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Abstract: This paper focuses on the optimal unit commitment (UC) scheme along with optimal power
trading for the Northeast Power System (NEPS) of Afghanistan with a penetration of 230 MW of PV
power energy. The NEPS is the biggest power system of Afghanistan fed from three main sources;
1. Afghanistan’s own power generation units (three thermal units and three hydro units); 2. imported
power from Tajikistan; 3. imported power from Uzbekistan. PV power forecasting fluctuations have
been handled by means of 50 scenarios generated by Latin-hypercube sampling (LHS) after getting
the point solar radiation forecast through the neural network (NN) toolbox. To carry out the analysis,
we consider three deterministic UC and two stochastic UC cases with a two-stage programming
model that indicates the day-ahead UC as the first stage and the intra-day operation of the system
as the second stage. A binary-real genetic algorithm is coded in MATLAB software to optimize
the proposed cases in terms of thermal units’ operation costs, import power tariffs, as well as from
the perspective of the system reliability risks expressed as the reserve and load not served costs.
The results indicate that in the deterministic UC models, the risk of reserve and load curtailment
does exist. The stochastic UC approaches including the optimal power trading are superior to the
deterministic ones. Moreover, the scheduled UC costs and reserves are different from the actual ones.

Keywords: stochastic unit commitment; optimal power trading; Afghanistan; PV uncertainty;
binary-real-coded genetic algorithm

1. Introduction

Afghanistan, a country with around 30% of its population having accessibility to the utility
grid [1], is now rebuilding its energy sector with the help of the international community with a
focus on providing sustainable energy to its people. Several renewable energy development projects
are being undertaken by the government of Afghanistan. The utilization of these resources is also
encouraged by introducing the problem of air pollution of the country since Afghanistan is amongst
the top 10 countries most affected by indoor air pollution [2]. Given the low levels of energy generation
and accessibility, Afghanistan’s contribution to global CO2 emissions is small. Moreover, while the
country has abundant renewable energy sources (RES), still it is an electricity importing nation [3].

Despite several benefits including low economic costs and zero environmental impacts, RES are
adding fluctuation and uncertainty to power systems. Because of these characteristics, the increasing
level of renewable sources input to power systems makes their operation a challenging task. As an
example, in the problem of unit commitment (UC), an unexpected reduction in renewable power
production might lead to load shedding (i.e., energy not served or reserve not served), due to the
technical constraints of thermal units that would not be able to compensate the forecast error of RES.
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On the other side, a large upward forecast error in renewable power generation may result in an
undesired waste of renewable and clean energy when the committed thermal units are running at
their cost-effective production levels. In order to investigate the effects of RES (photovoltaic power
generation (PV)) on the Afghan power systems’ control and operation, we take the Northeast Power
System (NEPS) of Afghanistan, the largest power system in the country, as a case study and consider
UC (including the optimal power trading since the power system has electricity importations) as a
typical optimization problem, which plays a prominent role in power system operation planning
aiming at specifying which generating units are the most cost effective to be dispatched, so as to meet
the power demand and reserve requirement.

Many research efforts have been concentrated on an efficient UC scheme such as the simulated
annealing algorithm (SAA) [4,5], evolutionary programming (EP) [6], the ant colony system (ACS) [7],
mixed-integer linear programming (MILP) [8–10], the genetic algorithm (GA) [11–13], particle swarm
optimization (PSO) [14], the binary-real-coded artificial bee colony (BRABC) algorithm [15], and
many others. None of the studies mentioned above considered the effect of PV power on system
operation; instead, they only focused on thermal generating units. To take the renewable power effect
into account, some studies and models have been considered to solve the thermal unit commitment
scheme incorporating renewable power. In [16], a chance-constrained two-stage (CCTS) stochastic
program taking the uncertain wind power output into account was studied. In this method, the
chance constraint validates wind power’s minimum utilization by setting a risk level, which restricts
the chance that a large amount of wind power may be curtailed. The influence of different wind
power forecasting, reserve requirement, as well as different UC formulations on system operation is
presented in [17]. In order to handle wind power uncertainties in the UC optimization problem, [18]
proposed a hybrid method. In the suggested model, the optimal unit stage is optimized in the first
stage, and the final power generation scheduling based on a scenario with the best merit is calculated
in the second step. This method uses the quantum-inspired binary gravitational search algorithm
(QBGSA) along with scenario analysis. The authors in [19] incorporated the uncertainty integration of
different sources such as solar, wind, load, and generator outages in stochastic security-constrained
unit commitment (SCUC). In this study, system cost and different reserve plans are presented from the
system economic and reliability points of view. A new clustering scheme for the wind-hydro-thermal
unit commitment problem taking wind power uncertainty into account was introduced by [20]. In
this method, to decrease computational time, similar scenarios are combined so as to generate a
new reduced set including focal scenarios with some probability. In order to solve the nonlinear
optimization problem, the weighted improved crazy particle swarm optimization technique is
implemented along with the pseudocode-based technique. The results indicated that with a pumped
storage power plant and stochastic UC, the operation cost and risk level can be minimized. The
research paper [21] proposed a binary artificial sheep algorithm for the UC of a hybrid system (thermal
units, wind, solar, and pumped hydro-energy storage (PHES) power plants). In this study, the influence
of solar and wind power uncertainty on UC was examined by looking at different solar and wind
power forecasting error levels. In addition, the impact of PHES was analyzed, indicating that PHES can
increase system stability, as well as diminish renewable energy uncertainty. To solve UC and economic
dispatch (ED) considering the uncertainty of wind generation, a probabilistic scheme was analyzed
in [22]. The probability distribution of the variables was found in a discrete form, and the near optimal
scheduling of the system was specified by combining the proposed scheme with a priority list method.
Another research work [23] also studied wind power uncertainty on the UC problem taking PHES
into account. Considering the aforementioned available research works, the main contributions of this
paper are summarized as follows:

• Implementation of the UC optimization problem along with the optimal power trading
considering PV output power uncertainty on a large practical power system, which are vital issues
from the economic and reliability points of view.
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• Applying the proposed optimization problems to keep the connection between physically-
functioning power system and theoretical simulations to indicate the actual market operation
and constraints.

• The majority of the research works considered the fitness function to be the total operation cost of
thermal units (for some studies, plus the reserve and energy not served); however, in the current
study, as the practical power system suggests, import power tariffs are also analyzed.

• Most of the research work focused only on the wind power uncertainty integration in the UC
optimization issue, but no research can be observed that has worked on just PV power uncertainty
integration in optimal unit commitment and at the same time including optimal power trading.

• Instead of traditional Monte Carlo simulation, Latin-hypercube sampling along with Cholesky
decomposition (LHS-CD) is used to generate forecasted PV scenarios.

2. Afghanistan’s Solar Energy Potential

Afghanistan possess adequate renewable sources; however, they are not uniformly disseminated
throughout the country, except solar energy sources. Western regions of Afghanistan have the
availability of wind sources, the whereas central, northern, southern, and eastern regions are suitable
for small and micro hydro power plants. Solar energy exists with almost an indistinguishable amount
everywhere in the country [24], as shown in Figure 1 [25]. Afghanistan is located in a sunny belt,
is blessed with many sunshine hours and high insolation levels, and is ideally located to benefit from
solar energy technologies. The country averages 300 days of the sunshine per year. The mean global
irradiation falling on the horizontal surface is about 6.5 kWh per m2 per day; this amounts to about
3000 sunshine hours and 2.37 MWh/m2/year. Energy radiated from the Sun is about 6.6 ×1010 kW,
and the possible solar energy potential for the country is 2.22×108 kW. The sun shines on average for
10 h per day [26–29]. This amount of solar energy in Afghanistan cannot only fulfill the present annual
energy requirements at home, but it can be exported to other countries as well.

Figure 1. Afghanistan solar radiation map [25].
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3. Prediction and Scenario Formulation

3.1. Point Forecast Using a Neural Network

To consider the impacts of PV electric power uncertainty in optimal UC and power trading
schemes (stochastic models), at first, scenarios were generated based on the point predicted solar
radiation and the forecast error. In this study, a neural network (NN) implemented in the Neural
Network Toolbox (nftool) of MATLAB was used to predict the point solar radiation. The NN was
trained by utilizing the back-propagation algorithm providing with data (temperature, humidity, and
wind speed of Kabul City, Afghanistan) from April 2011 to April 2015 as inputs and the solar radiation
as the output [30,31]. Then, the mean absolute error (MAE) was calculated from the forecasted solar
radiation obtained for each hour in May 2015 (Figure 2). The computed MAE was 25%. The forecasted
result of solar radiation in Kabul City, Afghanistan, on 10 May 2017 is shown in Table 1.
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Figure 2. Solar radiation forecast results for May 2015, Kabul City, Afghanistan.

Table 1. Predicted solar insolation.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12
It (W/m2) 0 0 0 0 0 0 50 145 270 405 593 687
Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

It (W/m2) 600 520 420 260 65 18 0 0 0 0 0 0

3.2. Scenario Generation

As mentioned before, the calculated MAE of solar forecasting was between −25% and +25%.
Then, scenarios were generated between a level of high solar radiation of 125% and low solar radiation
of 75%. Many available literature works used Monte Carlo [16,19,32] and Latin-hypercube sampling
(LHS) [20,33] simulation techniques for renewable energy uncertainty representation. The main
difference between these two approaches is the number of iterations needed to produce an input
distribution through sampling precisely. Monte Carlo simulation requires a large number of samples
to approximate an input distribution, while LHS converges faster, thus requiring fewer samples.
Therefore, in this research work, LHS along with Cholesky decomposition (LHS-CD) was introduced to
generate scenarios within the given band at every hour. The inclusion of Cholesky decomposition [33]
was to decrease unwanted correlations between samples of random variables. The 50 scenarios
generated for 24 h on 10 May 2017 for Kabul City, Afghanistan, using the suggested method are
indicated in Figure 3 (PV electric power was calculated using Equation (13)).
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Figure 3. PV scenarios for uncertainty representation.

4. UC and Optimal Power Trading Problems Formulation

As was discussed in the Introduction section, in recent years, a large amount of RES, specifically
PV electric power, has been introduced into the Afghan power systems. This originates from the fact
that there is massive potential for solar energy in Afghanistan, as well as the need and demand for
electric energy of poor and unfortunate people. Afghanistan imports 78% of electrical energy from its
neighbor countries (Uzbekistan, Turkmenistan, Tajikistan, and Iran), and the remaining 22% is from
its own generation from thermal and hydro units [34]. Furthermore, the utilization of this clean and
environmentally-friendly energy source is further encouraged by considering the issue of air pollution
in the country.

As the country is experiencing its initial stages of integrating PV technology into its existing
power systems, it is very important to have a research work investigating the influences of PV power
uncertainty for its power systems’ optimal operation and control. Therefore, in the current paper,
the NEPS of Afghanistan, which is supplied by existing hydropower and diesel projects of the country
and imported power from its two neighboring countries (Tajikistan and Uzbekistan), is selected,
and the optimization problems of UC and power trading are solved.

4.1. Objective Function

As PV and hydro power plants do not consume fuel, they are the first selection. In the present
study, the purpose of solving UC and optimal power trading for the proposed system with PV
uncertainty is to minimize the expected operation cost (fuel cost and start-up cost) of thermal units
and the expected tariffs of import powers, as well as to maximize the system reliability expressed as
the penalty terms of expected load not served (LNS) and reserve not served (RNS) costs, subject to
some constraints. Thus, the objective function can be expressed as follow:

Min.TC (1)

where:

TC =
Ns

∑
s=1

ωs

{
NG

∑
i=1

T

∑
t=1

FCi(PGs
i,t)Uit +

Z

∑
z=1

T

∑
t=1

cz × PFs
z,t +

T

∑
t=1

(Clns × LNSs
t + Crns × RNSs

t )

}

+
NG

∑
i=1

T

∑
t=1
{SCi,t(1−Ui,t−1)Ui,t}

(2)

where:
TC is the total expected cost;
s indicates scenarios s = 1, ..., Ns;
ω is the probability of scenario s;
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i shows thermal generators, i = 1, ..., NG;
t is the index of time intervals in the planning horizon, t = 1, ..., T;
FCi(PGs

i,t) is the fuel cost function of the ith thermal unit at time t in scenario s;
PGs

i,t is the output power of thermal unit i at hour t in scenario s;
Ui,t is the on/off [0,1] status of the ith thermal unit at time t;
z is the index for countries from which Afghanistan imports, z = 1, ..., Z;
cz is the cost of importing power for Afghanistan from country z;
PFs

z,t is the power imported by Afghanistan from country z at hour t;
Clns is the cost of load not served;
LNSs

t is the load not served at time t in scenario s;
Crns is the cost of reserve not served;
RNSs

t is the reserve not served at hour t in scenario s;
SCi,t is the start-up cost of the ith thermal unit at hour t.

The fuel cost function FCi(PGs
i,t) is given by:

FCi(PGs
i,t) = ai + biPGs

i,t + ci(PGs
i,t)

2 (3)

where ai, bi, ci are the fuel cost coefficients of the ith thermal unit.
The start-up cost of the ith thermal unit depending on the continuous off time of the unit before
starting-up is given by the following equation:

SCi,t =

{
SChot

i : MDTi ≤ To f f
i,t ≤ MDTi + Tcold

i

SCcold
i : To f f

i,t ≥ MDTi + Tcold
i

}
(4)

where:
SChot

i is the hot start-up cost of the ith thermal unit;
MDTi is the minimum down time of the ith thermal unit;
To f f

i,t is the duration of the ith thermal generator being continuously off;
Tcold

i is the cold start-up hour of the ith thermal unit;
SCcold

i is the cold start-up cost of thermal unit i.
The objective function (2) is constrained by the following equalities and inequalities.

4.2. Thermal Units’ Output Power Limit

The active power generation of each committed thermal unit must be within its minimum and
maximum limits:

PGi,minUi,t ≤ PGs
i,t ≤ PGi,maxUi,t (5)

where PGi,min and PGi,max are the minimum and maximum generation limits of thermal unit i.

4.3. Power Trading Limits

The import power of Afghanistan from country z (Tajikistan or Uzbekistan) is restricted by the
minimum and maximum power export capacity of the country z.

PFz,min ≤ PFs
z,t ≤ PFz,max (6)

4.4. System Power Balance Constraint

The sum of generated power from online thermal units, import power, the output power of hydro
units, and PV should be equal to the load demand minus the LNS of the system.
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NG

∑
i=1

PGs
i,tUi,t +

Z

∑
z=1

PFs
z,t +

J

∑
j=1

Pj,t + Ps
PV,t = PLt − LNSs

t (7)

where:
j indicates hydropower plants, j = 1, ..., J;
Pj,t is the power output of hydro unit j at hour t;
Ps

PV,t is the generated power of PV at time t in scenario s;
PLt is the power demand of the system at hour t.

4.5. System Spinning Reserve Constraint

To maintain system reliability, adequate spinning reserves are necessary.

NG

∑
i=1

Ui,t

[
PGi,max − PGs

i,t

]
≥ Rs

t − RNSs
t (8)

where Rs
t is the spinning reserve of the system at hour t in scenario s.

4.6. Thermal Units’ Minimum up and down Time Constraints

Due to operational constraints, once a thermal unit is committed/decommitted, it must remain
stable for a minimum period before a transition:

(Ton
i,t −MUTi)(Ui,(t−1) −Ui,t) ≥ 0 (9)

(To f f
i,t −MDTi)(Ui,t −Ui,(t−1)) ≥ 0 (10)

where:
Ton

i,t = (Ton
i,(t−1) + 1)Ui,t (11)

To f f
i,t = (To f f

i,(t−1) + 1)(1−Ui,t) (12)

and where:
Ton

i,t is the total up-time of the ith unit;
MUTi is the minimum up-time of unit i.

4.7. PV Power Generation

PV power generation for actual solar radiation and forecasted solar radiation is calculated based
on the following equation:

Ppv = ηpv · Apv · I(t) (13)

where ηpv indicates the PV panels’ efficiency, Apv is the total area occupied by the PV panels in m2,
and I(t) is the hourly solar insolation in MW/m2.

5. Binary-Real Coded Genetic Algorithm

In the present research work, a binary-real genetic algorithm (GA) [13] is coded in MATLAB
software to find the optimal value of the objective function (2) constrained by (5)–(12). In the proposed
algorithm, the binary-coded GA specifies thermal units’ scheduling (on/off status), and the real-coded
GA finds the power dispatch of thermal units and optimal power imports. The difference between
the methodology of [13] and the approach used in this research is that the earlier included only
deterministic UC, while the study under consideration deals with the stochastic UC including power
trading in which the number of decision variables increases exponentially with the increasing number
of scenarios; thus, it becomes a more difficult and complex optimization issue.



Sustainability 2019, 11, 4504 8 of 16

5.1. Initialization

In GA, decision variables are coded by a string structure called chromosomes. Initially, the GA is
structured to generate randomly a set of chromosomes called a population (Q) within their predefined
domain. The scheduling of thermal units is assigned the value of zero or one with the same probability,
while their output power is selected to be a random real value between their minimum and maximum
power limits. In addition, the import power from Tajikistan and Uzbekistan is also chosen to have
random amounts between their minimum and maximum export capacities.

5.2. Repairing Procedures

With the stochastic UC, the number of decision variables increases exponentially with the
increasing number of scenarios; therefore, for any algorithm, it is very difficult to maintain units
and system constraints, especially when random initial populations are generated, thus requiring the
utilization of some repairing procedures to be taken into account. The following mechanisms, which
have already been considered [11–13,35], are now introduced into the study. The repairing procedures
aim to repair the solutions that violate the given constraints.

The minimum up and down constraint of thermal units were handled by adjusting units’ on and
off status, respectively. If MUTi > Ton

i,t , then the commitment status of the unit is extended to the next

hours until the constraint is satisfied. Accordingly, if MUTi > To f f
i,t , then the off status of the unit is

updated by committing the unit in the off hours between two committed states.
LNS and RNS of (7) and (8) are calculated accordingly after the completion of UC scheduling

and economic thermal units’ dispatches, as well as the optimal import power.
It should be mentioned that besides the implementation of the above procedures after the

initialization, they are also applied after the crossover and mutation operations.

5.3. Calculation of the Objective Function

The initial population passing through the repairing mechanisms is put into the fitness function
(2), and their values are calculated and the best ones stored.

5.4. Selection

The selection operator aims to create multiple copies of good solutions and omit weak solutions,
while keeping the population size constant. To do so, a number of ways and methods are available [36].
The tournament selection approach [36] (with the tournament size = 2) is applied herein in which
tournaments are played between two random solutions and the solution with a better fitness value is
selected and put into the mating pool.

5.5. Crossover

The selection procedure generates more copies of strong solutions, but it does not create any
new solutions (offspring population); instead, the crossover and mutation operators are assigned
for this purpose. The crossover operator is used to create two or more offspring from two or more
parent solutions chosen during the selection process. The same as the selection operator, there exist
some types of crossover procedures, and within this paper, the two-point crossover operator was
applied [36]. With a predefined crossover probability (Pc), two random parent solutions were picked
from the mating pool, and some portions of them (either the middle or two ends) were exchanged to
create two new offspring solutions.

5.6. Mutation

In order to keep the diversity in the population that helps the search towards global optima,
the mutation operator was needed [36]. The mutation operator randomly altered a string with a
mutation probability (Pm) to generate a better string.
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6. Simulation Conditions

The simplified diagram of the NEPS of Afghanistan simulated for the optimal UC and power
trading taking PV output power uncertainty into account is depicted in Figure 4. The penetration
capacity of PV electric power was assumed to be 230 MW. The system power demand, thermal units’
data, and import power parameters are indicated in Figure 5 and Tables 2 and 3, respectively. In Table 2,
TG is the thermal generator. The power system also includes three hydropower plants, each with
available capacities of 100 MW, 66 MW, and 22 MW. The cost of RNS was $1100/MWh, and the cost of
LNS was $3500/MW h. To compensate the forecasted error of PV power generation, the basic spinning
reserve is considered to be 10% of the load. The following five case studies were conducted to show
the impacts of PV electric power and different UC modelings and various spinning reserve needs, as
well as to indicate the effectiveness of the proposed method.

Figure 4. The simplified diagram of the Northeast Power System (NEPS) of Afghanistan [3].
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• Case 1: The PV power is not injected into the power system; the existing three thermal generating
units, three hydro units, and import power from Tajikistan and Uzbekistan are selected to meet
the power demand (deterministic UC and optimal electricity trading).

• Case 2: The PV power point forecast is used along with the power generating system of Case 1.
• Case 3: The same as Case 2, all the power-generating units are connected, including PV forecasted

power, but this time, the perfect forecast of PV generation is considered.
• Case 4: This case takes into account 50 predicted PV scenarios generated with the method

described in the Prediction and Scenario Formulation section. The basic spinning reserve was
assumed as 10% of the load demand (stochastic UC and optimal power trading).

• Case 5: The stochastic UC of case 4 with increasing the reserve requirement from 10%–15% of the
system power demand.

Time (hr)
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Figure 5. Power demand of the NEPS of Afghanistan [37,38].

Table 2. Thermal units’ data [37,38]. TG, thermal generator.

TG-1 TG-2 TG-3

PGi,max (MW) 105 22 23
PGi,min (MW) 15 5 5
ai ($/h) 680 660 665
bi ($/MWh) 16.5 25.92 27.27
ci ($/MW2h) 0.00211 0.00413 0.00222
MUTi (h) 4 1 1
MUDi (h) 4 1 1
SChot

i ($) 560 30 30
SCcold

i ($) 1120 60 60
Tcold

i (h) 4 0 0
Ti,0 (h) 4 1 −1

Table 3. Import power parameters [37,38].

Parameters Tajikistan Uzbekistan

PFz,max 300 300
PFz,min 0 0
cz ($/MWh) 20 60

Simulations were run based on a two-stage programming in which the on/off states of thermal
units and power dispatch (thermal units’ economic dispatch and import powers) were run in sequence.
The simulation period T was selected by dividing one day into 24 h. In the day-ahead stochastic cases,
UC were achieved by minimizing the total expected cost expressed in (2) as per the 50 scenarios of PV
generation (for the deterministic cases, (2) considers only one scenario, PV point forecast).

For both UC modelings (deterministic and stochastic), in the second step (intra-day), an economic
dispatch was made by setting the values of the variables representing the status of the thermal units
found at the day-ahead stage. This stage minimized the total cost considering only one scenario:
the actual PV power known on that respective day.
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7. Simulation Results and Discussions

The objective function (2) subject to the constraints (5)–(12) was solved for each case, and the
simulation results (Figures 6–12) are discussed as follow:

• Case 1: This case was considered to analyze the impact of not integrating PV power generation
into the proposed power system when dealing with deterministic UC and optimal power trading.
The results for both day-ahead UC and intra-day operation included the total cost TC = $366,940
(fuel cost = $86,533, start-up cost = $1360, import power tariff = $279,050). As can be observed
from Figure 6a, this case had the highest cost amongst all day-ahead UC costs, because more
thermal units needed to be online (Figure 7) and more power was imported from Tajikistan and
Uzbekistan (Figure 8a) to recover the unavailable output power of PV. Moreover, because of
the large penalty from RNS and LNS, the operating reserve for the day-ahead UC was over the
basic spinning reserve lines (Figure 9), meaning that the cost associated with the reserve and
load curtailments was zero. Due to zero PV power penetration, the intra-day operation available
reserve (Figure 10) was the same as the scheduled available reserve (Figure 9).

• Case 2: As PV electric power was added to the power system, the total cost (Figure 6a) decreased
to TC = $310,340 (fuel cost = $81,340, start-up cost = $1270, import power tariff = $227,730), since
compared to Case 1, it required less thermal units to be turned on (Figure 7) and less power
to be imported from the two neighboring countries (Figure 8a). In addition, as the forecasted
power was more than the actual power, hence among the deterministic cases, Case 2 had the least
TC leading to lower available reserve capacity (Figure 9) and a high risk of reserve curtailment
for the intra-day operation, as described below. For the intra-day operation (Figure 6b), despite
the substantial contribution from import powers (Figure 8b), because of the reserve curtailment
happening at Hour 11 due to the high deviation between the actual PV generation and the
predicted power, Case 2 incurred the most enormous cost TC = $402,400 (fuel cost = $78,133,
start-up cost = $1270, import power tariff = $261,120, reserve curtailment cost = $61,875). There
was one very important point to be mentioned: although a much lower available reserve capacity
existed from Hours 17–21, the risks of reserve curtailment did not exist in these hours, and this
was because of the unavailability of the PV power in these hours.
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Figure 6. Deterministic and stochastic unit commitment (UC) and operation costs. (a) Day-ahead UC
costs. (b) Intra-day operation costs.
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Figure 8. Optimal power trading based on day-ahead UC and intra-day operation. (a) Import power
based on day-ahead UC. (b) Import power as per intra-day operation.
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Figure 9. Scheduled day-ahead available operating reserve for Case 1–Case 3.
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Figure 10. Intra-day available operating reserve for Case 1–Case 3.
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Figure 11. Day-ahead UC and intra-day operation available reserve of Case 4.
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Figure 12. Day-ahead UC and intra-day operation available reserve of Case 5.

• Case 3: The actual PV generation was used in Case 3; therefore, the day-ahead UC and intra-day
operation costs were the same (no load and reserve curtailment happened). Furthermore,
as discussed in Case 2, the actual PV power was less than the forecast generation; thus, for
the day-ahead UC costs (Figure 6a), Case 3 incurred a higher total cost TC = $318,430 (fuel
cost = $81,495, start-up cost = $1360, import power tariff = $235,580) than Case 2, resulting in extra
thermal unit commitment (Figure 7) and much power imported (Figure 8a). However, among
the intra-day operation costs (Figure 6b), it incurred the lowest cost since no reserve and load
curtailment occurred (Figure 10).

• Case 4: The 50 scenarios of forecasted PV power were used to capture its uncertainty. For the
day-ahead UC (Figure 6a), the total expected cost was TC = $313,050 (expected fuel cost = $79,635,
start-up cost = $1300, expected import power tariff = $232,120). In this case, more thermal
units were needed to be turned on to manage different PV power scenarios compared to the
deterministic Cases 1 and 2, which considered only one scenario (Figure 7). Furthermore,
due to the large penalty from RNS, the available reserve was above the basic spinning reserve
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(Figure 11). Moreover, for the intra-day operation (Figure 6b), the total cost was TC = $334,740
(fuel cost = $78,047, start-up cost = $1300, expected import power tariff = $255,390), for which,
unlike Case 2, the reserve curtailment cost was zero, also leading the available reserve for the
intra-day operation to be over the basic spinning reserve requirement (Figure 11), which depicts
the superiority of Case 4 (stochastic UC with inclusion of the optimal power trading).

• Case 5: In order to investigate the impact of different reserve needs and to further show the
superiority of the stochastic UC including the optimal power trading, Case 5 with the reserve
requirement of 15% of the power demand was studied. For the day-ahead UC (Figure 6a),
the total expected cost TC = $320,020 (expected fuel cost = $83,759, start-up cost = $1210, expected
import power tariff = $235,051) was higher than the stochastic Case 4 with the basic reserve
requirement, therefore leading to more thermal units being turned on (Figure 7) and more power
being imported (Figure 8a). In addition, for the intra-day operation (Figure 6b), the total cost was
TC = $339,670 (fuel cost = $79,291, start-up cost = $1210, import power tariff = $259,170), in which
the reserve curtailment cost was zero, and the same as the stochastic Case 4, the available reserve
was over the reserve need of the system (Figure 12).

8. Conclusions

In this study, the NEPS of Afghanistan, which includes optimal electricity trading, as well,
was selected, and the day-ahead UC and intra-day operation for the different UC modelings and
reserve requirements were analyzed. Unlike the previous studies, in this research work, besides
implying the UC optimization scheme, the optimal power trading was also investigated. In addition,
in most of the studies, the objective function is the total operation cost of thermal units; however,
in this paper, as the practical problem of optimal operation suggests, imports power tariffs were also
added, which further increased the complexity of the system optimization. Moreover, the coordination
between a physically-functioning power system and simulation results was kept to represent the actual
market operation, and for the uncertainty representation of PV, the Latin-hypercube Sampling along
with the Cholesky decomposition (LHS-CD) was used instead of traditional Monte Carlo simulation.

Five case studies were analyzed and discussed from the perspective of the system economy and
reliability. A binary-real GA was coded in MATLAB software for the optimization of each case study.
The results for the day-ahead UC indicated that as Case 1 considered no PV power penetration, hence
the total cost TC = $366,940 of Case 1 was the largest. Case 2 used the PV point forecast, which was
higher than the actual forecast; hence, Case 2 obtained the least cost of TC = $310,340. For the intra-day
operation cost, in contrast to the least day-ahead UC cost, Case 2 obtained the largest cost TC = $402,400
due to the high reserve curtailment cost. Obviously, Case 3 with perfect forecast had the lowest cost of
TC = $318,430 among the intra-day operation costs since no reserve and load curtailment happened.
Case 4 considered 50 scenarios of predicted PV power with the basic spinning reserve equal to 10% of
the load demand; hence, for the day-ahead UC, the total expected cost TC = $313,050 of Case 4 was
higher than Case 2, which used only one scenario. This was due to more online scheduling of units,
compared to the deterministic Case 2, to handle the predicted PV power scenarios. However, for the
intra-day operation, Case 4 had a total cost of TC = $334,740, for which, unlike Case 2, the reserve
curtailment cost was zero, leading the available reserve for the intra-day operation to be over the basic
reserve requirement. This result indicated the superiority of the stochastic Case 4. Case 5 took into
account 50 scenarios of forecasted PV power with the spinning reserve equal to 15% of the system
load demand. Therefore, compared to Case 4, the day-ahead and intra-day operation costs increased
to $320,020 and $339,670, respectively. The same as Case 4, the reserve curtailment cost was zero.
The results of Case 5 indicated that the total cost of the system was increased by raising the reserve
requirement of the system.

For future work, as Afghanistan is located between energy surplus regions (Central Asian
countries) and an energy deficit area (Pakistan) and also has abundant RES, this can be exploited not
only to meet its power demand, but also it can export to Pakistan as well. Therefore, for future work,
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Pakistan as electricity deficit country will also be included in the model. Furthermore, the effect of a
storage system such as PHES will also be investigated. In addition, the cost minimization along with
profit maximization are to be explored.
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