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Abstract: This paper had two main purposes. One was to estimate annual total aviation CO2

emissions from/among all key urban agglomerations (UAs) in China and its changes patterns from
2007 to 2014. The second one was to visualize the aviation carbon footprints among the UAs by
using a chord diagram plot. This study also used Kaya identity to decompose the contribution
of potential driving forces behind the aviation CO2 emissions using Kaya identity. Especially,
it decomposed factor CO2/gross domestic product (GDP), which is wildly used in Kaya identity
analysis, into factor CO2/value-added (VA) and factor VA/GDP. Here, VA represents the tourism
value added of the corresponding flights. The main results were: (1) The UAs developed a much
bigger and stronger carbon network among themselves. (2) There was also an expanding of the
flows to less densely populated or less developed UAs. However, the regional disparity increased
significantly. (3) Compared with the driving factor of population, the GDP per capita impacted
the emission amount more significantly. Our contribution had two folds. First, it advances current
knowledge by fulfilling the research gap between transport emissions and UA relationship. Second,
it provides a new approach to visualizing the aviation carbon footprints as well as the relationships
among UAs.

Keywords: aviation emissions; regional disparity; chord diagram plot; kaya identity; value added of
the corresponding flights; UAs relationships

1. Introduction

Living in an age where urban areas expand rapidly and the interaction between cities grows
frequently, urban agglomeration (UA) sustainability has become a hot topic for researchers since 1990s.
Within previous studies, the transport sector has gained widely concerns due to it is one of main
contributors of UA air pollutions and greenhouse gas (GHG) emissions [1]. It is argued that, to achieve
urban sustainability, we need to measure and control the emissions from the transportation sector [2,3].
Policies that encourage transport and urban design integration (driving CO2 reduction by integrating
transport and urban design strategies, 2011), urban land-use regulation [4], transportation shift from
higher emission models to lower emission ones (sustainable passenger road transport scenarios to
reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City
metropolitan area), such as to non-motorized transport models or public transport models (Deepty Jain
and Geetam Tiwari [5]), or reduce vehicle-miles traveled are typically considered as means to reduce
GHG emissions in an urban area (passenger travel CO2 emissions in US urbanized areas: Multi-sourced
data, impacts of influencing factors and policy implications, 2014) [2]. Furthermore, according to the
World Conference on Transport Research’s project, the ‘Comparative study on Urban Transport and the
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Environment’, urban low-carbon transport measures could be divided into two categories—‘Strategies’
and ‘Instruments’ (Nagamura et al. [6]), and Nakamura and Hayashi [7] summarized these strategies
into three components: Avoid, shift and improve, based on the so-called avoid–shift–improve (ASI)
framework. These previous studies solely focused on the emissions of a single urban area or UA [8].
To the best of our knowledge, there have been relatively few studies exploring transport emissions and
interrelations among UAs.

Yet, it is difficult to assess transportation emissions among UAs due to the complexity of traffic
modes and volume. Alternatively, it is a possible approach to address this issue by estimating aviation
CO2 emissions between UAs based on methods provided by the European Environment Agency
(EEA), EUROCONTROL or Corinair. Such as Alonso et al. [9], calculated the aviation CO2 emissions
distribution among EU countries; Wu et al. [10] compared the CO2 emissions of China’s domestic
aviation market and found that the airports located in the Beijing–Tianjin–Hebei, the Yangtze River
Delta and the Pearl River Delta UAs totally accounted for half of the overall annual emissions. However,
the emissions were generally emitted by flights bound to other UAs or regions probably due to two
reasons: (1) The major cities in each UA are well connected by surface transport modes and the surface
transport modes have replaced inter-region flights; and (2) these UAs have not yet built interconnection
transportation networks among themselves or to other UAs. This study quantitatively supports
decision making in developing a low-carbon aviation industry in China but did not focus on UAs
relationships or carbon footprints.

Based on the above background, this paper has three study purposes. (1) To investigate the aviation
CO2 emissions in terms of UAs in China; (2) to visualize aviation carbon footprints among the UAs and
(3) to estimate the impacts of regional disparities on the carbon footprints and its directions. This study
takes all key UAs as study areas, and the study period is from 2007 to 2014. Primarily, we develop two
aviation datasets utilizing big data mining technology, then calculate the annual emission quantities
based on the EEA method. Moreover, based on the calculation result, we use the chord diagram plot
to visualize the emissions footprints among the UAs and cities. Furthermore, we use Kaya identity
to decompose the contribution of key driving forces behind the emissions, as well as to estimate the
direction of carbon footprints. Our contribution has two folds. First, it advances current knowledge by
fulfilling the research gap between transport emissions and UA relationship. Second, it provides a new
approach to visualizing the aviation carbon footprints as well as the relationships among UAs.

2. UAs in China

According to China’s ‘13th Five-Year Plan’ issued by the National Development and Reform
Commission of China, there are 19 key urban agglomerations in China (http://www.ndrc.gov.cn/

zcfbghwb/). These are the Beibu Gulf (BG), Beijing–Tianjin–Hebei (BT), Chengdu–Chongqing (CC),
Central Guizhou (CG), Central Southern of Liaoning (CL), Central Plains (CP), Central Shaanxi
Plain (CS), Central Yunnan (CY), Hohhot–Baotou–Ordos–Yulin (HB), Harbin–Changchun (HC),
the areas along the Huanghe River in Ningxia (HN), the Jinzhong regions (JR), Lanzhou–Xining (LX),
the Middle-reaches of the Yangtze River (MY), the northern slopes of the Tianshan Mountains (NT), the
Pearl River Delta (PR), the Shandong Peninsula (SP), West Coast of the Straits (WC) and the Yangtze
River Delta (YR).

These UAs are the most developed areas in China. It is expected that these UAs will totally
account for 74% of the country’s urban population by the end of 2020 (NDRC, 2019) [11]. Using the data
derived from the 1:1 million basic geographic databases of the National Basic Geographic Information
Center of China, we developed Figure 1 to show the geographical location of all UAs, where green
blocks refer to UA boundaries, grey ones are provincial boundaries and red circles present major cities.
It could be observed that (1) the UAs were located separately, albeit some of them even crossed the
provincial boundaries; (2) it included most of the provincial capital and municipality directly under
the Central Government (the biggest red circle).

http://www.ndrc.gov.cn/zcfbghwb/
http://www.ndrc.gov.cn/zcfbghwb/
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Figure 1. Distribution of urban agglomerations (UAs) and cities in China. 

On the other side, there are sharp and growing regional variations among the UAs regarding 
the gross domestic product (GDP), per capita income, transportation infrastructure or natural 
resources. Such as the top five UAs (BT, PR, YR, CC and MY) totally contribute to 55% of the country’s 
GDP; while the rest of the 14 UAs only contributed to 45% of the GDP. Table 1 lists the population of 
each UA. It indicates a huge population disparity among the UAs in terms of total amount (from 
72.34 million of BT to 2.97 million of NT) and change rate. From a geographical perspective, Liu et al. 
[12] founded that the UAs with the greatest values of factors comprehensive aggregating ability were 
mainly centralized in the prosperous eastern corridor of China, while the UAs located in the western 
China had the lowest comprehensive ability. Especially, there is a declining gradient pattern from 
east to west, and this declining pattern is consistent with the regional differences of GDP and 
population distributions.  

Table 1. Population number of each urban agglomeration (in million). 

 Urban Agglomeration 2007 2014 Chang Rate (%)  
1 Beibu Gulf (BG) 16.74 17.86 6.69% 
2 Beijing–Tianjin–Hebei (BT) 54.97 72.34 31.60% 
3 Chengdu–Chongqing (CC) 68.75 69.04 0.43% 
4 Central Guizhou (CG) 33.17 28.40 −14.37% 
5 Central Southern of Liaoning (CL) 18.81 19.13 1.69% 
6 Central Plains (CP) 42.49 42.83 0.80% 
7 Central Shaanxi Plain (CS) 10.16 10.38 2.18% 
8 Central Yunnan (CY) 5.18 5.51 6.34% 
9 Hohhot–Baotou–Ordos–Yulin (HB) 9.58 10.60 10.61% 

10 Harbin–Changchun (HC) 30.62 30.49 −0.43% 
11 The Areas Along the Huanghe River in Ningxia (HN) 2.55 3.09 21.39% 
12 The Jinzhong Regions (JR) 7.13 7.51 5.35% 

Figure 1. Distribution of urban agglomerations (UAs) and cities in China.

On the other side, there are sharp and growing regional variations among the UAs regarding the
gross domestic product (GDP), per capita income, transportation infrastructure or natural resources.
Such as the top five UAs (BT, PR, YR, CC and MY) totally contribute to 55% of the country’s GDP;
while the rest of the 14 UAs only contributed to 45% of the GDP. Table 1 lists the population of each UA.
It indicates a huge population disparity among the UAs in terms of total amount (from 72.34 million of
BT to 2.97 million of NT) and change rate. From a geographical perspective, Liu et al. [12] founded that
the UAs with the greatest values of factors comprehensive aggregating ability were mainly centralized
in the prosperous eastern corridor of China, while the UAs located in the western China had the lowest
comprehensive ability. Especially, there is a declining gradient pattern from east to west, and this
declining pattern is consistent with the regional differences of GDP and population distributions.

Many researchers have explored the environmental issues related to Chinese UAs over the last
decade. However, the previous studies published in English journals almost took a single UA as the
study area, especially, Beijing–Tianjin–Hebei (e.g., Hao et al. [13]; Zhang et al. [14]; Li et al. [15]),
the Yangtze River Delta urban agglomeration (Guo et al. [16]; Zhen et al. [17]; Zhang et al. [18];
Liu et al. [19]) or the Pearl River Delta urban agglomeration (e.g., Wang et al. [20]; Ye et al. [21];
Lu et al. [22]). Alternatively, few attentions have been paid to multiple agglomerations nor the
interactions among them. Meanwhile, those studies mainly addressed issues related to landscape
metrics, urban size, energy flow, ecological networks or urban metabolism. Whilst the estimation of
transportation emissions is a quantified way to reach the UA sustainability goal, few researchers have
paid attentions to this issue.

It is worth noticing that recent papers published by ‘Sustainability’ addressed some new topics
and expanded the study areas. Such as Liu et al. [10] estimated the spatial differences of all China’s key
UAs in terms of factors aggregating ability. It is one of the important issues to study UA sustainability
on a national scale. China is facing serious environmental problems caused by regional socio-economic
development, physical geography, industrial layout and low-carbon city policy disparities (Huang and
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He [23]; Liu and Bo [24]). Regarding CO2 emissions, some researchers have studied the regional
inequity among the Chinese provinces. For example, Dong and Liang [25] found a significant emission
leakage among 30 Chinese provinces and Luo et al. [26] analyzed the regional disparity of freight CO2

emissions in China’s three regions, arguing that the economic structure is the key factor leading to the
disparity. Therefore, this study estimates aviation transportation emissions among all key UAs and its
cities, with a focus on regional disparities.

Table 1. Population number of each urban agglomeration (in million).

Urban Agglomeration 2007 2014 Chang Rate (%)

1 Beibu Gulf (BG) 16.74 17.86 6.69%
2 Beijing–Tianjin–Hebei (BT) 54.97 72.34 31.60%
3 Chengdu–Chongqing (CC) 68.75 69.04 0.43%
4 Central Guizhou (CG) 33.17 28.40 −14.37%
5 Central Southern of Liaoning (CL) 18.81 19.13 1.69%
6 Central Plains (CP) 42.49 42.83 0.80%
7 Central Shaanxi Plain (CS) 10.16 10.38 2.18%
8 Central Yunnan (CY) 5.18 5.51 6.34%
9 Hohhot–Baotou–Ordos–Yulin (HB) 9.58 10.60 10.61%
10 Harbin–Changchun (HC) 30.62 30.49 −0.43%
11 The Areas Along the Huanghe River in Ningxia (HN) 2.55 3.09 21.39%
12 The Jinzhong Regions (JR) 7.13 7.51 5.35%
13 Lanzhou–Xining (LX) 8.64 9.08 5.04%
14 The Middle Reaches of The Yangtze River (MY) 54.49 56.21 3.14%
15 The Northern Slopes of the Tianshan Mountains (NT) 2.47 2.97 19.96%
16 The Pearl River Delta (PR) 11.93 14.01 17.45%
17 The Shandong Peninsula (SP) 28.85 34.71 20.34%
18 West Coast of the Straits (WC) 49.46 52.88 6.90%
19 The Yangtze River Delta (YR) 79.99 94.66 18.34%

Source: National Bureau of Statistics of China, percentages are author calculated.

3. Methods and Data Sources

3.1. CO2 Emissions Calculation

The European Environment Agency (EEA, 2013a, b) [27,28] provides a standard method to
estimate CO2 emissions in terms of seats, routes or airlines. Other calculation methods—for example
EUROCONTROL or Corinair—are also used by researchers to evaluate aviation emissions. However,
these methods are based on the indicator available seat kilometers (ASK; Alonso et al. [9]; Scotti and
Volta [29]; Kousoulidou and Lonza [30]). This study used the EEA emissions calculation method for
two reasons: First, ASK is mainly used to measure an airline’s passenger carrying capacity; therefore,
CO2/ASK is normally used to express an airlines’ emission level such as emission intensity. Second,
this study aimed to determine the regional disparity rather than airlines’ performance.

According to the EEA method, the total emissions (ECO2) are the sum of emissions produced
during an aircraft landing and take-off cycle (LTOCO2) as well as during the aircraft cruising period
(CRCO2 ), see Equation (1).

ECO2 = LTOCO2 + CRCO2 =
∑

i

[(
LTOCO2,i, j + CRCO2,i, j,d

)
·w

]
, (1)

where the emissions of each flight i during the landing and take-off cycle (LTOCO2,i, j) is a fixed value
due to the aircraft type j. The emissions during the cruising period (CRCO2,i, j,d) is a flexible value due
to aircraft type j and travel distance d. By multiplying each flight’s emissions with its annual frequency
w and calculating the emissions of each flight i, the formula obtains the total emissions from all airlines.
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We adjusted several regional aircraft types, which are not recorded in standard forms, into standard
types according to the EEA guidebook.

Two sets of air traffic data were used to calculate the emissions. The first was the air traffic dataset,
which included aircraft type, route (origin-to-destination, OD) and seat supplement in the years 2007
and 2014. The source of this data was China’s domestic air passenger timetable published by the Civil
Aviation Administration of China (CAAC). The second dataset—to determine the flown distance of
each route—was retrieved from the China Travel Sky reservation system. Specifically, the following
aviation data were retrieved:

- Passenger airports of the 19 UAs and all their routes (on city-pair level) within/between the UAs.
In more detail, information concerning flight routes, flight frequency per route, aircraft type and
passenger seats available per flight was obtained.

- Actual flown distance for each route. Flying distance is a key indicator to calculate aircraft
emissions during the cruising period. Some researchers have calculated aircraft emissions during
cruising periods but measured the route distance by using the airports’ geographical coordinates
(Alonso et al. [9]) or great circle distances (Scotti and Volta [29]). To calculate emissions more
precisely, we mined the flown distance of each route from Chinese Travel Sky reservation system.

- Since many major aircrafts provide flexible seating, we used the number of seats as illustrated
in Table 2. Meanwhile, the seating provided by major aircraft types was adjusted according to
an average.

Table 2. Number of seats of major aircrafts.

Airbus Family Boeing Family

Aircraft Type Estimated Number
of Seats Per Flight Aircraft Type Estimated Number

of Seats Per Flight

A320 158 B737 (300, 800) 128, 159
A330 (200, 300) 237, 301 B757 (200) 200

A340-300 255 B767 (300ER) 233
A319 128 B747 (Combi) 280
A321 185 B777 (300ER) 311

Source: Relative airlines’ website.

3.2. Carbon Footprints Visualization

This visualization reveals UA relationships by depicting the aviation carbon footprints between
UAs and cities. Carbon footprint generally refers to the amount of CO2-equivalent emissions caused
by both direct and indirect activities. In this study, however, ‘carbon footprint’ refers to CO2 emissions
emitted directly by flight operations. Generally, researchers input their calculation results into the
ArcGIS platform to illustrate or calculate the spatial distributions of footprints between two regions
or cities (Dong and Liang [25]; Wu et al. [10]). However, Lenzen et al. [31] evaluated the direct
carbon emissions of tourism activities as well as the carbon emitted by producing tourist commodities
globally. They also attempted to map the carbon footprints but could not visualize the footprints’
direction precisely.

To visualize the complex UA relationships, we used a chord diagram plot. The chord diagram plot
is a useful instrument to investigate bilateral flows by identifying the source, destination, direction and
volume. Therefore, a chord diagram plot was used to visualize aviation carbon footprints between
UAs and cities with the help of the circlize package in R. The chord diagram plots visually represent
the direction and volume of carbon footprints.

3.3. Kaya Identity

Kaya identity is a formula that relates the rates of carbon emission to various parameters such
as the population, gross domestic product (GDP) per capita, energy intensity or carbon intensity of
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the energy supply (Kaya [32]). This study revises the Kaya identity to decompose the contribution of
potential driving forces behind aviation CO2 emissions. Factor CO2/GDP has been widely used in
the Kaya identity analysis. However, it is not straightforward to define the factor CO2/GDP in our
study, due to the GDP being the total value of goods and services produced by each UA, but the CO2

emissions only refers to the emissions produced by air transportation sector. Therefore, we introduced
value-added (VA) as one of the key factors, then decomposed the CO2/GDP to CO2/VA and VA/GDP.
Here, VA represents the value added of the corresponding flights.

Especially, this study focused on the tourism value added of the corresponding flights in terms of
the UA. The linkage between the aviation industry and tourism industry has been a hot topic over
the last two decades, in both aviation and tourism research fields (Bojana et al. [33]; Wu et al. [34];
Marco and Alberto [35]). It is generally believed that the aviation industry can bring overall benefits to
local economics, and some of these benefits such as the development of the tourism industry, can be
directly quantified (Button and Taylor [36]). Thus, using the value-added (VA) approach, Fung et al. [37]
measured the benefits that the aviation industry contributed to the Hong Kong economy successfully,
and found that the tourism industry contributed to 0.54% of the GDP. Meanwhile, some researches,
which study the tourism carbon footprint, began to emphasize the emissions from the air transport
sector in recent years (e.g., Sun [38]; Sharp [39]; Lenzen et al. [31]). According to Lenzen et al. [31],
the contribution of air travel emissions amounts to 20% of tourism’s global carbon footprint, while air
travel would come out as the dominant emissions component in some situations. Furthermore,
some evidences indicate that air transportation emission reduction projects could impact tourism
industry. Chen et al. [40] adopted the input–output method (I–O) to measure the economic contribution
of the air transportation energy conservation and emission reduction (ECER) projects in China. Based on
the 139-sectors I–O tables published by the local Bureau of Statistics of Beijing, Tianjin and Hebei,
Chen et al. [40] calculated the value-added coefficient, the complete consumption coefficient and the
complete partition coefficient of the Beijing–Tianjin–Hebei region. Their calculation results indicate,
in terms of the value-added coefficient, the cultural, art and entertainment and activities sector ranked
7th; other tourism related sectors (such as the accommodations sector, business services sector or sports
activities sector) were all the top 20% sectors. Thus, it is reasonable to assume that (1) tourism could
present the aviation additional value at a certain degree; and (2) there is a significant relationship
between aviation emissions and tourism industry.

To make the work tractable, the study used the number of the national high-class tourism scenic
area (5A and 4A level only) owned by each UA as the key indicator to describe the tourism value
added of the corresponding flights. This is because the high-class tourism scenic area is a relatively
robust and measurable indicator of a UA’s tourism success. China National Tourism Administration
(CNTA) started the scenic areas normative and standardized quality rating system in 2007. According
to this system, China’s scenic areas can be divided into five levels from AAAAA (5A), AAAA(4A),
AAA(3A), AA(2A) and A(1A). Of which, 5A presents the world class tourism quality; 4A presents the
national class tourism quality. Both 5A and 4A scenic areas are called high-class level scenic areas.
To become a 5A or 4A-scenic area, one should live up to the CNTA inspection items standards such as
transportation, tourism safety and capability. Regarding to the transportation, the first requirement is
that 5A or 4A scenic areas should be located nearby airports (within two hours transportation). It means
that the high-class tourism scenic area is always located near the airports. Alternatively, the number of
the tourism scenic area could have a positive relationship with the air transportation sector.

Therefore, we rewrite the original equation to Equation (2).

CO2 =
CO2

VA
×

VA
GDP

×
GDP

P
× P (2)

In which, CO2: The aviation carbon emissions; VA refers to value added of the corresponding
flights, which equals the number of high-class tourism scenic areas (5A and 4A level only) owned
by each UA in different years; GDP means the total GDP of cities served by airports within each UA
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and p is the population of these cities. In this way, CO2
VA means emission intensity per VA, VA

GDP means
added value per GDP and GDP

P means GDP per capita in terms of UA, which is affluence. Through
mathematical transformation, the original equation can be rewritten as Equation (3).

d(ln CO2) = d
(
ln

CO2

VA

)
+ d

(
ln

VA
GDP

)
+ d

(
ln

GDP
P

)
+ d(ln P). (3)

Based on Equation (3), with a small change in the variables on the right side of the formula,
the sum of the rate of change was considered to be approximately equal to the rate of change of CO2

emissions during the corresponding period. Therefore, we could determine to what extent these factors
had an influence on aviation carbon emissions in terms of UA.

The population and GDP datasets were assessed from the China Urban Statistical Year Books.
Normally, we selected the data in terms of city, then added the data together according to UA.
The datasets of national high-class tourism scenic areas were assessed from CNTA.

4. Results

4.1. Changes in Total CO2 Emissions Produced by the UAs

The calculation results show that the total annual CO2 emissions produced by all 19 UAs (including
the emission produced by domestic flights between UAs, between UA and non-UA areas and between
cities within a UA) increased from 24.6 million tons in 2007 to 44 million tons in 2014. The average
increase rate was 78.72%. Table 3 demonstrates the change of emission amount in terms of UA.
According to the amount of emissions produced, YR, BT and PR were the top three UAs in both 2007
and 2014. Furthermore, an obvious rising trend of emissions in the middle and western parts of China
was observable, such as in CC, WC, MY and CY.

Table 3. Changes in the total emission amounts per UA, 2007 vs. 2014.

UA

2007 2014 Changes from 2007 to 2014

Emissions
Amount

Share
among

All UAs

Emissions
Amount

Share
among

All UAs

Emissions
Amount

Change
Rate by

Percentage

Changes
Rate by

the Share

BC 850 3.45% 1475 3.35% 625 73.49% −0.10%
BT 3857 15.67% 6571 14.94% 2714 70.37% −0.73%
CC 2386 9.69% 3721 8.46% 1335 55.96% −1.23%
CG 343 1.39% 802 1.82% 459 133.75% 0.43%
CL 821 3.34% 1268 2.88% 447 54.43% −0.45%
CP 495 2.01% 1214 2.76% 719 145.43% 0.75%
CS 805 3.27% 1389 3.16% 583 72.46% −0.11%
CY 1060 4.31% 1719 3.91% 659 62.16% −0.40%
HB 160 0.65% 590 1.34% 430 269.07% 0.69%
HC 637 2.59% 1366 3.11% 730 114.63% 0.52%
HN 80 0.32% 294 0.67% 214 267.86% 0.34%
JR 262 1.06% 497 1.13% 235 89.63% 0.07%
LX 372 1.51% 610 1.39% 239 64.19% −0.12%
MY 1334 5.42% 3370 7.66% 2036 152.60% 2.24%
NT 800 3.25% 1572 3.57% 772 96.57% 0.32%
PR 3737 15.18% 5644 12.83% 1907 51.04% −2.35%
SP 888 3.61% 1463 3.32% 574 64.67% −0.28%

WC 1344 5.46% 2439 5.54% 1095 81.45% 0.08%
YR 4389 17.83% 7995 18.17% 3606 82.16% 0.34%

Total 24,619 100.00% 43,998 100.00% 19,379 78.72% 0.00%

Concerning the change rate by amount, HB saw the fastest increase rate (269.07%), followed by
HN (267.86%) and MY (152.60%). Both oHB and HN are located along the Silk Road, an area that
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has been experiencing a rapid increase in population and air transportation under the One Belt One
Road Initiative. MY was shown to have the largest emission share growth among the UAs within the
Yangtze River Economic Belt. This could be because this UA had experienced rapid economic growth
and airport construction such as8 airports were newly opened during the study period.

In terms of the change rate by share, half of the UAs emission shares declined, especially PR shows
the maximum decline share ratio of −2.35% and BT decreased by −0.73%. This was probably because
fully connected land transport networks as well as HSR (high speed rail) networks were constructed
within the UA BT and other UAs. This means that travelers may prefer to take land transportation
instead of air transport. It may also be because we did not include Hong Kong International Airport in
our calculation, which decreased PR’s share significantly.

4.2. Changes in the Emissions among UAs

The results indicate that CO2 emissions produced by the domestic flights between UAs increased
from 24.16 to 37.28 million tons. The increase rate was 54.3%, which was nearly 25% lower than the
increase of total emissions produced by the UAs (78.72%). Considering the share of emissions produced
by flights between UA and non-UA areas increased from 1.87% to 15.28%, we could see that the UAs
had a much stronger carbon network among themselves, and there was an increase in carbon flow
between UAs and non-UA areas.

Figure 2 shows the changes in the CO2 emissions in terms of the UA. It indicates that there was
an increase in carbon flows to less densely populated or less developed UAs. According to the emission
amount, the top five UAs were YR, BT, PR, CC and MY. On other side, the increase rate of some
UAs, which were located in less densely populated or remote areas, such as HN, HB, CP, CS and WC,
excessed 100%. A further data analysis shows that, based on the emission amount, the total share of
YR, BT, PR, CC and MY decreased about 3.3%, but the share for HN, HB, CP, CS and WC increased by
2.9%. Looking at these changes, we could see the following change patterns.
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Based on a UA-pairs analysis, we also found some interesting patterns. Table 4 shows, from 2007 to
2014, the number of UA-pairs increased from 147 to 152. Of which, the number of UA-pairs produced
more than one million tons in emissions increased from 3 to 7, the number of UA-pairs that produced
0.5–1 million tons increased by three, and the UA-pairs produced 0.1–0.5 million tons increased from
51 to 65. Alternatively, the UA-pairs that produced less than 0.1 million tons declined sharply. Table 5
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indicates that the number of air routes among the UAs increased from 1377 to 2077, as well as and the
average emissions produced by each route increased by 1.63 million tons. It reveals an increase of
disparities among the UAs according to the routes and average emission amounts but could not show
UA emission relationships exactly.

Table 4. Change in the CO2 amount based on the UA-pairs.

Emission Amount No. of UA-Pairs in 2007 No. of UA-Pairs in 2014 Changes

Over 1 million ton 3 7 4
0.5–1 million ton 7 10 3

0.1–0.5 million ton 51 65 14
Less than 0.1 million ton 86 77 −9

Total 147 159 12

Table 5. Changes in routes and average emissions by route (thousand tons).

In 2007 In 2014 Changes from 2007 to 2014

Number
of Routes

Emissions
Per Route

Number
of Routes

Emissions
Per Route

Number
of Routes

Emissions
Per Route

BC 60 13.61 97 14.35 37 0.74
BT 116 30.36 178 33.03 62 2.67
CC 106 24.64 154 20.21 48 −4.42
CG 29 10.63 75 9.94 46 −0.69
CL 69 11.94 91 12.95 22 1.01
CP 54 8.49 108 10.00 54 1.51
CS 51 14.37 62 21.11 11 6.74
CY 35 25.16 54 25.72 19 0.56
HB 31 4.11 74 6.63 43 2.52
HC 59 10.46 83 14.54 24 4.07
HN 12 7.25 31 9.13 19 1.88
JR 31 9.04 45 10.13 14 1.09
LX 33 10.36 57 10.02 24 −0.34
MY 129 11.16 175 12.70 46 1.54
NT 22 33.46 28 41.87 6 8.41
PR 122 29.15 166 34.17 44 5.01
SP 90 9.32 116 12.44 26 3.13
WC 111 10.88 158 14.31 47 3.44
YR 217 20.33 325 22.85 108 2.52
Total 1377 17.28 2077 18.92 700 1.63

4.3. Carbon Footprint Visualization

In this section, we used the chord diagram plot to visualize the carbon footprint among the
UAs and its change patterns (Figure 3). Yes, we could develop more extensive tables to show the UA
relationships according to the emission amount. However, these tables will include the information
of more than thousands of routes, making them too big to include in an academic paper. Compared
with the traditional tables or figures, this new method could depict the carbon footprints accurately,
clearly and scientifically.

In Figure 3, different colors represent different UAs, such as the red is BT, the blue is YR and
so forth. The width of lines portrays the emissions amount between the two cities and the arrow
point shows the direction of the flight that relates to the direction of the carbon footprint. It could be
observed, in both 2007 and 2014, BT, PR and YR showed the largest carbon footprints concerning the
radiation range. This was reflected by the UA-pairs reaching the one-million-ton level in 2014 being
PR–YR, BT–YR, BT–PR, CC–YR, CC–PR, CC–YR and YR–WC. It was also reflected by the fact that the
emissions produced by flights between PR–YR increased nearly 66%, from 2.04 million tons in 2007 to
3.38 million tons in 2014.
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Figure 3 also displays the carbon flows in terms of cities. According to the emission amount,
the cities can be classified into three groups: Core cities, semi-core cities and periphery cities. In both
years, Beijing and Shanghai ranked as core cities, followed by Guangzhou and Shenzhen, which are
both located in and have become new core-cities. Chengdu, Kunming and Urumqi are traditional
semi-core cities. In 2014, Hangzhou, Xiamen, Nanjing, Xi’an and Chongqing started changing to
semi-core cities. From a geographical perspective, the core cities and semi-core cities form a circle,
while the periphery cities are located almost within the circle.

4.4. Driving Factors

This section used Kaya identity to evaluate the impact of key factors on aviation carbon emissions.
Table 6 is the calculation results. Here, d(ln CO2) refers to the change rate of aviation carbon emission,
d(ln CO2

VA ) refers to the emission intensity factor, d(ln VA
GDP ) refers to the added value factor, d(ln GDP

P )

refers to affluence factor and d(ln P) is the population factor. Meanwhile, each value represents the
impacting ratio of the factors on the total CO2 change rate, such as a positive value means higher CO2

emissions and a negative value means lower CO2 emissions.

Table 6. The impact of aviation carbon emission factors of 19 UAs.

UA d(lnCO2) d(ln CO2
VA ) d(ln VA

GDP ) d(ln GDP
P ) d(lnP)

1. BG 73.49% 73.49% −64.66% 165.21% 6.69%
2. BT 70.37% 78.78% −59.33% 78.04% 31.60%
3. CC 55.96% 65.32% −68.06% 194.09% 0.43%
4. CG 133.75% 33.57% −49.53% 304.92% −14.37%
5. CL 54.43% 39.49% −50.22% 118.72% 1.69%
6. CP 145.43% 218.15% −65.83% 123.97% 0.80%
7. CS 72.46% 60.14% −65.66% 206.95% 2.18%
8. CY 62.16% 41.89% −56.75% 148.52% 6.34%
9. HB 269.07% 269.07% −69.34% 194.91% 10.61%

10. HC 114.63% 86.63% −51.32% 137.24% −0.43%
11. HN 267.86% 341.44% −75.22% 177.08% 21.39%
12. JR 89.63% −100.00% −100.00% 96.45% 5.35%
13. LX 64.19% 49.27% −60.75% 166.84% 5.04%
14. MY 152.60% 152.60% −69.03% 213.09% 3.14%
15. NT 96.57% 411.07% −84.48% 106.57% 19.96%
16. PR 51.04% 57.33% −58.14% 95.28% 17.45%
17. SP 64.67% 96.34% −61.29% 80.05% 20.34%
18. WC 81.45% 88.17% −55.70% 103.61% 6.90%
19. YR 82.16% 121.05% −64.00% 93.44% 18.34%

Average 105.36% 114.94% −64.70% 147.63% 8.60%

Figure 4 complements Table 6 to clarify the results further. It shows, (1) each UA presented
a positive and negative offset; (2) all of the factors demonstrated positive effects, excepting the added
value factor and (3) the 19 UAs could be divided into two groups according to the differences in the
results. The first group was UAs that only showed one negative factor, including BG, BT, CC, CL,
CP, CS, CY, HB, HN, LX, MY, NT, PR, SP, WC and YR. The second group was UAs that showed two
negative factors, including CG, HC and JR.

Generally, the results show that, in most of the UAs, the rapid growth of resident’s disposable
income was strongly consistent with the increase in CO2 emissions; the population factor also showed
some positive impacts but only had a limited influence. Regarding to CG and HC, we could see that
the population factor showed positive impacts. One of the possible explanations should be that those
two UAs had two core cities (i.e., Chengdu and Chongqing in CG, Harbin and Changchun in HC),
and the core cities were connected by newly established high-speed railways (HSR), which decreased
air traffic within UAs. The situation of JR was very special. It was possibly due to the number of
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high-level scenic spots located within JR dropped from 2 to 0 over the studying period, which made
the calculation results lose significance.
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Meanwhile, based on Equation (2), we conducted a regression analysis to detect the different
influence levels that all Kaya factors have on the CO2 emissions. Firstly, an F-test was conducted to
check the feasibility of this regression model, based on the changed volume of independent variables
(emission intensity per VA, tourism value per GDP, GDP per capita and population) and dependent
variable (aviation carbon emission). Table 7 presents the ANOVA results, which show those predictors
are significantly related to the dependent variable (at the significant level of 0.05). Besides, the R-square
and the adjusted R-square here were 0.598 and 0.578 respectively, though being a medium degree of
interpretation, the gap between those two values was small, thus it could still be acceptable. The overall
results indicate that this regression model was able to explain to what extent does those four predictors
had an impact on the CO2 emissions.

Table 7. ANOVA test results a of the regression model availability.

Model Sum of Square Df Mean Square F Sig.

Regression b 6.90 × 1018 4 1.73 × 1018 29.806 0.000.
Residual 4.63 × 1018 80 5.79 × 1016

Total 1.15 × 1019 84
a: Predictor (constant): Difference in carbon intensity per VA, difference in tourism value per GDP, difference in GDP
per capita and difference in population. b: R-squared = 0.598, adjusted R-square = 0.578. c: Dependent variable:
Difference in CO2 emissions.

Table 8 shows the regression results, from which, we could observe that (1) the population factor
was the most influential factor that boosted the CO2 emissions, followed by the affluence factor and the
added value factor had the least impact. It means, the increase of population and residents’ disposable
income could give rise to the CO2 emissions, while the increase of scenic spots just slightly led to the
growth of CO2 emissions. (2) At a significant level of 0.05, the changes in population, affluence and
carbon emission intensity factors were positively related to the change in CO2 emissions, which means
that when anyone of those factors grows, the CO2 emissions will go up accordingly.
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Table 8. Regression coefficient a.

Unstandardized Coefficient Standardized Coefficient Collinear Statistics

Model B Standard Error Beta t Sig. Tolerance VIF

(constant) −2.14 × 107 5.17 × 107 −0.415 0.680
Carbon intensity per VA 1.12 × 100 5.48 × 10−1 0.158 2.050 0.044 0.842 1.187
Tourism value per GDP −1.34 × 1010 1.02 × 1010 −0.097 −1.315 0.192 0.918 1.089

GDP per capita 1.62 × 107 6.35 × 106 0.185 2.552 0.013 0.952 1.050
Population 1.53 × 106 1.66 × 105 0.705 9.198 0.000 0.854 1.171

a: Dependent variable: Difference in CO2 emissions.

Table 9 presents the collinear diagnosis result. Combining the collinear statistics in Table 8,
we could see that (1) all the VIF values and condition indices were less than 10, (2) all the eigenvalues
were not zero and (2) only few values in the correlation coefficient matrix were close to 1. Here, VIF refers
to variance inflation factor which represents the ratio of the variance between the explanatory variables
with collinearity, as well as the variance without collinearity, and the bigger the VIF value is, the more
serious collinearities exist. Above results It means that the model was acceptable, for no serious
collinearities between the variables was found. Thus, we can see the regression results were reliable.

Table 9. Collinear diagnosis result a.

Variance Proportion

Dimension Eigenvalue Condition
Index (Constant)

Carbon
Intensity
Per VA

Tourism
Value Per

GDP

GDP Per
Capita Population

1 2.888 1.000 0.03 0.04 0.03 0.03 0.02
2 0.950 1.744 0.01 0.05 0.03 0.06 0.56
3 0.549 2.293 0.00 0.10 0.28 0.41 0.06
4 0.446 2.545 0.04 0.80 0.14 0.03 0.24
5 0.167 4.160 0.92 0.01 0.51 0.47 0.11

a: Dependent variable: Difference in CO2 emissions.

5. Discussion and Conclusions

Estimation of transportation emissions is a quantified way to reach the UA sustainability goal.
In this study, we calculated the CO2 emissions produced by domestic passenger flights within and
among the key UAs in China, in year 2007 and 2014. Based on calculation results, we visualized the
aviation carbon footprints by using a chord diagram plot, then, investigated the potential impacts of
economic, population and value added by corresponding flights on the carbon footprints in terms
of the UA. This study advances current knowledge by fulfilling the research gap between transport
emissions and UA relationship, and provides a new approach to visualizing the transportation carbon
footprints as well as the relationships among multiple UAs.

Firstly, the annual total CO2 emissions produced by air flights to and from the UAs (including the
domestic flights served the routes between UAs, between UA and non-UA areas and between cities
within an individual UA) had increased by nearly 78.9%, from approximately 24.6 million tons in 2007
to 44.0 million tons in 2014. Compared with the annual total CO2 emissions from China’s domestic air
passenger transportation, which increased 73.1%, from 27.5 million tons to 47.6 million tons during the
same period (Wu et al. [8]), we could see that the emissions produced by the flight connected with UA
increased faster than the country level, and more than 90% of the emissions were produced by the
flights served in the UAs.

Secondly, based on the analysis of the emissions produced by the domestic flights between
UAs, we found the following change patterns. (1) The UAs had a much bigger and stronger carbon
network among themselves, which means that the UAs became more closely connected than before.
(2) There was an increase of carbon flows between UAs and non-UA areas as well as an increase in the
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flows to less densely populated or less developed UAs. (3) There was an increase of disparities among
the UAs according to the routes and average emission amounts. Generally, those UAs located in the
eastern part of China produced more CO2 emissions. For example, BT, YR and PR produced more than
40% of the emissions and the core cities—Beijing, Shanghai, Guangzhou and Shenzhen—generated
large amounts of aviation carbon emissions and exerted high aviation footprints over the seven years.
Conversely, the western UAs tended to have higher growth rate due to China’s Western Development
and the One Belt One Road Initiative. An example is the rapid growth of central and western UAs like
MY and HB as well as cities like Chengdu and Kunming, which can also not be ignored. (4) The chord
diagram plot is an effective tool to visualize the carbon footprint among the UAs and cities, as well as
its change patterns.

Thirdly, the Kaya identity results showed that factor GDP per capita and factor population were
the top two positively influential factors leading to the substantial increase in the carbon emissions.
In most cases, the overall carbon emission intensity functioned as a carbon-reduction factor. According
to the results, the 19 UAs could be divided into two groups: The one-negative factor group and the
two-negative factors group. This study introduced variable VA to the Kaya identity analysis. Here,
the VA presents tourism value added of the corresponding flights and evaluated by the number of
national high-class tourism scenic area in terms of UA. The results also indicate that the impact of the
tourism VA was not as significant as that of the GDP per capita or population. The results of F-tests
(with and without VA) showed that few improvements were achieved by adding factor VA into the
regression model, which makes it difficult to explain the exact impacts of the factor VA. The possible
reasons should be (1) this study only selects the national high-class tourism scenic areas as the indicator
to evaluate the tourism VA due to data limitation; and (2) the local governments were all enthusiastic
about building more tourism scenic areas over the last decade.

The policy implications of this result were: (1) To achieve the goal of sustainable UAs and cities,
UAs should work together to build interconnection transportation networks among themselves, then to
promote the modal shift from air transport to surface models. (2) Strengthening the spatial connection is
an important way to break bottlenecks of UAs sustainable development. (3) It is important to consider
that only balanced development can lead China’s UAs to the promised sustainable goal. This study
decomposed the driving forces of aviation carbon emissions through Kaya identity and introduced
a new factor VA. It is acknowledged that we will carry out more researches to evaluate the tourism
VA and to improve its significances by including more tourism sectors, such as the cultural, art and
entertainment and activities sector, accommodation sector, business services sector and sports activities
sector in the future. The impacts of more factors—such as the energy intensity factor or the aircrafts
type factor—should also be evaluated in further studies.
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