%, 27.0%, 24.8%, 22.0%, and 15.0% respectively. In the other 25 cities, the proportion
of automobile exhaust emissions to the sources of PM2.5 is all 10% or more [33]. Besides, the poor
accessibility can lead to the decline of the average speed of urban automobiles, thus affecting the
operational efficiency of urban economy and society and bringing about certain economic losses,
which can restrict the sustainable development of urban economy and society. In the central areas of
36 cities, the average speed of automobiles is less than 25 km per hour due to poor accessibility and
congestion, which is much lower than the design speed of 40–60 km per hour of urban roads in China.
Meanwhile, the annual economic loss per capita in 36 cities caused by poor accessibility and congestion
is about 4000–12,000 Yuan, of which Beijing has the largest value of 11,747 Yuan, and Urumqi has
the smallest value of 4273 Yuan [34]. Therefore, using the Space Syntax technology to quantitatively
measure the accessibility of road networks in the 36 major cities and analyze their spatial pattern
characteristics have an important guiding value for the planning and construction of China’s urban
road transportation system and sustainable development. It can provide an important decision-making
basis for the Chinese government to grasp the accessibility level of China’s urban roads in general
and formulate urban traffic development policies. It also provides a reference for other cities’ traffic
accessibility research.

The study adopted the axis map model in Space Syntax analysis. First, the 2018 China Major
Urban Road Network Density Monitoring Report released by the Ministry of Housing and Urban-Rural
Development in April was taken as the basic data source; the road network status map of each city was
extracted; the spatial projection transformation in ArcGIS, spatial correction, and other processing was
performed; then the raster maps of the 36 urban road networks were obtained. Secondly, the axial map
vector data according to the grid map were digitized, and the topology check to ensure that there was
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no independent axis was performed. Finally, after the inspection, according to the spatial syntactic
calculation principle of the above formulas (1)~(4), the spatial syntactic index measurements and their
visual expressions of the 36 urban road networks were obtained; thus the accessibility level of major
urban road networks in China was quantitatively measured.

4. Analysis of Results

4.1. Overall Analysis

The results of the main syntactic indicators of the road networks of the 36 major cities in China
are shown in Table 2. Given a large amount of axis data of the 36 cities, the average of the syntactic
indicators was used in the study to represent the level of accessibility in each city. Further, the
descriptive statistical values of the 36 city syntax indicators calculated according to data in Table 2
are shown in Table 3. At the same time, according to the numerical value of the Global Integration
degree of each road axis, the study used different colors to spatially express it, as shown in Figure 1.
The warmer the color was, the greater the Integration value of the road axis was, and the better was
the accessibility. Whereas the cooler the color was, the smaller the Integration value of the road axis
was, and the worse was the accessibility.

Table 2. The calculation results of the syntactic index of road networks in 36 major cities of China.

Region Cities
Average Value Intelligibility Synergy

Global Integration Local Integration Connection

East area

Beijing 1.7887 2.3187 5.1399 0.4899 0.9073
Shanghai 1.2758 2.1605 4.7064 0.3246 0.5969

Tianjin 1.2496 2.0119 4.4984 0.3755 0.7115
Dalian 0.4523 1.4240 3.0453 0.1040 0.2500

Qingdao 0.7158 1.7805 3.8056 0.0642 0.1683
Ningbo 0.7657 1.8548 4.1594 0.2096 0.5353
Xiamen 0.7865 1.7110 3.6426 0.1995 0.4110

Shenzhen 0.8901 1.8804 4.0593 0.1797 0.4054
Shijiazhuang 1.7733 2.1575 4.7536 0.6262 0.9360

Shenyang 1.0057 1.8921 4.0521 0.3465 0.6990
Nanjing 0.7250 1.8280 4.0273 0.1703 0.3228

Hangzhou 1.0167 2.0140 4.4883 0.2281 0.4699
Fuzhou 0.5633 1.5609 3.4356 0.2135 0.4693

Jinan 0.9530 1.8064 3.8868 0.2862 0.5740
Guangzhou 0.8280 1.7842 3.8435 0.2061 0.4658

Nanning 1.0952 1.7564 3.6944 0.3502 0.8515
Haikou 0.6984 1.6781 3.5776 0.3151 0.6557

Central
Region

Changchun 1.2508 1.9500 4.1755 0.3715 0.7665
Harbin 0.9144 1.8564 4.2402 0.3069 0.5375
Hohhot 1.1947 1.7722 3.8701 0.5462 0.9163
Taiyuan 1.2204 1.9490 4.4529 0.4308 0.8350

Hefei 1.1870 1.9077 4.0676 0.3498 0.7066
Nanchang 1.1031 1.8917 4.1300 0.3466 0.6198

Zhengzhou 1.4510 2.0889 4.4674 0.4045 0.8194
Wuhan 1.1402 2.0656 4.5242 0.2511 0.5436

Changsha 1.1622 1.9937 4.2918 0.2312 0.5414

Western
Region

Chongqing 0.7199 1.6460 3.5063 0.1964 0.4408
Chengdu 1.2053 2.0031 4.3808 0.3229 0.7010
Guiyang 0.5564 1.4299 3.0535 0.1670 0.3339
Kunming 0.6984 1.6781 3.5776 0.2279 0.4966

Lhasa 0.5281 1.2653 2.8730 0.4240 0.6885
Xi’an 1.5799 2.1887 4.8021 0.3151 0.8141

Lanzhou 0.7188 1.5098 3.2993 0.2896 0.5890
Yinchuan 1.3917 2.0908 4.8483 0.3507 0.8154

Xining 0.7462 1.5476 3.4979 0.3644 0.6494
Urumqi 0.6799 1.5952 3.5345 0.2520 0.5974
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Table 3. Descriptive statistics of syntactic index of road networks in 36 major cities of China.

Syntactic Index Average Minimum Maximum Standard Deviation

Global Integration 1.0009 0.4523 1.7887 0.3409
Local Integration 1.8347 1.2653 2.3187 0.2394
Connection value 4.0114 2.8730 5.1399 0.5491

Intelligibility 0.3011 0.0642 0.6262 0.1175
Synergy 0.6067 0.1683 0.9360 0.1915

As illustrated in Table 2, Table 3, and Figure 1, it is clear that the syntactic indicators of the road
networks in the 36 major cities in China varied widely. The maximum values of the syntactic indicators
(GI, LI, C, Intelligibility, Synergy) were 3.95 times, 1.83 times, 1.79 times, 9.75 times, and 5.56 times of
the minimum values, respectively, and the difference was significant. The average values of the Global
and Local Integration values were 1.0009 and 1.8347, both greater than one, indicating a good level of
accessibility overall. The average value of the Connection was 4.0114, which reflected the average
number of road axes connecting other road axes in China’s major cities, which is about 4, with Lhasa
having the smallest average Connection value (2.8730), and Beijing having the largest (5.1399). The
average of the Intelligibility was 0.3011, which was significantly less than 0.5, indicating that the road
space of these cities is generally more difficult to recognize. Qingdao had the smallest Intelligibility
(0.0642), while Shijiazhuang had the largest (0.6262), and the maximum was 9.75 times the minimum,
which was the biggest difference among the five syntactic indicators. At the same time, only two cities
(Shijiazhuang, Hohhot) had an Intelligibility of more than 0.5, which means that as the size of the city
expands, the road space becomes more and more complex and more difficult to be perceived by people.
The average degree of Synergy was 0.6067, which reflects a good correlation and integration of urban
local space and overall space. Like Intelligibility, Qingdao has the smallest degree of Synergy (0.1683),
and Shijiazhuang had the largest (0.9360), while a total of 25 cities had a Synergy greater than 0.5. The
Intelligibility and Synergy index values are worthy of attention in five cities (Shijiazhuang, Hohhot,
Beijing, Qingdao, Dalian), which had the same ranking in terms of Intelligibility and Synergy, among
them, Shijiazhuang, Hohhot, and Beijing had the highest Intelligibility and Synergy, ranked on the top
three in succession; Qingdao had the lowest Intelligibility and Synergy, followed by Dalian.

In the technical method system of Space Syntax, Global Integration is the most commonly used and
most effective indicator, which can more accurately and intuitively characterize the overall accessibility
level of the urban road networks compared to other indicators [15], so it should be a focus to analyzing
the degree of Global Integration. In the Global Integration, although the average value (1.0009) was
slightly larger than one, 18 cities were having Global Integration value greater than one and also
18 cities having Global Integration value less than one, which reflects that the accessibility of road
networks in major cities in China is not optimistic. In terms of specific values, Dalian had a minimum
of 0.4523, Beijing had a maximum of 1.7887, and Shijiazhuang had a slight gap (1.7733) from the
maximum. Further, with “1.0” as the basic demarcation point and according to the principle of equal
spacing, the Global Integration of 36 cities was divided into four echelons to characterize different
accessibility levels, see Table 4 for details.

According to Table 4, there were 7 and 11 cities with low and lower accessibility levels, respectively,
and 14 and 4 cities with higher and high accessibility levels, respectively. On the whole, the total
accessibility level of 25 cities was lower and higher, and the specific value was between 0.7026~1.3972.
The number of cities in four grades showed a typical normal distribution. Based on the above analysis,
five cities, including Shijiazhuang, Hohhot, Beijing, Qingdao, and Dalian, need to pay attention.
According to Table 4, Dalian, Shijiazhuang, and Beijing can be further found to be unique, and they
are at the lowest and highest level of accessibility. Therefore, these three cities are more typical
and representative.



Sustainability 2019, 11, 4209 9 of 15

Table 4. Accessibility classification of road networks in 36 major cities of China.

Global Integration Average Value Accessibility Level Cities

<1.0
0.4523~0.7026 low Dalian, Lhasa, Guiyang, Fuzhou,

Urumqi, Kunming, Haikou

0.7026~0.9530 Lower

Qingdao, Lanzhou, Chongqing,
Nanjing, Xining, Ningbo, Xiamen,
Guangzhou, Shenzhen, Harbin,
Jinan

>1.0
1.0057~1.3972 Higher

Shenyang, Hangzhou, Nanning,
Nanchang, Wuhan, Changsha,
Hefei, Hohhot, Chengdu, Taiyuan,
Tianjin, Changchun, Shanghai,
Yinchuan

1.3972~1.7887 high Zhengzhou, Xi’an, Shijiazhuang,
Beijing

4.2. Spatial Difference Analysis

According to the traditional spatial division of the eastern, central, and western regions in China,
based on Table 2, the syntax measurement results of accessibility of major urban road networks in the
eastern, central, and western regions of China were further obtained, as shown in Table 5. Based on
the results in Tables 2 and 5, it can be found that considering the most important Global Integration
(GI) indicators, among the 17 cities of eastern region, seven cities, such as Beijing, Shanghai, Tianjin,
and other four cities, had GI greater than one, and the remaining 10 cities had GI less than one; in the
central region’s nine cities, only Harbin (0.9144) had GI slightly less than one, and the remaining eight
cities had GI greater than one. In the 10 cities in the western region, Chengdu, Xi’an, and Yinchuan
had GI larger than one, and the remaining seven cities had GI less than one. From the number of cities
with index values greater than one, the central region had contributed the most cities. At the same
time, from the perspective of intra-regional differences in global integration, the difference between
cities in the central region was the smallest, and the standard deviation was only 0.1408, which was
much smaller than 0.3742 in the eastern region and 0.3695 in the western region. On the whole, the
accessibility level of the urban road network in the central region was the highest.

Table 5. The analysis of spatial difference of road networks in 36 major cities of China.

Regional
Space

Number of
Cities

Average Value

Global
Integration

Local
Integration Connection Intelligibility Synergy

East 17 0.9755 1.8599 4.0480 0.2758 0.5547
Central 9 1.1804 1.9417 4.2466 0.3598 0.6985
Western 10 0.8825 1.6955 3.7373 0.2910 0.6126

According to Table 5, the spatial differences in the accessibility of the urban road networks in the
three major regions of East, Central, and West were obvious, in terms of Global Integration, Local
Integration, and Connection; the western region had the lowest accessibility level, the eastern region
was in the middle, and the central region had the highest value of the three indicators, indicating
that its accessibility level was also the highest. The spatial distribution demonstrated a pattern of
“central-high, east-middle, and west-low”. In the indicators of Intelligibility and Synergy reflecting the
relationship between local and overall, the central region was still the highest, followed by the western
region, while the eastern region was the lowest. The analysis indicated that the spatial distribution
pattern of “central-high, east-middle, and west-low” was different from the traditional concept of
“developed in the east, second in the middle, and backward in the west”. The cities in the eastern
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region are economically and socially better developed; the investment in urban transportation facilities
is large; the industrial foundation is good, and infrastructure conditions are excellent, and the level of
accessibility is supposed to be the highest. However, the result of Space Syntax measurement denies
this traditional understanding. The western region is a region with relatively backward economic and
social development in China, the construction of urban transportation facilities is relatively lagging, and
the lowest level of accessibility is consistent with this analysis. The central region has developed rapidly
in recent years under the guidance of the “Rise of Central” national strategy, and the construction of
urban transportation facilities is changing with each passing day, and the Space Syntax measurement
results also verify this fact.

To further explore the spatial differences in the accessibility of road networks in major cities in
China, the spatial autocorrelation of syntactic indicators was analyzed. Spatial autocorrelation analysis
is a spatial data analysis method to study whether the observed value of a certain location in space is
correlated with those values of its adjacent locations and the degree of correlation [35], to test whether
an attribute of a spatial object is adjacent distribution or non-adjacent distribution [36]. The Moran’s
I index (including Global Moran’s I index and Local Moran’s I index) is the most commonly used
method for calculating spatial autocorrelation. The Global Moran’s I index is calculated as follows:

I =

n∑
i=1

n∑
j=1

wi j(xi − x)(x j − x)

S2
n∑

i=1

n∑
j=1

wi j

(5)

S2 = 1
n

n∑
i=1

(xi − x)2

x = 1
n

n∑
i=1

xi

(6)

where I is the Global Moran’s I index, n is the number of space units, xi and xj are the observation values
of the ith space unit and jth space unit, respectively. The wij is the spatial weight value, indicating the
adjacent relation of the i and j. If it is adjacent, w = 1; otherwise, it is 0. The Global Moran’s I index is
generally (−1, 1). When I is greater than 0, it indicates positive spatial correlation, and the distribution
is spatially clustered. When I is less than 0, it indicates negative spatial correlation, and the spatial
distribution is scattered. The value of 0 indicates that there is no spatial autocorrelation, meaning the
spatial distribution is random. Global Moran’s I index is a global assessment of spatial autocorrelation
that cannot reflect the degree of correlation between a sub-region and its peripheral sub-regions. Thus,
local spatial autocorrelation analysis must be conducted. The local indicator of spatial association
(LISA) of each observation value is an index reflecting the spatial aggregation of each value with its
spatially adjacent observation value [37]. For the ith space unit, the Local Moran’s I index is calculated
as follows:

Ii =
(xi − x)

S2

n∑
i, j=1

wi j(x j − x) (7)

where Ii is the Local Moran’s I index. The other variables have the same meaning as in formula (5).
Besides, the significance of spatial autocorrelation can be tested according to the calculated test statistics.
The general significance level is 0.05. More detailed principles of Moran’s I index can be found in the
related literature [38–40] and have not been repeated here. Specifically, the Global Moran’s I index and
Local Moran’s I index of each syntactic index value were calculated by using the point data of 36 major
cities and the spatial weight method based on distance. The results are shown in Table 6 and Figure 2.
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Table 6. The analysis of globe spatial autocorrelation of road networks in 36 major cities of China.

Spatial Autocorrelation Global
Integration

Local
Integration Connection Intelligibility Synergy

Global Moran’s I index 0.2451 0.1289 0.1428 0.3654 0.2902
p-value 0.009 0.071 0.062 0.002 0.005
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Figure 2. Moran’s I scatter graph of the syntactic index of road networks in 36 major cities of China.

Table 6 and Figure 2 show that under the saliency constraint of p = 0.05, the Global Integration,
Intelligibility, and Synergy indicators all pass the test, indicating that there is a significant spatial
positive correlation, and the values of Global Moran’s I index are sorted into Intelligibility > Synergy >

Global Integration. Although the values of Global Moran’s I index of Local Integration and Connection
were greater than 0, each p-value did not pass the significance test, and the spatial autocorrelation was
not significant. Furthermore, the values of Local Moran’s I index of Global Integration, Intelligibility,
and Synergy were calculated, and the local indications of spatial association (LISA) maps of three
indicators were obtained to show the positive spatial correlation with high-high (H-H) and low-low
(L-L) or the negative spatial correlation with high-low (H-L) and low-high (L-H) or no significant
spatial correlation (spatial randomness) between the research index value and the mean value of its
neighborhood index value. The results are shown in Figures 3–5.
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According to Figures 3–5, the three syntactic indicators were mainly high-high type in the
local spatial agglomeration distribution, showing a distinct spatial pattern of high-value clustering.
In terms of Global Integration, there were six cities, including Beijing, Shijiazhuang, Hohhot, Taiyuan,
Zhengzhou, and Wuhan in the high-value areas; in terms of Intelligibility, high-value areas included
five cities, namely Beijing, Shijiazhuang, Hohhot, Taiyuan, and Zhengzhou. In terms of Synergy, there
were eight cities in the high-value areas, including Beijing, Shijiazhuang, Hohhot, Taiyuan, Zhengzhou,
Xi’an, Yinchuan, and Xining. On the whole, Beijing, Shijiazhuang, Hohhot, Taiyuan, and Zhengzhou
constituted the core area of high-value agglomeration of local spatial autocorrelation. Hohhot, Taiyuan,
and Zhengzhou formed the vertical axis from north to south; Taiyuan, Shijiazhuang, and Beijing
formed the horizontal axis from west to east. Together, they formed the spatial pattern of the inverted
“T” shape.
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5. Discussion

As the concentrated representative of 656 cities in China, 36 major cities generally reflect the
accessibility level of China’s urban road network. There is still a lack of quantitative measurement
and comparative analysis of the accessibility of the road networks in these 36 cities. Because of this
research situation, the accessibility of the 36 major urban road networks in China was measured by
using the Space Syntax, and the spatial differences of accessibility were also analyzed by using Moran
index in spatial autocorrelation analysis. Therefore, it can provide important decision-making basis
for Chinese cities to improve the accessibility level of the road network and realize the sustainable
development of urban traffic system. More importantly, this paper explores the application scope
of Spatial Syntax theory in accessibility measurement and expands it from the traditional single city
accessibility measurement to the accessibility measurement and comparative analysis of multiple cities,
which will enrich the theoretical and methodological system of traffic accessibility research.

The research still needs to be further explored in some aspects: the accessibility of some developed
eastern cities, such as Guangzhou, Shenzhen, Nanjing, Dalian, and Qingdao, was at a low or lower
level, which is deviated from traditional perception, and the reasons behind are worth exploring.
The three cities of Dalian, Shijiazhuang, and Beijing were typical and representative in terms of
accessibility. The reasons why their accessibility is low and high are still worth further analysis, to
provide experience for other cities. This paper only quantitatively measures accessibility, but the
possible influencing factors of accessibility, for instance, road density, road length, road area, spatial
form, and the relationship between accessibility and these factors, have not been analyzed, which
will be another important direction for future research. Despite the limitations, this paper provides a
method to measure the accessibility and spatial differences of the 36 major urban road networks in
China by the comprehensive application of Space Syntax and spatial autocorrelation analysis, which
can be regarded as one useful attempt and exploration in urban traffic accessibility research field. It is
believed that with the deepening of the research and the continuous deepening of the accessibility
study of major urban road networks in China, some deeper causes and mechanisms will be gradually
discovered and analyzed. Accessibility measurement will play a more scientific guiding role in the
planning and construction of urban traffic networks.

6. Conclusions

The accessibility level of the road network is an important factor affecting the sustainable
development of cities. This is particularly remarkable in 36 major cities of China. Research on
accessibility measurement and spatial difference analysis of road networks in 36 major cities of China
is a critical starting point to improve the accessibility level of the urban road network in China, which
has important practical and theoretical significance. The main conclusions are as follows: there are
18 cities whose Global Integration average value is greater than 1 and also 18 cities whose Global
Integration average value is less than 1, which shows that the accessibility level of major cities in
China is not optimistic. The road accessibility of 36 major cities is divided into four grades: low, lower,
higher, and high, and the number of four grades of cities presents a typical normal distribution. The
spatial difference in the accessibility of urban road network in the three regions is obvious, forming a
spatial pattern of “central-high, east-middle, and west-low”; the overall accessibility level of the cities
in the central region is the highest. There are significant spatial autocorrelations among the Global
Integration, Intelligibility, and Synergy index; the local spatial agglomeration distribution is dominated
by high-high type. Beijing, Shijiazhuang, Hohhot, Taiyuan, and Zhengzhou, together form the spatial
pattern with the inverted “T” shape of high-value agglomeration.

In the past, Chinese cities paid more attention to enlarging the scale (length and width) of the road
network, while the accessibility level of the road network was once neglected. For example, the cities
in developed eastern China, such as Nanjing and Guangzhou, already have huge road network scales,
but their accessibility levels are not high. At the same time, the congestion and environmental pollution
caused by poor accessibility have affected the sustainable development of these cities. Fortunately, the
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Chinese government has realized this problem since 2016. Improving the accessibility of the urban
road network has been regarded as an important national policy. Therefore, the study of accessibility
measurement and spatial difference analysis of road networks in 36 major cities of China is helpful to
provide important decision-making information for the Chinese government to grasp the accessibility
level of China’s urban road network in general and lay a scientific foundation for the formulation of
urban traffic sustainable development policy in the future in China.
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