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Abstract: In recent years, the use of services for Open Systems development has consolidated and
strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by
the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud
computing techniques, such as the proliferation of microservices solutions, have allowed software
architects to experiment and develop new ways of building open and adaptable computer systems at
runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the
social atmosphere environments suitable in which to apply certain innovative trends. This paper
presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary
techniques on model-driven engineering, service engineering and soft computing. The proposal
manages an orchestrated microservices schema for adapting component-based software architectural
systems at runtime. This schema has been developed as a three-layer adaptive transformation process
that is supported on a rule-based decision-making service implemented by means of Machine Learning
(ML) algorithms. The experimental development was implemented in the Solar Energy Research
Center (CIESOL) applying the proposed microservices schema for adapting home architectural
atmosphere systems on Green Buildings.

Keywords: adaptive systems; machine learning; microservices; smart building

1. Introduction

Some current software systems need to adapt their behavior and structure to new requirements
which were not identified during the development phase. As a particular type of system,
component-based applications are in general defined at design time according to a component
architecture and a set of initial requirements. In this sense, it could be useful that some kind of dynamic
systems would be able to analyze, for example, the interaction with users (including profile information)
or some changes in the environment, with the purpose of modifying the architecture of such systems
to adapt them at runtime, thus meeting the new requirements. Some dynamic systems include these
features and provide the software with the ability to modify their behavior depending on the execution
circumstances, for example, changes in the user interactions, variations in the available resources,
new required values in the quality of service (QoS) properties, changes in the execution platform, etc.
The majority of the adaptation capabilities can be identified in the analysis and design stages and,
therefore implemented during the development. However, unforeseen circumstances, different to
the original conditions may arise, and it could be necessary for the software system to be adapted
to these new situations. In these cases, it is useful to provide the systems with mechanisms through
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which they could adapt their behavior automatically. These solutions are known in the literature as
Self-Adaptive Systems (SAS) [1]. Furthermore, this dynamic behavior is obtained in many cases from
the management of the abstract representations of a system (i.e., models), instead of manipulating the
code that implements it. As a consequence, the static view of the models is being updated by proposals
that try to adapt the software automatically by manipulating the models that define it.

1.1. Related Work

In the particular domain of component-based software systems, using Model-Driven Engineering
(MDE) techniques can facilitate the design and development of architectures, i.e., defining the structure,
the behavior of its components and their relationships, interaction or functional and nonfunctional
properties [2]. Moreover, management architecture models make it possible to generate different
software systems based on the same abstract definition in run-time while the adaptation process is
focusing on user interaction, component status or runtime platform [3].

A lot of research papers, dealing with the dynamic adaptation of software systems (DAS) in
runtime context, use architecture based approaches [4,5]. The Rainbow’s [4] framework provides
mechanisms to adapt and update the architecture models to the needs of the system using the models
abstract architecture to monitor, evaluate and adapt the settings then get the system running, in the
context of mobile applications architectural models can be used to describe the variability, i.e., that the
models themselves contain information and selection criteria for the middleware can derive adaptation
runtime context [5]. There are also proposals where variability models are defined to describe the logic
and to separate adaptation and system operation [6]. There are works where the authors propose
implementing an adaptive loop control system as a component-based system [7]. Therefore, the control
loop can be reconfigured at run-time to incorporate new knowledge dynamically. The aim of our
proposal is to develop a similar system in which the logic of adaptation to change as knowledge is
gained from the run.

Another type of adaptive systems are dynamic software product lines (DSPL). These systems are
similar to traditional software product lines but the variability is linked to runtime [8,9]. In Reference [10]
the authors apply their use in the domain of home automation (smart homes). In its proposal, variability
models are used to activate or deactivate features at runtime, thus fulfilling the context conditions.

There are proposals for systems that use high level adaptive programming languages for evolution.
In Reference [11,12] systems based on Java implementations that run within an OSGi [13] platform
for adapting software at runtime are proposed. In this case, the programs written in programming
languages are static artifacts and cannot evolve in runtime. Regarding the dynamic composition
model transformations, there are studies that propose an incremental way to update the processes of
transformation and construction dynamically from a set of rules [14]. In Reference [15] an approach
to the composition of transformations in ATLAS Transformation Language (ATL) is proposed while
in Reference [16] a similar proposal is described using the language of Query/View/Transformation
(QVT) transformation. In References [17,18], the authors present a mechanism for building model
transformations from prebuilt modules that can be referenced or imported from an ATL file.

In our proposal the transformation phase of models is based on these works to define a repository
of ATL rules which are dynamically selected to build a transformation at runtime.

Other works such as References [19,20] propose an update of the transformations in order to make
a refactoring of models to adapt at runtime but do not try to refactor the transformation itself. One of
the M2M transformations goals is to improve and to adapt their behavior to the context of the system
through including new rules or helpers [21]. Following an MDE approach, this refactoring can be
implemented as transformations in which the transformations themselves are involved as input/output
transformations in so called Higher-Order Transformations (HOT) [22,23]. In our proposed use of HOT
to dynamically generate transformations an adaption of the model runtime architecture is carried out.

On the other hand, computational intelligence [24] is a set of technologies consisting of: artificial
neural networks, fuzzy systems, evolutionary computation, Bayesian and probabilistic methods, chaos
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theory and “swarm” systems or distributed intelligence. At this point we emphasize that fuzzy
logic allows us to treat imprecision, use approximate reasoning and to define more closely to natural
language; neural networks focus on learning, adaptation and classification and probabilistic methods
are based on statistical reasoning about evidence. One of the ideas is to use hybrid models where
the advantages of the learning ability of fuzzy logic and neural networks were combined to form the
neural diffusion systems [25]. Currently, the European Center for Soft Computing (ECSC) is a world
leader and main applications are focused on: planning and optimization of industrial production
lines, information and personalized advice to encourage energy savings, the application of cognitive
technologies in production processes, etc. In the research group Applied Computing has worked in
the field of “soft computing” in image retrieval based on fuzzy content using neuro-fuzzy systems
and Bayesian networks [26] and the definition of a methodology feature selection processes intelligent
learning by Bayesian networks and neuro-fuzzy systems [27]. In the field of software engineering
and computer intelligence we can mainly find applications focused on assessing the cost of reusing
components as in References [28,29] where neuro-fuzzy models for classifying component reuse is
proposed. Instead our proposal aims to make intelligent model transformations at runtime using
computational intelligence techniques that are showing excellent results.

Work on efficiency in energy use and people comfort can be found at the Polytechnic University
of Bucharest where a control implementation of an intelligent building through the implementation
of a mechanism driven by a set of policies under which the heating system is activated [30]. Other
studies were focused on the implementation of Human-Robot Cloud architectures (HRC) [31] on
the specific scenario of smart building for efficiency gains and energy saving. This paper presents
a proposal whereby sensors, processors and actuators, which include facial identifiers and human
locators, are transferred to a distributed and reconfigurable cognitive system which can support
multiple applications in the future.

With regard to the methodologies used to control smart buildings, some proposals are largely
based on the definition of a logical simple inference using the values of different measuring sensors
and presence sensors [32–34]. Other methodologies use techniques of Bayesian inference (Bayesian
network) to predict user behavior patterns [35]. An example of this is Reference [36] a method capable
of predicting energy consumption per capita. On the other hand, iDorm [37] is presented as an adaptive
system (able to learn from the interaction with the user and thus predict their future needs) using
embedded agents. These agents use incremental synchronous learning (ISL) based on fuzzy logic.
In Reference [38] the use of Markov chains is proposed to establish the likelihood of occupation of
certain areas. In Reference [34] a comparative study of different methods and techniques used to
control smart buildings is presented.

1.2. Objectives

This article proposes a solution to the problem of adapting software systems at runtime. However,
this approach is not suitable for all types of systems but is only focused on component-based software.
Specifically, the architectures describing the software are built from coarse-grained component
managed as black boxes. Therefore, the components which are included in an architecture provide the
functionality required by the system at a specific time, but due to some changes in the context or other
adaptation purposes, these components must be changed or the architecture reconfigured to adapt the
system behavior and meet the new requirements.

A main characteristic of our proposal is the abstraction process in the representation of the systems,
and in the adaptation, which results in process domain and platform independence. The representation
is performed by modeling techniques and the adaptation is addressed using model-to-model (M2M)
transformation mechanisms implemented in Atlas Transformation Language (ATL) [39]. In addition,
the model transformations are not static, but are built at runtime and can be conformed to the changes
in the context, user interaction, new requirements, etc. In the present work, the adaptation mechanisms
are provided with a decision-making system and a machine learning process that collect the information
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from the user interactions and the system context, and generates the corresponding adaptation rules
that will define the system knowledge. These rules are utilized by the adaptation process to perform
the corresponding model transformations dynamically at runtime.

1.3. Main Contributions of the Work

In this paper, we illustrate a novel adaptive system and effective way of building open and adaptable
computer systems at runtime. Specifically, by successfully using interdisciplinary techniques on
model-driven engineering, service engineering and soft computing, our system achieves the following.

a. Manage a microservices schema for adapting component-based software architectural systems
at runtime. It is very easy to integrate a new components into the system. It is portable to other
systems or buildings.

b. Include Machine learning algorithms in the adaptive transformation as a rule-based
decision-making service. It is easy to interpret and combines multiple classifiers to find a
solution with the least number of rules.

c. Facilitate comfort control and energy savings through the user profiles analyzed on
Green Buildings.

1.4. Outline of This Paper

The paper is structured as follows. Section 2 explains the methodology that supports our approach.
A case study applying our approach is presented in Section 3. Finally, Section 4 presents the conclusions
and the indications for future work.

2. Adaptive Models and Systems

This section presents and explains our approach for adapting models of component-based
software systems under a service-oriented architecture. Because these software systems are modeled
as component architectures to avoid any misunderstanding, hereinafter we use the term infrastructure
to identify our underlying service solution.

The infrastructure supporting the adaptive transformation described in section one has been
developed under a Service-Oriented Architecture (SOA) approach [40]. Therefore, all the operations
from the adaptation and decision-making subsystems are deployed as small services (or microservices)
to be requested locally or remotely, orchestrated through a microservice architecture. Some services
are related to M2M transformations, for example, the services Context Processing and Architectural
Transformation from the adaptation process (Figure 1). Other services form part of the decision-making
process, such as the Decision-Making System and the Operation Selection Service. These services may
not be deployed in the same host following a monolithic approach, but they can be distributed in
different servers following an approach based on microservices [41]. Accordingly, when a client wants
to execute one of the offered functionalities, it may be necessary to orchestrate a set of services so that
they are executed in a specific order to, for example, obtain an adapted architecture model from an
initial one. As a case study, we apply the adaptive transformation and decision-making subsystems to
the social healthcare and the energy efficiency applied to home automation, in particular, for domotic
control in green buildings.
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Figure 1. A service-oriented adaptive architecture.

As mentioned, the adaptation of systems is addressed as a transformation process at runtime.
Additionally, this process is not valid for all types of applications, but is focused on systems that
are built from coarse-grained components managed as black boxes. The components present in
an architecture determine the system behavior and its properties, satisfying the requirements in
a specific time. However, these requirements may change at runtime (e.g., due to changes in the
application context) and therefore the architecture should be adapted to meet the new requirements.
In our case, adaptation purposes must be accomplished by performing changes in the aforementioned
coarse-grained components, for example, inserting a new component, deleting an unnecessary element,
varying the association between modules or modifying some configuration properties of the existing
components. In addition, component dependencies must be taken into account because they can imply
some additional operations. For example, the inclusion of a new Component A into the architecture is
subject to the addition of a Component B if the latter resolves some functionality which is required by
the former.

Our adaptation process is supported by an infrastructure of services with the goal of building a
set of subprocesses in terms of microservices that can solve each atomic operation (those with sufficient
entity and which can be used for different purposes) in a separate way. Therefore, we can update
the repository of adaptation rules at any time by requesting the corresponding microservice, as a
possible example among others. Figure 2 shows the two main services provided by our approach.
On the one hand, the Adaptive Transformation Service (a) is composed of a set of microservices
implementing a sequence of M2M transformations. On the other hand, the Decision-Making Service
(e) is formed by a machine learning solution and generator of transformation rules. As a consequence,
the normal behavior of our proposal executes the following steps. The Adaptive Transformation
service takes as its inputs: an initial architectural model and the actions performed by the user (b), a
model containing the context information required to get the adaptation (c), and the adaptation rules
generated by the Decision-Making Service (d). As an output, it generates the adapted architectural
model (g). The Decision-Making Service provides the ability to learn from the user and the environment.
The acquired knowledge is used for composing the adaptation rules at runtime which provide the
system with the capability of generating the architectural model that is best adapted from the initial
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model (i.e., taking into account the context variables and the user actions). The following subsections
describe the composition and behavior of both main services in detail.

Sustainability 2019, 11, x FOR PEER REVIEW 6 of 23 

variables and the user actions). The following subsections describe the composition and behavior of 
both main services in detail. 

 

Figure 2. The schema of the service-oriented adaptive architecture. 

2.1. Adaptive Transformation Service 

This service is composed of a set of microservices implementing M2M transformations. The 
execution of these microservices following a specific sequence results in an adapted architectural 
model from an initial one. As mentioned, the new architecture is adapted to the user and the context, 
since the Adaptive Transformation Service receives feedback from the Decision-Making Service. The 
microservices, the involved resources and the transformation sequence are explained as follows 
(Figure 3): 

Figure 2. The schema of the service-oriented adaptive architecture.

2.1. Adaptive Transformation Service

This service is composed of a set of microservices implementing M2M transformations.
The execution of these microservices following a specific sequence results in an adapted architectural
model from an initial one. As mentioned, the new architecture is adapted to the user and the context,
since the Adaptive Transformation Service receives feedback from the Decision-Making Service.
The microservices, the involved resources and the transformation sequence are explained as follows
(Figure 3):

• Context Processing Service. This microservice executes an M2M transformation which receives
the initial architectural model (AMi), the model containing the context variables (OBMi) and the
model with the rules generated by the Decision-Making Service (AAOpDmMi) as its inputs. As a
result, it generates the model of adaptation operations to be executed (AOpDmMi).

• Operation Selection Service. In this microservice, the operations to be executed selected by the
user (AAOpUserMi) are compared to the operations generated by the Context Processing Service
(AOpDmMi) through an M2M transformation. In the case that neither match, the operations
selected by the user (AAOpUserMi) will be chosen, thus generating the model of operations that
are going to be executed (AEOpMi).

• Rule Selection Service. This microservice selects the transformation rules from the repository (RRM)
that must be executed to accomplish the set of adaptation operations (AEOpMi). The algorithm of
this service is inspired by the reinforcement learning concept in the sense that it selects those rules
which score better from all the available ones. It generates the set of selected transformation rules
(RMi) as an output, which will conform the new M2M transformation.

• RSL Service. This consists of an M2M transformation that updates the attributes of the rule
repository (RRM) based on bonus and penalty scores depending on the selected rules (RMi).
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• Rule Transformation Service. This microservice implements a Higher-Order Transformation
(HOT) [22,23] which is in charge of translating the selected adaptation rules (RMi) into ATL rule
model (TMi).

• ATL Extraction. This process executes a Textual Concrete Syntax (TCS) [42] extraction responsible
for generating the ATL code from the rule model (TMi).

• Architectural Model Transformation Service. Is the M2M transformation created dynamically as
result of the transformation sequence and it is in charge of adapting the initial architectural model
by applying the selected transformation rules.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 23 

 
Figure 3. Adaptive transformation service schema. 

• Context Processing Service. This microservice executes an M2M transformation which receives 
the initial architectural model (AMi), the model containing the context variables (OBMi) and the 
model with the rules generated by the Decision-Making Service (AAOpDmMi) as its inputs. As 
a result, it generates the model of adaptation operations to be executed (AOpDmMi). 

• Operation Selection Service. In this microservice, the operations to be executed selected by the 
user (AAOpUserMi) are compared to the operations generated by the Context Processing 
Service (AOpDmMi) through an M2M transformation. In the case that neither match, the 
operations selected by the user (AAOpUserMi) will be chosen, thus generating the model of 
operations that are going to be executed (AEOpMi). 

• Rule Selection Service. This microservice selects the transformation rules from the repository 
(RRM) that must be executed to accomplish the set of adaptation operations (AEOpMi). The 
algorithm of this service is inspired by the reinforcement learning concept in the sense that it 
selects those rules which score better from all the available ones. It generates the set of selected 
transformation rules (RMi) as an output, which will conform the new M2M transformation. 

• RSL Service. This consists of an M2M transformation that updates the attributes of the rule 
repository (RRM) based on bonus and penalty scores depending on the selected rules (RMi). 

• Rule Transformation Service. This microservice implements a Higher-Order Transformation 
(HOT) [22,23] which is in charge of translating the selected adaptation rules (RMi) into ATL rule 
model (TMi). 

• ATL Extraction. This process executes a Textual Concrete Syntax (TCS) [42] extraction 
responsible for generating the ATL code from the rule model (TMi). 

• Architectural Model Transformation Service. Is the M2M transformation created dynamically 
as result of the transformation sequence and it is in charge of adapting the initial architectural 
model by applying the selected transformation rules. 

The purpose of Section 2.1 is to summarize the main functionality of the adaptive 
transformation service. For this reason, we have listed the components and briefly describe their 
behavior. More details about this service (and its components) are available in previous research 
work [43–45], which has been included in this section to provide additional explanations. 

Figure 3. Adaptive transformation service schema.

The purpose of Section 2.1 is to summarize the main functionality of the adaptive transformation
service. For this reason, we have listed the components and briefly describe their behavior. More
details about this service (and its components) are available in previous research work [43–45], which
has been included in this section to provide additional explanations.

2.2. Decision-Making Service

This service provides the capability of adaptation over time to our approach of architectural
transformations. It is possible due to the machine learning solution supported by this service, thus
the adaptation rules defined a priori are not static, but can be modified and even new rules can be
generated over time. This learning is the result of processing the user interactions and the changes in
the environment and, as a consequence, the system evolves over time adapting to the users’ behavior
and the variations of the system context. The Decision-Making Service takes (1) the system context
information and (2) the adaptation rules executed in the Adaptive Transformation Service (AEOpMi)
as its inputs. As an output, it generates the adaptation rules to be executed by the system. Next,
the processes that conform the Decision-Making Service and their execution sequence are described
(Figure 4):
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a: DB Update
This is the process that is executed first. It is initiated when at least one rule has been generated

in the model of operations to be executed (AEOpMi). This process receives the model containing
the context variables used in the Context Processing Service (OBMi) as inputs and the outputs are
generated by the Operation Selection Service. In this process, the knowledge database (Knowledge DB)
is updated according to the environment variables (OBMi) and the rules to be executed (AEOpMi).

b: TMT Class
The inputs to this process are the rules generated by the Operation Selection Service, and it

generates the classes involved in these rules as an output (Classified Class). Only the attributes and
the classes from the Knowledge DB which are meaningful to the possible generation of new rules are
processed. Therefore, we avoid the unnecessary processing of records of the database that have been
modified in the execution, thus reducing the computing time.

c: Classifier
This process includes the execution of the classifiers of the knowledge database generating the

corresponding rules.
This execution includes three subprocesses. The first subprocess is the Feature Selection

(Figure 4–6.a). There are the two approaches to perform this selection:

• Filter methods: These methods select features by ranking them by means of compression techniques
(Principal Components Analysis) or by computing correlation with the output (class).

• Wrapper methods: these methods searching for an optimal subset selection using the classifier.

In the step Feature Selection, a filter method selects features by computing correlation with the
output. In general, this method is independent of the classification algorithm. The computational
cost is low. Correlation based Feature Selection (CFS) is the algorithm used for this purpose [46].
It determines a ranking of the main features. In our case, the subset features are between 100% and 50%
of value in the ranking. The next step is responsible for the building the rule model (Figure 4–6.b) and
then this rule model is validated (Figure 4–6.c), i.e., the classifier is trained and evaluated. The results
obtained from this validation are processed by the Rules Generator operation. This compares the
generated rule model and the stored rule model with the aim of selecting the one with the best score
following the punctuation criteria defined a priori (Expert’s Knowledge DB). As inputs, this process
(Classifier) receives the records about the behavior of the model transformations at runtime and their
interaction with the environment throughout time (Knowledge DB). In addition, further input is
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formed by the records about the classes involved in the rules generated from the model transformations
(Classified Class). This data is reset when the Build Model and Validation processes are finished.
The last input of the Classifier process is a database storing the different classifier types that must be
executed (Classifiers DB). The selection of these classifiers as well as the different parameters associated
with them (Rhoa, Cross-Validation, etc.) arise from the data preprocessing and are selected by the
experts following the most suitable criteria according to the requirements of the system of model
transformations at runtime. For the Build Model and Validation processes a Java application has
been developed which uses the algorithms and libraries included in the Waikato Environment for
Knowledge Analysis platform (WEKA), http://www.cs.waikato.ac.nz/ml/weka/.

d: Rules Generator
This process generates the rules to be executed by the Adaptative Transformation Service.

The inputs to the process are:

• The optimal rules generated by the classifier (Classifier Results).
• The log of the optimal results obtained from the previous executions of the classifier (Classifier

Results Log).
• The criteria and parameters to be compared from the obtained results to be able to perform the

selection from among the generated rules. The selected rules are those that best fit the system
specifications (Expert´s Knowledge DB). These parameters are defined by the experts. As its
output, this process updates the Classifier Results Log and stores the Rules to be executed by the
Adaptive Transformation Service only if the obtained results are better than the results stored in
the log (step 9 in Figure 4).

• Actions Selection. A Higher-Order Transformation (HOT) [22,23] in charge of translating the
Rules generated by the Decision Making into the rules to be executed by the Context Processing
Service (AAOpDmMi).

3. Case Study

For the case study we extend our proposal of Adaptive Domotic System in Green Buildings [45]
where we propose a home automation system based on our adaptive architecture of component-based
development of model transformations at runtime. In Reference [45] we managed to optimize the
energy consumption of the CIESOL building and increase user comfort by adapting the system to the
user preferences. In the present proposal of adaptive control system in green buildings presented in
this work, we focus on two of the three basic factors (thermal comfort, visual comfort, and indoor air
quality) that determine the quality of life in buildings [47].

In our study, we intend to develop an adaptive control system based on services in which the
thermal comfort and visual comfort within the CIESOL building can be achieved by parameterizing
and processing the collected data that are generated from the user’s interaction with the system.
Figure 5 shows the adaptation home automation system schema.

In our proposal the decision-making system will generate new adaptation rules using the collected
data from the sensors and actuators in the building. These rules are defined based on the interaction
between the user and the home automation system. In fact, these adaptation rules will be transformed
into control rules and added to the system control by the adaptation process.

http://www.cs.waikato.ac.nz/ml/weka/
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3.1. The CIESOL Building

The Solar Energy Research Center (CIESOL) was founded and managed according to an agreement
between the University of Almeria (Spain) and the Center for Energy, Environment and Technology
(CIEMAT) at the Ministry of Economy and Competitiveness (Spain). The center is located in the
Campus of the University of Almeria. CIESOL was built using bioclimatic standards and is designed
for efficient energy use.

CIESOL engages in research and technology transfer activities in the field of solar energy
applications concerning: organometallic photochemistry, water treatment, environmental chemistry,
modeling and automatic control of solar systems [48], home automation for energy efficiency, as well
as solar cooling and solar resource assessment.

CIESOL (single-store building) encompasses an area of 1100 m2 with 10 laboratories, five offices
and a conference room with a maximum occupancy of higher than 75 people.

3.2. Data Acquisition and Preprocessing

The CIESOL building includes a weather station with outdoor and indoor sensors. The data
from different sensors are parameterized and collected every minute. The main environmental values
are temperature, humidity, radiation and wind speed. In this study, the data are collected by the
temperature and movement sensors located in the different rooms of the CIESOL building in the year
2014 during the months of February, May, July and October. These months are the most representative
of each season for the city of Almeria and are the months with a higher index of human activity in the
different rooms located in the building.

From the data collected we observed that the temperatures measured during working hours (from
Monday to Friday, from 8 a.m. to 8 p.m.) in the rooms varied significantly, which shows that the
optimal comfort temperature depends on the user preferences and is not a known value a priori.

Figures 6 and 7 show the temperatures measured by the four temperature sensors located in two
rooms of the CIESOL building in which we have focused this study. These measurements correspond
to the same period of time (second week of February and July, Monday to Friday) in each room.
The differences between the temperatures of the rooms can be appreciated when there is human
presence during working hours. For this reason, the difference between the desired temperature
depending on the user preferences.
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In order to obtain information about the air distribution, five sensors were installed at different
heights. The idea was to measure directly the fan coil output and the air temperature at different levels
to be able to model the behavior and techniques as in studies similar to this one. Therefore, the fan coil
was placed in the roof of the laboratory, as it was necessary see how the air flowed down to the ground.
The total height of the laboratory is about three meters so, the criterion was to divide the height the
laboratory by three equally spaced points. Therefore, three sensors were positioned on a vertical pole
to provide information about the air temperature stratification which could be used to model the speed
at which a homogeneous temperature was reached in the laboratory. Therefore, with these sensors
it was possible to monitor the average temperature in the room and, moreover, the time required to
reach the desired temperature throughout the laboratory. This was the main reason to install a sensor
in the roof (just in front of the fan coil), which guarantees the direct measure of the fan coil output.
Finally, the bottom sensor (placed on the floor) is also used to measure the temperature at ground level,
which gives us information about the interaction between the ground and the ambient, considering the
possible heat/cold exchange between these two spaces.
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Once the data had been preprocessed, five variables were considered in this study, which would
define the state of the fan coil (shutdown, heating, air conditioning) in the different rooms studied,
resulting in a total of 60 × 24 × 121 = 174,200 data vectors per room (4638–2.66% data was not usable
because of the value inconsistency). Figure 8 shows both the location of the fan coil inside and the
location of the temperature sensors in which we have focused our case study.
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We have also extended the scope of our study to control the lights of the rooms. Unfortunately,
at the time of developing our proposal there was no record of the values of light intensity inside the
rooms as well as the state of the lights (on/off). Therefore, we decided to simulate these parameters
taking the same range as the one used for the preprocessing of room temperatures during the months
of February, May, July and October, a measurement per minute (24 h a day Monday through Friday)
around 174,200 data vectors. For the minimum and maximum illumination level values (lux) we take
as a reference the Spanish standard for ergonomic requirements for office work with data visualization
screens. In addition, applying energy efficiency criteria establishes a maximum value of lighting level
from which the lights will turn off depending on whether there is presence in the room and whatever
the preferences of the user since it is considered that artificial lighting is unnecessary. Random values
of light intensity, alarm status, motion sensor and on/off status were generated.

After preprocessing and analyzing the data, the study variables are shown in Table 1.
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Table 1. Variable Specification.

Abrev. Name Description Data Type

t Ti_Sup_Lab Temperature measured in room (◦C) Numeric
i LightIntensity Light intensity measured in room (lx) Numeric
a AlarPresActive Central alarm activated (0, 1) Boolean
s SenMovLab Motion sensor (0, 1) Boolean
m Month Month of the measurements (1, 2, 3, 4) Numeric
f FANCLab Fan coil Output: 0 Off, 1 Heating and 2 Air Numeric
l LightsLab Indoor Lights Output: 0 Turn off, 1 Turn on Numeric

The variable s indicates the presence of users in the room. If there is no one (s = 0), both the room
and fan coil lights must be switched off regardless of the values of light intensity (i) or temperature (t)
measured in the room (l = 0 and f = 0). The variable a indicates if the central alarm of the CIESOL
building is activated or not. If yes (i.e., a = 1) both the room lights and the fan coil should be turned
off (l = 0 and f = 0) regardless of the values of the movement sensor (s), the light intensity (i) or the
temperature (t).

In order to simplify the study and treatment of the generated rules, the temporal variable of
measurement of room temperature (date format: hour: minutes) was transformed into a new variable
(Month, m) which indicates the month in (February = 1, May = 2, July = 3, October = 4).

3.3. Data Classification

Our goal is to build an intelligent system for decision-making knowledge based on rules.
The classifiers used to generate the rules in our proposal have been selected taking into account the
good results obtained in contexts similar to the ones in our current research and the low computational
costs. The following subsection will review the classifiers used for the adaptation rules of this proposal.

3.3.1. Standard Classifiers

Different classifiers have been used for the adaptation rules that best fit our adaptive architecture
and the results have been compared according to different factors such as the time taken to build the
model, number of rules, correctly and incorrectly classified instances, etc. The following classifiers
have been used:

a) The OneR classifier [49] uses the minimum-error attribute for prediction, discretizing
numeric attributes.

b) The NNge classifier [50] is based on the generic algorithm.
c) The C4.5 classifier [51] generates a decision tree using entropy.
d) The Multilayer Perceptron algorithm (MLP) [52] (artificial neural network) uses back-propagation

to classify our system’s different actions based on prior information.
e) The K-nearest neighbors classifier (K-NN) [53] assigns the action of the class of its nearest neighbor.
f) The Naive Bayes classifier [54] where it is assumed that all variables are independent of each

other given the class.

3.3.2. Fuzzy Classifier

The idea is to incorporate the fuzzy classifier in the decision-making process to see if it improves
the success rate with respect to the standard classifiers. Fuzzy Lattice Reasoning (FLR) classifiers
have been included in this study due to their reliability in the generation of rules and the good
results described in other applications. The capacity for learning of this classifier are demonstrated
in a real-world application domain. A fuzzy inference system is a technology based on fuzzy
logic [55], that generates rules by an induction process. This is a hybrid system such as fuzzy lattice
neuro-computing for clustering and classification in different data domains using lattice theory [56].
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The fuzzy lattice reasoning classifier generates rules from the training data in two-step rule induction
and generalization [57]. Four important ideas of fuzzy lattice reasoning can be summarized as
follows [57]:

• The rule induction may be affected by replacing a hyperbox Aj with a larger hyperbox ai Aj, where
the larger hyperbox is assigned a category label Cj.

• A rule Aj→ Cj; j = 1; L defines a fuzzy set k (x ≤Aj) in the family of hyperboxes such that hyperbox
Aj corresponds to the core of fuzzy set k (x ≤ Aj).

• Fuzzy lattice reasoning can deal with semantic data and also non-numeric data, e.g., structured
data (graphs).

• A fuzzy lattice reasoning classifier can deal with a missing data value in a constituent lattice Li by
replacing a missing datum with a lattice interval [a, b] such that vi ([a, b]) = vi(θi(a)) + vi(b) ≈ 0.
The latter replacement is semantically interpreted as absence of information.

3.4. Results and Discussion

The results obtained after applying the classifiers to the parameters involved in the inside
temperature of the rooms are shown in Table 2. Ten-fold cross-validation was applied to all classifiers.

Table 2. Results obtained after applying the Classifiers.

Classifier TBM NR CCI ICI KS MAE RMSE RAE RRSE

Fan coil

FLR(rhoa 0.5) 0.53 4 72.8374 27.1626 0.2329 0.1811 0.4255 56.117 105.941
FLR(rhoa 0.8) 0.7 15 94.0673 5.9327 0.8705 0.0396 0.1989 12.2569 49.5117
FLR(rhoa 0.9) 0.88 24 99.9976 0.0024 1 0 0.004 0.0049 0.9883
IBK 0.02 - 68.1185 31.8815 0.2663 0.2125 0.461 66.7205 115.6903
C4.5 1.34 7 96.6025 3.3975 0.9313 0.0428 0.1218 13.414 30.4927
Multilayer Perceptron 159.24 - 99.519 0.481 0.9901 0.004 0.0497 1.2277 12.3844
NaiveBayes 0.38 - 97.1492 2.8508 0.9426 0.0455 0.1196 14.1098 29.7878
NNge 3.61 6 96.4578 3.5422 0.9287 0.0468 0.1244 14.5182 31.071
OneR 0.47 3 70.659 29.341 0.3885 0.1956 0.4423 60.618 110.107

Indoor Lights

FLR(rhoa 0.5) 0.11 4 82.5045 17.4955 0.2842 0.175 0.4183 51.0667 101.0631
FLR(rhoa 0.8) 0.18 11 96.3502 3.6498 0.9456 0.0539 0.1329 12.523 28.4825
FLR(rhoa 0.9) 0.25 20 99.9989 0.0011 1 0 0.003 0.0038 0.8764
IBK 0.01 - 82.1024 17.8976 0.5341 0.181 0.3976 40.0031 81.2386
C4.5 1.59 4 98.8795 1.1205 0.9567 0.0321 0.0612 5.2684 10.1256
Multilayer
Perceptron 181.05 - 99.7729 0.2271 0.9954 0.003 0.0345 0.345 0.8956
NaiveBayes 0.74 - 96.6634 3.3366 0.8969 0.0807 0.1671 23.5765 40.3989
NNge 1.45 4 97.3552 2.6448 0.9358 0.0545 0.1203 14.3165 30.6898
OneR 0.45 13 77.805 22.195 0.0163 0.2219 0.4711 64.8394 113.877

TBM: Time to build the model; NR: Number of Rules; CCI: Correctly Classified Instances; ICI: Incorrectly Classified
Instances; KS: Kappa Statistic; MAE: Mean Absolute Error; RMSE: Root Mean Squared Error; RAE: Relative absolute
error; RRSE: Root Relative Squared Error.

After studying the obtained results, we decided to use the FLR and the C4.5 classifiers in our
study because they obtained rules with the smallest computational cost and the highest percentage
of correctly classified instances. Applying the classifier Fuzzy Lattice Reasoning (FLR) we obtain
excellent results which can be seen in the accuracy scatter plot (Figure 9). In this graph it can be seen
that the incorrectly classified instances are not significant and that the rules generated are confirmed
after applying the classifier C4.5, meaning there are reference temperatures that match after applying
the two classifiers and the possible phase in which the fan coil can be (heating, air conditioning) is
determined by the months of the year (seasons).
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In our system, priority will be given to the Fuzzy Lattice Reasoning (FLR) classifier because the
FLR classifier enables the interpretation of qualitative and imprecise data as well as data from an
uncertain source such as in our study case. Furthermore, the format of the generated rules is easily
processed for its subsequent storage in the rules model to be performed by the system (AOpDmMi).

Moreover, the C4.5 classifier generates fewer rules to be treated than the FLR classifier, although
these rules are harder to treat. For example, in Figure 10 we can see the decision tree generated given
the values of Laboratory 6. Taking all this into account and due to the fact the ranks of luminosity
(visual comfort) to be examined present a very similar problem to the already processed temperature
ranks (thermal comfort), we decided to apply the same classifiers (FLR y C4.5) to the rooms’ lights
control data, obtaining the data shown in Table 2.

From observing the rules generated by the FLR y C4.5 classifiers it can be perceived that there is a
different comfort temperature for each room (user):

• Lab 6: Reference temperature = 24◦ ± 1◦

• Lab 8: Reference temperature = 23◦ ± 1◦

Furthermore, the status of the fan coil (heating or air conditioner) depends on the months of
the year, so that the air conditioning is not activated in the month of February and the heating is not
activated during the months not belonging to the winter season (May, July, October).

Similarly, applying the classifiers to the data generated by the simulator, one can perceive that
the threshold for turning the lights on and off (visual comfort) in Laboratory 6 is 532 lx and 663 lx
respectively, while the threshold in Laboratory 8 is 582 lx and 704 lx respectively. Unlike the rules
generated from the actual results measured in the CIESOL building, one can appreciate that the month
is not an influential factor, because the user’s visual comfort zone will depend on the lighting level or
luminance of the room, regardless of the time of year. An example of the rules generated by means of
the FLR classifier is shown below:

R1: {f = 1↔, t8[14.67, 22.98] ∧ (s8) ∧ (¬a) ∧ (m = 1)}

R2: {f = 2↔, t8[23.99, 29.98] ∧ (s8) ∧ (¬a) ∧ (m = 3)}

R3: {f = 0↔, t8[23.99, 29.98] ∧ (¬s8) ∧ (¬a) ∧ (m = 3)|}
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R4: {f = 2↔, t6[24.99, 30.98] ∧ (s6) ∧ (¬a) ∧ (m = 3)}

R5: {l = 10↔, i6[532,663] ∧ (s6) ∧ (¬a)}

R6: {l = 10↔, i8[582,704] ∧ (s8) ∧ (¬a)}Sustainability 2019, 11, x FOR PEER REVIEW 16 of 23 
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The rule model to be run by the Adaptive Transformation Service, is built from the evaluation of
the rules generated by the classifiers. This way, once the processing of the study data is completed,
our system has been loaded with the necessary parameters to obtain the adaptive transformation in
the CIESOL building’s home automation system as described below:

• Knowledge data base (Knowledge DB). Stores the registers used in the data preprocessing
previously described. It will be updated over time as the user executes different actions to the
ones generated by the decision-making system.

• Rule model to be executed by the system (AOpDmMi). The rule model in which the rules
generated by the classifiers in the data processing, are stored. This will be updated over time with
the new rules generated in the Decision-Making Service.

• Classifiers DB. Stores the classifiers that have been selected as most suitable in the processing as
well as its parameters (Rhoa, validation, etc.) In the case study of the CIESOL building, these will
be the FLR and C4.5 classifiers.

• Expert’s Knowledge DB. Stores the criteria and parameters to be compared with the results
obtained after applying the corresponding classifier in order to select from among the generated
rules, those rules that best suit the corresponding criteria. For this case study (CIESOL) the
following initial comparison criteria have been selected:

- Correctly Classified Instances. The success rate allows us to identify the amount of cases
tagged correctly by a classifier.

- Kappa statistic measures randomness in the observed proportion of frequencies when
categorizing qualitative variables.
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- Mean absolute error and Relative Absolute Error. The absolute and relative errors give us
an idea of the imprecision of the provided data classification.

• The following secondary comparison criteria will be taken into account: (a) The classifier’s
generation time and (b) the time to classify an instance (i.e., number of rules or depth of the tree).

• Classifier Results Log. To store the register of the results according to the parameters stored in the
Expert´s Knowledge DB and obtained during any of the previous times the classifier has been
run. In our case study the obtained results are those shown in Table 2 for Correctly Classified
Instances, Kappa statistic, Mean absolute error, Relative Absolute Error, Time taken (to generate
classifier) and Time taken (to classify an instance).

In order to validate the adaptive capacity of our architecture proposal, we decided to proceed
in two steps. As a first approach, we decided to measure the adaptation capacity of our proposal in
the case of a user’s change of behavior. In order to simulate this behavioral change of the user visual
comfort, we used a function in Java to randomly change n times (n = 10.000) the registers (Knowledge
DB) of Laboratory 6 decreasing 10 lx (LightIntensityLab6 = 522 lx) the minimum light intensity value
at which the lights in the room would switch on (LightsLab = 1) taking into account the value of the
rest of the attributes involved in the rule (MovSenLab6 and AlarActivePres). Then we proceeded to
launch our system by means of simulation and concluded the system adapted itself to user’s behavior
(visual comfort) adjusting the rule that determines the status of the lights inside Laboratory 6 deleting
the existing rule and generating this new Rule 5:

R5: {l = 10↔, i6[532,663] ∧ (s6) ∧ (¬a)}

In a second approach we set out to test the adaptive capacity of our proposal in the case of possible
changes in the system’s hardware composition (components, sensors). For this test we worked on
the assumption that an actuator was added to the system that would be able to open and close the
blinds along with a sensor to provide feedback about the status of this actuator. In accordance with
our proposal, the actuator would be a new component (SunblindLab) added to the system and the
sensor (BlindSenLab) would be a new variable of the system’s context (Table 3).

Table 3. New Variable Specification.

Abrev. Attribute Name SunBind Description Data Type

b BlindSenLab Close (0,1) Boolean
n SunblindLab Output: 1 Open/0 no action required Numeric

We defined the values of these variables in a way that the blinds of the room could only be opened
(SunblindLab = 1) when the blinds are closed (BlindSenLab = 1). After defining the new context
variable (attribute) and the new system component (class)and using a function in Java, we proceeded
to modify the registers of the data base (Knowledge DB) in which the value of the component Lights
Lab were defined by the prior rule (Rule5) so that when the light intensity value (LightIntensityLab6,
i6) of the room is found to be outside the user’s comfort range (visual comfort), in the case the blinds
of the rooms are closed, they will open. In the case they are already open, the lights inside the room
will switch on. After applying these adjustments we proceeded as in the previous case, running our
system by means of simulation and as a result the previous rule was changed (Rule 5) and a new rule
was generated (Rule 6) as the system successfully adapted to the new system component as well as to
the new requirements that rule its behavior, which is shown below.

R5: {n = 1↔, i6[522,663] ∧ (s6) ∧ (¬a) ∧ (b = 1)}
R6: {l = 1↔, i6 [522,663] ∧ (s6) ∧ (¬a) ∧ (b = 0)}
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Obviously the new requirements introduced into the system would not be complements for a real
home automation control system, since the status of the room blinds (open/closed) should take into
account the light intensity outside and, based on this value, change its state to open only in the case
that the light intensity were higher than the light intensity of the room and it were inside the user’s
visual comfort range determined by the system. However, the purpose of the described simulation is
to ascertain the adaptive capacity of our architectural proposal considering the incorporation of new
components and requirements into the control system, not the development of complex rules for a
domotics control system, which is absolutely feasible with our current architectural proposal.

Figure 11 shows the result of applying our architectural proposal applied to the described case
study. Based on an initial system, in which it has been assumed that the main alarm has been activated,
in the first case, the Adaptive Transformation Service generates the M2M transformation running
the repository’s adaptation rules previously generated by the Decision-Making Service as detailed
in Section 2.2. This way, the Adaptive Transformation Service eliminates the components alarm and
emergency lights from the initial model (Initial Domotics System) and inserts the new components
indoor lights and heating into the new model (Adapted Domotics System A). If, as previously described,
the user’s behavior changes and/or new sensors and/or components are added to the system, the
decision-making service, through learning, will generate new adaptation rules or will alter the existing
rules (adaptation rules) in order to adapt the system to the user’s behavior and to the context variable
of the system. This way, when the Adaptive Transformation Service is executed, from the initial
architectural model (Initial Domotics System) a new model (Adapted Domotics System B) will be
generated in which the components indoor lights and heating are eliminated and the new components
air conditioning and sun blind are inserted according to the new adaptation rules (Figure 11). In our
proposed adaptive architecture at runtime, the components in which the adaptation rules (insert/enable,
delete/disable) generated by the Decision-Making Service are applied, are the software components
that control the hardware devices.Sustainability 2019, 11, x FOR PEER REVIEW 19 of 23 
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the user and the home automation system in the CIESOL building. In fact, the solution presented
equips the domotic system of CIESOL with the ability to adapt to the behavior of the user integrating a
learning system into the domotic system, achieving an improvement in the system’s energetic efficiency
and increasing user comfort by adapting the system to the preferences of the user, thus freeing the
latter from controlling the components involved in the system. In fact, these adaptation rules will be
transformed into control rules and added to the system control by the adaptation process.

As discussed in Section 1, our proposal as a solution to the problem of adapting software systems
at runtime is not suitable for all types of systems but is only focused on component-based software.
Specifically, the architectures describing the software are built from coarse-grained component managed
as black boxes.

We can also say that our proposal is scalable because, although in the case study only temperature
and light intensity were considered as comfort variables in order to limit the study, should we decide
to consider other variables such as CO2 concentration, air pollutants, indoor airflow, humidity, etc.
the system would not require any changes. It would only be necessary to identify the classifier that
generates the best results with this new variable and, if this classifier had not already been identified in
the case study we developed (FLR and C4.5), the new classifier would only have to be stored (IBK,
OneR, etc.) in Classifiers DB for the Decision-Making Service to be able to generate new adaptation
rules to be executed by the system.

Moreover, our approach can be applied to different types of software systems where the runtime
adaptation of component-based architectures is required. Some examples of these kinds of architectures
are related to home automation [10], smart cars [58], smart buildings [59], robotics [60], communication
networks [4] or adaptive user interfaces [43].

Future Work

In future work, we will research new big data techniques that improve the optimization of the
energy consumption and increase user comfort. Additionally, we aim to validate this approach in
scenarios other than the smart buildings and domotic systems selected for this case study. Therefore,
we intend to establish a formal methodology to be able to apply our proposal in any type of dynamic
computer system that can be represented as architectures of coarse-grained components. In this sense,
the methodology should include a protocol to define the available components and the set of adaptation
rules depending on the context information and the behavior required. Furthermore, we aim to extend
the amount of data stored that is related to relevant context information so that, in later stages, big data
techniques that improve the optimization of the energy consumption and increase user comfort can
be applied.
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