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Abstract: In order to produce more efficient, sustainable-clean energy, accurate prediction of wind
turbine design parameters provide to work the system efficiency at the maximum level. For this
purpose, this paper appears with the aim of obtaining the optimum prediction of the turbine parameter
efficiently. Firstly, the motivation to achieve an accurate wind turbine design is presented with
the analysis of three different models based on artificial neural networks comparatively given for
maximum energy production. It is followed by the implementation of wind turbine model and hybrid
models developed by using both neural network and optimization models. In this study, the ANN-FA
hybrid structure model is firstly used and also ANN coefficients are trained by FA to give a new
approach in literature for wind turbine parameters’ estimation. The main contribution of this paper
is that seven important wind turbine parameters are predicted. Aiming to fill the mentioned research
gap, this paper outlines combined forecasting turbine design approaches and presents wind turbine
performance in detail. Furthermore, the present study also points out the possible further research
directions of combined techniques so as to help researchers in the field develop more effective wind
turbine design according to geographical conditions.

Keywords: optimization; wind energy; wind turbine optimized model; wind turbine parameter
prediction; firefly algorithm

1. Introduction

With the development of industrialization, it has become necessary to use clean and cheap energy
sources instead of fossil fuels, which have a limited need for energy and are expected to be consumed
in the near future. The use of renewable energy resources has increased in recent years in meeting
energy demand. Biomass, wind, solar, hydropower, and geothermal as a renewable energy source can
meet sustainable energy demands, based on the use of available, natural resources. From these sources,
wind energy is one of the cleanest and most reliable sources of renewable energy that have increased in
recent years. Wind energy has been used to meet the needs of human beings, such as pumping water,
transport and grinding of goods. In meeting energy needs, wind energy has taken second place after
solar energy as a renewable energy source. In wind energy applications, the power generated by the
rotation of wind turbine blades is used in mechanical or electrical form. In addition to its widespread
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use, there are disadvantages of wind energy. It does not work efficiently in regions where wind speed
is weak. Wind turbine parameters given by manufacturers can vary in their actual use. Since precise
meteorological measurements and wind energy maps become more commonly effective developers
can dependably estimate long-term economic analysis of wind farms. Wind turbines never work
under perfect conditions in practice. This problem also makes real wind energy estimation difficult.
Wind turbine parameters are much important in the performance monitoring of the turbine and also
in prediction for wind power production. The capacity increase to make any improvements in wind
turbines will also increase energy from wind. For this reason, wind turbine parameters are a significant
ingredient for turbine performance monitoring, turbine control, and wind power forecasting [1].

Many efforts have been conducted by the researchers to determine wind turbine parameters [1–38].
There is a non-linear relationship between wind turbine parameters. Due to the non-linear relationship,
artificial intelligence learning techniques are appropriate to apply in predicting wind turbine parameters.
In recent years, the prediction of wind turbine aerodynamic parameters, such as turbine power output,
power coefficient is a significant factor in monitoring wind turbine performance [2]. Precise prediction
of turbine parameters, including the monitoring of turbine performance, is required for effective
integration of wind power production into electric network systems. Realistic sizing of wind energy
integration can be obtained from the wind turbine power characteristics curve [3,4]. Forecasting of
wind power and the planning of wind farm expansion are able to the accurate computation of power
characteristics curves [5,6]. The turbine performance specification and an indication of wind turbine
service life can be deduced from the power characteristics curve. Generally speaking, theoretical wind
turbine power characteristics curves are based on ideal meteorological and topographical conditions.
In reality, however, the ideal conditions for wind power generation are never realized in practice. It is
accepted that wind power is influenced by environmental factors. The location of turbines, air density,
and the distribution of wind speed and wind direction can each significantly influence the power
characteristics curve [3].

A number of methods and models have been mentioned in the literature for forecasting wind
turbine performance parameters over the different duration of time and including a variety of physical
models, statistical methods, hybrid physical-statistical methods, artificial intelligence and neuro-fuzzy
processing [7,8]. To optimize wind power systems new estimating methods are now being employed,
including fuzzy logic (FL), artificial neural networks (ANN) and neuro-fuzzy logic (NF) [9–11].
The neuro-fuzzy system, referred to as an adaptive neuro-fuzzy inference system (ANFIS), has been
offered by Jang [12]. Ruano [13] applied an ANFIS model in the identification of the non-linear
components of a control system in the estimation of a chaotic time series. Liu et al. [14] introduced
the prediction approach to wind speed by a combination of empirical mode decomposition (EMD)
with ANN. An ANFIS model was established in a study conducted by Petkovic et al. [9] in which the
prediction of the turbine power coefficient was possible in relation to two main turbine parameters.
A hybrid EMD-SVM model was built by Dang et al. [15] for the estimation of wind speed. Liu et al. [16]
presented a hybrid forecasting method for wind speed with combining the wavelet transform (WT), the
genetic algorithm (GA) and the support vector machine (SVM). Hou et al. [17] conducted short-term
wind speed forecasting based on back-propagation (BP), WT and time series theory. Shamshirband
et al. [18] analyzed three wind speed models and used them for the evaluation of these parameters
in order to arrive at the most appropriate model. Liu et al. [19] investigated the decomposition
and estimation performance considering different hybrid models such as fast ensemble empirical
mode decomposition-multilayer perceptron network (FEEMD-MLP) and FEEMD-ANFIS. Li et al. [20]
estimated the shape and scale factors by the Weibull distribution function. The data of different capacity
wind turbines in two locations in China were used to find the potential for wind power production.
The power outputs and capacity factors were evaluated. Alimi et al. [31] examined wind speed features
and wind power potential at the Gulf of Tunis in Tunisia. In his work, parameters were modeled by
using Weibull probability function whose parameters were identified from four different methods
such as the moment method, the cumulative probability method, the maximum likelihood method.
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The power density method investigated turbine parameters for the wind farm. Five horizontal axis
wind turbines were chosen, and hub-height wind speed, power output and rotational speed measured
from these turbines were used for assessment. In order to obtain parameters of the axial flow induction
factor, power coefficient, thrust force coefficient, thrust force and tangential flow induction factor, Blade
Element Momentum (BEM) theory was employed.

Najafian et al. [32] investigated the design parameters of a wind turbine. Design parameters
were power coefficient, axial and angular induction factors, lift and drag coefficients on the blade,
angle of attack and angle of the relative wind. His work showed that the wind speed variations
have a major impact on turbine design parameters and power coefficient changes with wind speed,
significantly. Pelletier et al. [33] developed wind turbine power curves using six important parameters.
The parameters used in the model were derived from primary data, including air density, turbulence
intensity, and wind shear. Bilgili et al. [34] studied on wind turbine parameters such as wind power
(P), turbine power coefficient (CP), axial flow induction factor (α), rotational speed (Ω), tip speed ratio
(λ), and thrust force (T) for the horizontal axis wind turbine (HAWT). The results were evaluated
and discussed. Ciukaitis et al. [35] proposed a non-linear regression model for the power curve.
Asghar [36,37] presented a new control algorithm based on adaptive neuro-fuzzy inference system
(ANFIS) for turbine power coefficient as a function of tip-speed ratio and pitch angle. The artificial
neural network (ANN) determines the parameters of fuzzy membership functions (MFs) using a
hybrid optimization method. This study shows that ANFIS is appropriate to estimate the turbine
power coefficient curve for instantaneous values of tip speed ratio (TSR) and pitch angle. Li and
Shi [38] made a comparative study of three types of neural networks, the adaptive linear element,
back-propagation, and the radial basis function, enabling prediction of hourly wind speed. They have
confirmed that no single neural network model is superior to others in terms of its entire evaluation
capability. The purpose of this work is to determine optimum wind turbine design parameters using
two simple measurable meteorogical data (the hub-height wind speed and atmospheric temperature)
from the geographical area where the wind farm is established. Thanks to two simple measurable
meteorogical data, the cost of system measurements is decreased. The other contribution to literature
is that the ANN-FA hybrid structure model is firstly used and also ANN coefficients are trained by FA
to give a new approach in literature for wind turbine parameters’ estimation. This study will guide
wind turbine manufacturers in the design of optimum wind turbines for wind farms to be installed in
areas for geographical regions.

On account of limitations between existing literature, the aim of the present paper is the following:

1. To create a wind turbine characteristic model by using PSO and FA methods based on ANN and
swarm as a hybrid model;

2. To examine firstly the ANN model, literately easy applicable and solutes to the problem fast and
effectively, and forecast the parameters of the wind turbine in detail;

3. To use FA that is relatively successful method and recently recommended in the literature,
with ANN;

4. To compare the PSO algorithm being a traditional method used with ANN;
5. To obtain the performance results in detail;
6. To reach wind turbine design and efficiency of the system at the optimum level.

As this paper primarily focuses on the aforesaid six aspects of optimum design for geographical
features and optimum efficiency in the selection of the turbine to be used in the place where the wind
farm will be established.

2. Materials and Methods

2.1. Wind Turbine Characteristics

Figure 1 shows an actuator disc and stream-tube for the wind turbine. Surface and two
cross-sections of stream tube are given as the boundaries of control volume in the analysis of considered
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control volume. Uniform “actuator disc” represents the turbine and creates a pressure discontinuity on
the air flowing through the stream tube. During steady-state flow, the conservation of mass principle
can be expressed as:

min = mout (1)

ρA∞U∞ = ρADUD = ρAWUW (2)

The power out, P, is equal to the thrust times the velocity at the disk:

P =
1
2
ρA2

(
U2
∞ −U2

W

)
V2 =

1
2
ρA2UD(U∞ + UW)(U∞ −UW) (3)

Substituting for UD and UW gives

P =
1
2
ρAU34a(1− a)2 (4)

where the control volume area at the rotor, A2, is placed with A, the rotor area, and the free stream
velocity U∞ is replaced by U.
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While denotations of ρ for density, A for the cross-sectional area and U for flow velocity are
used in equations; subscripts of “∞”, “D” and “W” symbols refer to far upstream, disc and far wake
conditions, respectively. Induction of velocity variation by the actuator disc that is superimposed on
the free-stream velocity is shown by Equation (5) where UD stands for net stream-wise velocity [34]:

UD = U∞(1− α) (5)

Velocity at far fake (UW) dependent on the free-stream velocity (U∞) and the velocity induction
factor, a superimposed on the free-stream velocity is given as:

UW = U∞(1− 2α) (6)

The general form of turbine power coefficient (CP) and its simplified form are defined as;

CP =
P

0.5ρU3
∞AD

=
Rotor power

Power in the wind
(7)

where P (kW) is the wind turbine power output. Thrust force (T), thrust force coefficient (CT) and
blade tip speed ratio (λ) are defined by Equations (8)–(10), respectively.

T = 2ρADU3
∞α(1− α) (8)
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CT = T/(0.5ρU2
∞AD) (9)

λ = RΩ/U∞ (10)

where Ω is the rotational speed, and R is radius of rotor disc.

2.2. The Proposed Prediction Models

ANN structure and swarm-based optimization methods are used together in the present study.
In the literature, there are many studies including in the hybrid structure of the PSO algorithms and
the ANN structures [39–43]. When these studies are reviewed, it is seen that the quality of the network
structure is increased by using hybrid structures.

A novel approach is developed in order to obtain the best results for this study. Firefly algorithm
recently recommended as a new swarm method is used in the network training phase. According to
literature, it is seen that the FA algorithm is used in many different areas [44–46]. This algorithm is firstly
applied to estimate the wind turbine parameters in the present study. The methods are summarized in
Figure 2. Approaches developed with every learning algorithm are implemented in MATLAB. Firstly,
the data set is tested and then executed. Results depending on 4 different performance criteria; these
are Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE) and Theil’s Inequality Coefficient (TIC).
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2.2.1. The Artificial Neural Networks (ANNs)

Artificial neural networks are approaches that try to create new systems by imitating the process
of the human brain. The ANN which is based on nerve cell structure has a decision making mechanism
according to learned knowledge. Like the human brain mechanism, ANN is generated by coming
together of artificial nerve cells. In the ANN nerve model, every nerve cell sums up weighted inputs.
These summations are passed from an activation function and it gives outputs. Moreover, nerve cells
have a threshold value. It provides to decrease or increase the total value at the activation function
input. Using the threshold provides flexibility at the network structure [1]. Network training is the
process of identification of the weighted values of nerve element connections at the ANN. Initially,
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these values are determined randomly. Then, network parameters are updated in order to get the best
yield at the network.

Network training is made by data sets completely known input and output values. Inıtially,
network parameters are randomly assigned and network parameters are approximated to the optimum
value for every iteration. Once the convergence of the learning method is occurred, the determined
ANN weights are used for the estimation process. Multilayer feed-forward (MLFF) network structure
which is an ANN network are used in this study. This network structure comprises 3 layers; an input
layer, a hidden layer, and an output layer. The neuron number at the input and output layer depends
on the problem structure. Output data connected parameters obtained by the network are given to
the network as an input. The neuron number at the hidden layer is determined by the trial and error
method. Every layer includes the neuron as suitable to network structure and each neuron link to
another neuron located in the next layer. The network structure and parameters used in the study are
shown in Figure 3 in detail.
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If the weight coefficient between the i th and j th neurons is Wi j and the threshold coefficient is bi,
the output value of the i th neuron xi (output signal of the neuron) is calculated by this means:

ϕi =
n∑

j=1

wi jx j + bi (11)

where ϕi is the potential of the i th neuron. ϕi value is obtained by passing from transfer function so
the output value of the related neuron is achieved:

xi = f (ϕi) (12)

where f (ϕi) is the transfer function. Transfer functions of MLFF networks are selected as nonlinear
functions, therefore, learning of nonlinear relations between the input data given to the network and
output data intended from the network is provided.

MSE (mean square error) criteria is used as an objective function which is essential for the training
of the network. Methods used during the network’s training update the network parameters in order
to minimize the difference between results obtained at the real-time setting from the turbine (Xdesired)
and output results obtained by the neural network (Xactual). MSE criteria are calculated in this way:
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MSE =
1
n

n∑
i=1

(Xdesired −Xactual)
2 (13)

where Xdesired is the data obtained from the neural network, Xactual is the real-time data, and n is the
data number at the data set. The aim of using training methods is to minimize the MSE value. Training
of the neural network parameters is made by using different learning methods. In this study, network
training is fulfilled by using the ANN and swarm-based meta-heuristic models.

2.2.2. Particular Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) algorithms have global searching characteristics and are
developed by being inspired herd of births behaviors. It is a population-based stochastic optimization
technique [40]. This method proposed by Eberhart and Kennedy [40] is used with the ANN at the
different areas so it is successfully practiced in many areas [41–43]. The most important difference
between the PSO and other classical methods is that the PSO doesn’t need to derivative information.
Compared to other meta-heuristic algorithms, the PSO is relatively easy in terms of its algorithm
realization and being low adjustable parameter number.

PSO algorithm starts to work with a population consisting of randomly distributed solutions to
the solution space. It updates to particle locations by using the best solution of the. It also uses the
best solution of each particle at that moment. Thus, the PSO algorithm walks around the search space.
Equations providing of particles’ motions are given;

vi(t + 1) = w× vi(t) + c1 × r1 × (pibest − xi(t)) + c2 × r2 × (gbest − xi(t)) (14)

xi(t + 1) = xi(t) + vi(t + 1) (15)

Equation (14) provides to particles’ speed update and Equation (15) provides to move of the
particles in the search space according to updated speed value, respectively. Equations (14) and (15)
are by this means: w is the inertia weight, t is iteration number and i is the index of the corresponding
particle, respectively. xi demonstrates the location of the particle. c1 and c2 are acceleration coefficients
chosen in [0, 2] interval. r1 and r2 values are random numbers which are selected in [0, 1] interval
balance between local best and global best.

2.2.3. Firefly Algorithm (FA)

Firefly algorithm (FA) [39] is a flock based optimization algorithm being inspired glow-worms’
behaviors which provide to the communication of each other and the continuation of their life in
nature. FA algorithm is used in many areas because it uses fewer parameters during the operation and
adapted to problems easily and algorithm steps are understandable. FA algorithm’s operation logic
has three disciplines:

• All fireflies are unisex;
• The degree of attraction of each firefly is depended on the degree of brightness of it;
• The brightness of each firefly is being connected to the fitness function decided by the structure of

the problem.

There are two significant parameters at the operation step of the FA method. These parameters
are light intensity and attractiveness (β). The attractiveness of the firefly can be changed to distance
from one to another firefly. Due to this, the distance between the two fireflies is firstly known. xi xi and
x j values are supposed to a location of the ith and jth fireflies, the distance between the two fireflies is
calculated by this means:

ri j = ‖xi − x j‖ (16)
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As is known to distance between the two fireflies, the attractiveness of the firefly (β) is calculated
by this means:

β(r) = β0e−γr2
(17)

where β0 is the maximum attractiveness parameter at r = 0 and γ is light-emitting coefficient,
respectively. The fireflies at the search space move to more attractive fireflies. Movement from ith
firefly to jth firefly is given at the below equation:

xi = xi + β0e−γri j
2
(x j − xi) + α(rnd− 1/2 ) (18)

rnd is a random real number and selected as [0, 1] and α is a random selection parameter, respectively.

2.2.4. Performance Criteria

For the purpose of comparison between training models of the ANN, Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Theil’s inequality
coefficient (TIC) are used to see the convergence between actual and estimated values. Here, MAE,
RMSE, MAPE, and TIC are defined as follows:

MAE =
1
n

n∑
i=1

|Xdesired −Xactual| (19)

RMSE =

√√
1
n

n∑
i=1

(Xdesired −Xactual)
2 (20)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣Xdesired −Xactual
Xactual

∣∣∣∣∣ (21)

TIC =

√
1
n

n∑
i=1

(Xdesired −Xactual)
2

√
1
n

n∑
i=1

(Xdesired)
2 +

√
1
n

n∑
i=1

(Xactual)
2

(22)

where n is the data number used in the data set. Xdesired is obtained from the real-time result and Xactual
is a result predicted by the neural network.

3. Results and Discussion

3.1. The Properties of Geographical Region and Turbine Parameters

The data used in this study are obtained from Belen Wind Energy Power Plant (WEPP) installed in
Hatay, Mediterranean region of Turkey as shown in Figure 4. With an installed capacity of 48 MW, this
WEPP is Turkey’s 46. major power plant. At this WEPP, 16 Vestas V90-3 MW wind turbines operate,
and average electricity of 116 GWh per year is generated. First, five wind turbines (T1, T2, T3, T4, and
T5) with 3 MW power are selected from this WEPP. Hub-height of the identical wind turbines is 80
m, and the rotor diameter corresponds to 90 m. Consequently, the total swept area of a single wind
turbine is approximately 6362 m2. The wind turbines operate with wind speeds within the range of
4 ≤ U∞ ≤ 25 m/s and nominal speed of turbines corresponds to 15 m/s. Wind turbines are the pitch
regulated upwind turbines with active yaw and a three-bladed rotor. The technical properties of wind
turbines are given in Table 1.

In July 2016, hub-height wind speed (UD, m/s), atmospheric air temperature (Tatm,◦C), turbine
rotational speed (Ω, rpm) and turbine power output (P, kW) data were measured at intervals of one
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hour from each wind turbine. The wind turbine parameters of the selected turbines such as axial
flow induction factor (α), wind turbine power coefficient (CP), thrust force coefficient (CT), thrust
force (T, kN) and tip speed ratio (λ) are calculated using these measured atmospheric temperature
and wind speed. Turbine power output, turbine rotational speed, axial flow induction factor, turbine
power coefficient, thrust force coefficient, thrust force, and blade tip ratio parameters are used in the
output layer of the network. For the development of forecasting models, the total 3682 data records are
collected in the T1, T2, T3, T4 and T5 turbines. The data set is divided into two subsets such as training
and testing data set. The training data set includes in a total of 2942 data recorded from the T1, T2, T3
and T4 turbines. The testing data set consists of 740 data records obtained from the T5 turbine.
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Table 1. Technical properties of selected wind turbines.

Variable Properties

Model VESTAS V90-3 MW
Power regulation Pitch regulated with variable speed
Operating data

Rated power 3000 kW
Cut-in wind speed 4 m/s
Rated wind speed 15 m/s

Cut-out wind speed 25 m/s
Wind class IECIA

Operating temperature range −20 ◦C to 40 ◦C
Rotor

Diameter 90 m
Swept area 6362 m2

Nominal revolutions 16.1 rpm
Operational interval 8.6–18.4 rpm
Number of blades 3

Air brake Full blade fathering with 3 pitch cylinders
Electrical
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Table 1. Cont.

Variable Properties

Frequency 50 Hz
Generator type 4-pole doubly fed generator, slip rings

Nominal output 50 Hz: 3000 kW
Gearbox Two planetary stages and one helical stage
Tower
Type Tabular steel tower

Hub height 80 m
Blade dimensions

Length 44 m
Max. chord 3.5 m

Nacelle dimensions
Height for transport 4 m

Length 12.2 m
Width 3.5 m

Hub dimensions
Max. diameter 3.6 m

Max. width 4 m
Length 4.2 m

Max. weight per unit for transportation 79 t

3.2. Performance Analysis

In this study, all parameters of the wind turbine are estimated in detail using two input parameters
applied to three different models. The different models are implemented for training of the network
parameters of the ANN. Network parameters are adjusted by these models during the training of the
ANN. Thus, the minimization of the errors is obtained. These algorithms are shown in Figure 3.

The neural network is selected to have one hidden layer with five neurons and an output layer.
The training network parameters are shown in this manner:

• 10 weights between input-hidden layer;
• 5 bias values for neurons at the hidden layer;
• 5 weights between hidden-output layer;
• 1 bias value for neuron at the output layer.

Thus, a totally 21 neural network parameters are trained during the using of the optimization
methods. The network structure is used to decide 7 important parameters requiring turbine design.
Network training is continued along 300 steps and during the training, totally 20 particle/firefly are
used and 740 data are used to train the neural network. After completion of the training, the test phase
is started.

Swarm based methods initially start to work with a randomly scattered population at this study.
Then, they are moved by using an objective function determined its convenience value for every
particle at the search space. Another step is that information of particles are updated depending
on using algorithm related to its equations. Thus, the new generation is formed. These steps are
continued till reach to termination criterion. When the testing is completed, ANN is constituted by
using optimum values obtained by the best particle.

It is executed 25 independent runs for each dataset. The neural network is constituted with the
best parameters. These parameters are obtained by the end of 25 run and neural network are used in
the test phase. For the testing data sets such as P, Ω, α, CP, CT, T and λ data, the figures in Figure 5 of
the ANN performance and the real values are presented to show the effectivity of the proposed model.

In addition, wind turbine parameters of the selected wind turbines including P, Ω, α, CP, CT, T
and λ are performed as a function of hub-height wind speed (UD) for actual and predicted data based
on ANN data. For the T5 turbine, distributions of these parameters based on the hub-height wind
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speed are presented in Figure 6. From the figure, it is clear that ANN, ANN-PSO, and ANN-FA models
are able to accurately simulate the wind turbine parameters and the accuracy of the predictive ANN
models are generally convenient with lower error values.

The FA algorithm has begun to be used in recent years because of its low number of parameters,
its adaptability to problems and its understandable algorithmic steps during operation. The FA can
also find the best local result at the same time as the global best result. In this regard, this algorithm is
also very efficient and suitable for parallel applications. On the other hand, when looking at the PSO
algorithm, it is more likely to discover local optimum points at the end of the study while working
with too many local optimum points. Due to this disadvantage, the PSO can not achieve the best
results while the FA is clustered around each optimum result. Thanks to this feature, FA can find the
best result with the shortest iteration number.

Estimation results obtained at the test phase are viewed as MAE, MAPE, RMSE and TIC criteria.
The performance values of the ANN, ANN-PSO and ANN-FA models for the testing data sets are
given in Table 2. As seen from the table, the ANN-FA method gives the best results in applied methods
at the end of the study. According to the derived results for all wind turbine characteristics, based on
the testing data set, the MAE, MAPE, RMSE and TIC values ranged from 0.0033 to 46.51, from 0.55% to
3.38%, from 0.0043 to 61.39 and from 0.0042 to 0.0201, respectively. The maximum MAPE was found
to be 3.38% for the P parameter. On the other hand, the best result was found to be 0.55% for the λ
parameter. When Table 2 is examined in detail, the error values are within acceptable limits.
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The highest error is seen in the wind power and the lowest error is seen in the λ; the number of
variables that these parameters depend on and the effect of these variables on the parameter. Since the
number of variables affecting the wind power is greater, the error margin in the affecting variables
affects this parameter as a multiplier, so the error amount in this parameter is greater.
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Table 2. Analysis results with different criteria of optimal results obtained by three optimization Models.

MAE MAPE (%) RMSE TIC

Power (kW)
ANN 46.5120 3.3819 61.3950 0.0195

ANN-PSO 45.8760 3.2649 60.7857 0.0193
ANN-FA 45.6076 3.2014 60.4009 0.0192

Ω
ANN 0.0934 0.6338 0.1282 0.0043

ANN-PSO 0.0911 0.6167 0.1264 0.0042
ANN-FA 0.0897 0.6044 0.1244 0.0041

α
ANN 0.0034 3.0651 0.0044 0.0196

ANN-PSO 0.0034 3.0322 0.0044 0.0197
ANN-FA 0.0033 2.9730 0.0043 0.0193

CP

ANN 0.0082 2.3481 0.0106 0.0150
ANN-PSO 0.0081 2.3083 0.0104 0.0148
ANN-FA 0.0080 2.2648 0.0102 0.0145

CT

ANN 0.0107 2.6998 0.0137 0.0173
ANN-PSO 0.0106 2.6877 0.0138 0.0174
ANN-FA 0.0103 2.5877 0.0131 0.0166

T (kN)
ANN 4.9578 3.7570 6.2345 0.0199

ANN-PSO 4.9554 3.4610 6.2864 0.0201
ANN-FA 4.8933 3.3137 6.2621 0.0200

λ
ANN 0.0403 0.5653 0.0581 0.0042

ANN-PSO 0.0402 0.5621 0.0582 0.0042
ANN-FA 0.0395 0.5532 0.0580 0.0042

4. Conclusions

This paper has the capability of maintaining geographical features and optimum efficiency in the
selection of the turbine to be used in the place where the wind farm will be established and designed
optimally discussed and presented using the performance analyses. The performance results are
verified with the real data obtained from the wind farm. In conclusion, a simple and effective wind
turbine parameter has been presented in this paper, which is operated with some integrated wind
farm systems.

In this study, the most important seven parameters, wind turbine power output (P), wind turbine
power coefficient (CP), thermal coefficient (CT), axial flow induction factor (α), turbine rotational
speed (Ω), tip speed ratio (λ), and thrust force (T), are used to provide optimum design of wind
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turbine. Two input meteorogical parameters are given to the input of the network and seven output
parameters are obtained at the proposed estimation model. In the first step, the network training phase
is completed by using real values in the objective method. In the second step, test phase of the network
is performed by using different real data sets. For the estimation of the wind turbine parameters,
hybrid prediction models are developed by using ANN and different swarm-based algorithms, as
well as ANN structure. Using two different swarm-based intelligent algorithms, PSO and FA, are
used. When the given diagrams and detailed table are viewed placed in the previous section, it is seen
that ANN-based FA hybrid model show to the best performance and provide to the most important
parameter estimation compared with conventional methods, successfully.

This work will guide wind turbine manufactures for optimum wind turbines design parameters
for different geographical regions by using the proposed models. The predicted parameter values
are compared with the selected turbines in Hatay WEPP. As the actual and predicted values are
observed, the result presents that the data are close to each other. An analysis to test the robustness
of this system is implemented on the MAE, MAPE, RMSE and TIC values both training and testing
phases. In addition, the feasibility is proved by only two inputs the hub-height wind speed (UD) and
atmospheric temperature (Tatm) used. The contribution of this study is to be able to be applied to
similar studies. Thus, other possible potential locations are investigated even with other possibilities
other than wind.
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