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Abstract: An industrial system has positive and negative strategies to adapt to environmental
regulations, which can be defined as natural disposability and managerial disposability. Meanwhile,
the operational process of an industrial system can be divided into regular production activities
and pollutant control activities. Within this, industrial system’s technical efficiency (TE) can be
decomposed into economic efficiency (ECE) and environmental efficiency (ENE). On the basis of
natural disposability and managerial disposability, this paper proposes static and dynamic data
envelopment analysis (DEA) models to evaluate the efficiencies of industrial systems. Based on the
proposed approach, TE, ECE, ENE, and Malmqusit productivity index (MPI) values were obtained
simultaneously. The MPI values were further separated into the effects of static efficiency change and
technical change. The proposed method was applied to assess the technical efficiencies of Chinese
regional industrial systems between 2011 and 2015. Key findings are that (1) the low ENE is the main
source of technical inefficiency; (2) the average static TE and ENE under natural disposability are
both lower than those under managerial disposability; (3) the static efficiency change and technical
change of TE are similar to those of ENE; and (4) the technical change has a significant impact on the
changes in TE.

Keywords: adaptive strategy; technical efficiency; efficiency decomposition; efficiency change; data
envelopment analysis

1. Introduction

Industry determines the speed, scale, and level of national economic modernization and plays a
leading role in the national economy of the contemporary world. For example, in China, the industrial
value added (IVA) accounted for about 30% of gross domestic product (GDP) between 2013 and 2017
(Statistical Year Book of China, 2018). With the increasing competition causing by globalization and
intellectualization, industry’s room for profits is becoming smaller and smaller, and the requirements
of environmental protection and energy conservation are steadily increasing. To improve the industrial
competitiveness and mitigate environmental problems, it is necessary to find ways to coordinate
industrial development and environmental protection.

Improving the operational performance of industrial systems has been widely regarded as one
of the most cost-effective ways to increase industrial competitiveness and mitigate environmental
problems [1,2]. In practice, to guide the upgrading and progress of industrial development, the United
Nations Industrial Development Organization (UNIDO) publishes a new Competitive Industrial
Performance Report every year. In literature, to reflect the effect of industrial production on the
environment, various indicators have been developed for evaluating industrial efficiency, such as
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industrial environmental efficiency [3], energy and carbon emission efficiency [4], and eco- efficiency
of industrial systems [5]. (For more details of industrial efficiency evaluation, see Meng et al. [6] and
Emrouznejad and Yang [7].) Therefore, it would be meaningful to assess and compare industrial
efficiency, which may provide valuable and helpful information for decision makers to estimate the
effectiveness of economic and environmental policies.

Recently, national governments have been paying close attention to industrial pollution and
environmental protection problems. For example, in 2017, the Chinese government issued the
toughest-ever policies to improve air quality. Almost all industrial sectors are required to exert their
efforts to reduce pollutant discharge. When a government strengthens its environmental regulation
policies, an industrial system may be driven to change its strategy to adapt to the regulation change [1].
In reality, there are many adaptive strategies. For instance, an industrial system considers the regulation
change as an opportunity. It increases the capital investment for clean production technology and
adjusts the energy utilization structure. In other cases, an industrial system may not take major
strategic actions. It decreases pollutant discharge on the basis of the government’s standard. In such a
case, industrial systems do not have sufficient capital to invest in technological innovation [8]. It is
obvious that the adaptive strategies of industrial systems inevitably affect their efficiency assessment.

To analyze the effects of adaptive strategies on efficiency evaluation, it is necessary to obtain
a comprehensive understanding of the operational processes of industrial systems. In practice, the
operational process of an industrial system can be characterized as implementing two types of activities,
i.e., regular production activities and pollutant control activities. Therefore, the technical efficiency
(TE) in an industrial system, in fact, concurrently signifies two respects of performance, producing
desirable outputs (e.g., industrial value added) and controlling undesirable outputs (e.g., waste gas).
The former is the outcome of regular production activities and can be defined as economic efficiency
(ECE), while the latter represents environmental efficiency (ENE). The ECE characterizes the ability of
an industrial system to expand the room for desirable outputs through its regular production activities,
while the ENE describes an industrial system’s ability in pollutant control activities for sustainable
development. Identification of ECE and ENE could provide industrial systems with more information
to enhance the efficiency of inefficient activities and also contribute to better sustainable operations.

In addition, industrial systems are commonly interested in efficiency changes between two periods
for multi-period problems [9], as the results can provide valuable information to realize improved
efficiency. The Malmqusit productivity index (MPI) has been widely used for this purpose. This
measure can be split into the effects of static efficiency change and technical change, and thus can
identify the driving factors of the efficiency changes [10]. Therefore, it is meaningful to explore the
changes in technical efficiency over time.

The above mentioned adaptive strategies of an industrial system to environmental regulations,
the efficiency decomposition, and the efficiency changes raise the following important issues: (1) How
to characterize the effects of the adaptive strategies on the efficiency evaluation? (2) How to decompose
the industrial system’s technical efficiency on the basis of different adaptive strategies? (3) How to
identify the driving factors of efficiency change in a dynamic situation?

Zhou et al. [11] and Emrouznejad and Yang [7] reviewed studies on the performance of industrial
systems and found that data envelopment analysis (DEA) is an appropriate analysis tool for measuring
industrial performance. As a well-established nonparametric method, DEA has a powerful ability
in evaluating the relative efficiencies of homogeneous decision-making units (DMUs) with multiple
inputs and outputs [12,13]. A significant advantage of the DEA approach is that the calculated efficiency
results can be decomposed into certain component efficiencies. This can help an industrial system
identify its weakness and devote suitable efforts to improving performance. Recently, there have been a
number of studies on efficiency measurements of industrial systems using DEA [14,15]. Since this study
is related to the industrial system’s efficiency evaluation, we have only reviewed the relevant research.

To better explore the effects of adaptive strategies on performance evaluation, the first stream of
research takes adaptive strategies into consideration when assessing industrial systems’ efficiencies.
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For example, Sueyoshi and Goto [1] discussed natural disposability and managerial disposability from
DMUs’ strategic adaptations to a regulation change on undesirable outputs. Then, Goto et al. [16]
proposed DEA approach to evaluate the operational and environmental efficiencies of Japanese regional
industries under both natural disposability and managerial disposability. Zhao et al. [8] discussed
different strategies for adapting to environmental regulations and examined the efficiencies of Chinese
regional industries. More details of the effects of adaptive strategies on industrial performance
evaluation can be found in Sueyoshi and Goto [1] and Wang et al. [17].

The second stream of research describes the operational process of the industrial system as a
two-stage or network structure. Within such a framework, the technical efficiency of the industrial
system can be decomposed into sub-stage efficiency measures. For example, Bian et al. [18] measured the
efficiencies of Chinese regional industrial systems by taking their two internal stages into consideration.
Chen et al. [19] proposed a two-stage network DEA approach for measuring and dividing the
environmental efficiency of the Chinese industrial water system. Liu and Wang [20] used the network
DEA model and efficiency decomposition technique to evaluate the energy efficiency of China’s
industrial sector. Wu et al. [21] analyzed the reuse of undesirable intermediate outputs in a two-stage
industrial production process with shared resources. Wu et al. [22] divided industrial systems into
two stages, the energy utilization stage and pollution treatment stage, for accurately measuring the
total-factor energy efficiency and the overall efficiency. More details of industrial efficiency evaluation
can be seen in Halkos et al. [23] and Li et al. [24]. These studies identify the specific sources of operational
inefficiency among various sub-processes. However, these studies mainly calculated the efficiencies
for each year without considering the dynamic efficiency changes from a multi-period perspective.

The third stream works on dynamic efficiency assessment of the considered industrial systems.
Fernández et al. [25] applied DEA and the Malmquist index to assess the productivity and energy
efficiency of industrial gases facilities. Sueyoshi et al. [26] applied DEA window analysis to assess
the performance of US coal-fired power plants. Wu et al. [2] constructed both static and dynamic
efficiency indexes for measuring industrial energy efficiency using the DEA approach. Zhang et al. [27]
investigated the dynamic carbon emissions performance of China’s industrial sectors using the
Malmquist-type index. Zhang et al. [28] used the dynamic slacks-based measure (SBM) model to
assess the environmental efficiency of industrial water pollution. More details of dynamic efficiency
evaluations can be found in Chen and Golley [29] and Yao et al. [30]. All these studies only provided
certain efficiency measures, e.g., energy efficiency, carbon emissions performance, and environmental
efficiency. They did not consider the components of industrial production activities and did not
decompose the industrial system’s TE into ECE and ENE.

The above-mentioned studies analyzed the industrial systems’ efficiencies by only considering
internal structures (i.e., two-stage or network process) or dynamic efficiency without decomposing the
TE into specific components and exploring the effects of adaptive strategies on efficiency evaluation.
None of them had satisfactorily investigated the issue of the industrial systems’ efficiencies by taking
the effects of adaptive strategies, the efficiency decomposition, and dynamic efficiency changes into
account simultaneously. When an industrial system is estimated to be inefficient, it is difficult to
identify the sources of the inefficiency, which is caused by either economic efficiency or environmental
efficiency. Therefore, a more suitable approach is required to deal with the efficiency assessment of
industrial systems.

To reasonably estimate the technical efficiencies of industrial systems, we in this study propose
static and dynamic DEA models based on different adaptive strategies by simultaneously considering
the efficiency decomposition and dynamic efficiency changes. The main contributions of this study are
summarized as follows. First, this is the earliest study to simultaneously consider dynamic effects of
adaptive strategies for environmental regulations and decomposition of technical efficiency. To this
end, we developed dynamic models based on different adaptive strategies to evaluate the technical
efficiencies of industrial systems. Second, in the described approach, measures of economic efficiency
and environmental efficiency were also obtained. With these efficiency measures, decision makers
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can identify the sources of technical inefficiency in industrial production activities. Furthermore, the
MPI values for all efficiency measures are also provided. Meanwhile, to analyze the driving factors of
industrial efficiency change, the MPI values are separated into the effects of static efficiency change
and technical change. Finally, the proposed approach is applied to measure the efficiencies of regional
industrial systems in China, which can provide helpful information for decision makers to enhance the
efficiencies of Chinese regional industrial systems.

The rest of this paper is organized as follows. Section 2 first introduces two concepts related to
adaptive strategies of an industrial system to environmental regulations, and then proposes the static
and dynamic DEA models. In Section 3, we present an empirical study on evaluating Chinese regional
industrial systems’ efficiencies over time. Section 4 provides conclusions.

2. The Proposed Models

2.1. Natural Disposability and Managerial Disposability

This study considers the two concepts related to adaptive strategies of an industrial system to
environmental regulation change. The two concepts have been discussed in Sueyoshi and Goto [1].
The concepts are summarized as follows:

Natural disposability: This concept indicates that an industrial system decreases its inputs vector
to reduce the undesirable outputs vector. Natural disposability implies the DMUs can reduce their
operation sizes to realize the decrements in undesirable outputs. This is a negative adaptation strategy
under which industrial systems try to satisfy environmental standards by downsizing their production
scale. In this case, industrial systems do not have sufficient capital for investment in advanced
production technology, and consequently environmental regulation change may be a burden for the
industrial systems.

Managerial disposability: This concept indicates that an industrial system increases the capital
investment for new technology to decrease the amount of undesirable outputs [1,8]. Managerial
disposability implies DMUs can invest in clean production technology to realize the decrements in
undesirable outputs. This is a positive adaptation strategy under which industrial systems consider
environmental regulation change as an opportunity. In this case, industrial systems are committed
to utilize clean production technology, and thus an increment of capital investment in technological
innovation occurs.

To examine the technical efficiencies of industrial systems, we assume that there are n DMUs
(industrial systems) which are denoted by DMU j( j = 1, . . . , n). Each DMU uses m regular inputs
xi j(i = 1, . . . , m) (e.g., labor and energy) and h capital inputs kl j (l = 1, . . . , h) to produce s desirable
outputs grj(r = 1, . . . , s) (e.g., industrial value added) and p undesirable outputs b f j( f = 1, . . . , p)

(e.g., waste gas). It is assumed that X j =
(
x1 j, . . . , xmj

)T
, K j =

(
k1 j, . . . , khj

)T
, G j =

(
g1 j, . . . , gsj

)T
,

B j =
(
b1 j, . . . , bpj

)T
and X j > 0, K j > 0, G j > 0, B j > 0 for computational tractability. Then, the

production technology set can be expressed as:

T = (X, K, G, B) : (X, K) can produce (G, B) (1)

Following the concept of natural disposability, the production possibility set under natural
disposability is characterized as:

PN(x) =

(G, B) : G ≤
n∑

j=1

G jλ j, B ≥
n∑

j=1

B jλ j, X ≥
n∑

j=1

X jλ j, K ≥
n∑

j=1

K jλ j,λ j ≥ 0

 (2)

Here, X ≥
∑n

j=1 X jλ j and K ≥
∑n

j=1 K jλ j imply that a DMU reduces its operation size to realize
the decrements in undesirable outputs.
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Similarly, the production possibility set under managerial disposability is characterized as:

PM(x) =

(G, B) : G ≤
n∑

j=1

G jλ j, B ≥
n∑

j=1

B jλ j, X ≥
n∑

j=1

X jλ j, K ≤
n∑

j=1

K jλ j,λ j ≥ 0

 (3)

Here, K ≤
∑n

j=1 K jλ j means that a DMU increases the capital inputs for technological innovation.

2.2. The Static Model

2.2.1. Technical Efficiency under Natural Disposability

As discussed above, the operational process of an industrial system is characterized as
implementing two types of activities, i.e., regular production activities and pollutant control activities.
The duties of the former activities to generate desirable outputs for economic benefit, while the missions
of the latter activities to reduce undesirable outputs for sustainable development. Therefore, the
measure of technical efficiency, in fact, simultaneously indicates these respects of performance, i.e.,
economic efficiency and environmental efficiency. When using the radial model, it implies that these
two efficiency indices are the same, which may not provide sufficient details for decision makers to
identify the specific sources of inefficiency. In addition, to reach the efficient targets, all desirable
and undesirable outputs are adjusted by the same proportion in the radial model, thus the obtained
efficiency levels may not be favored by decision makers owing to strategic considerations. For example,
if an inefficient industrial system is economic benefit-preferred, it may tend to keep undesirable
outputs but seek to increase desirable outputs to efficient levels. In contrast, an environmental
protection-preferred industrial system may choose to retain desirable outputs but come up with a
way to decrease its undesirable outputs to efficient targets. Furthermore, such preferences most likely
change over time when industrial systems transform their development strategies. On account that
the no-radial model can disproportionately adjust all desirable and undesirable outputs, it has a higher
discriminating power than the radial model and is able to provide measures of ECE and ENE. Thus,
a non-radial model is required to accurately deal with the efficiency evaluation of industrial systems.
The non-radial DEA model for technical efficiency under natural disposability can be formulated as:

TESN = min s∑s
r=1(1+φro)

×

∑p
f=1(1−ϕ f o)

p , s.t.
n∑

j=1
λ jxi j ≤ xio, i

= 1, . . . , m,
n∑

j=1
λ jkl j ≤ klo, l = 1, . . . , h,

n∑
j=1

λ jgrj

≥ (1 + φro)gro, r = 1, . . . , s,
n∑

j=1
λ jb f j ≤

(
1−ϕ f o

)
b f o, f

= 1, . . . , p,λ j ≥ 0, j = 1, . . . , n

(4)

Here, TESN represents the TE under natural disposability. Variables φro(r = 1, . . . , s) denote the
proportion by which each desirable output may be increased, which characterize the ability of an
industrial system to obtain economic benefit and could be used to form the measure of ECE. The ECE
is defined as follows:

ECESN =
s∑s

r=1(1 + φ∗ro)
(5)

Similarly, variables ϕ f o ( f = 1, . . . , p) indicate the reducible ratio of each undesirable output,
which describe the pollution problem an industrial system faces and could be incorporated to form the
measure of ENE. The ENE is defined as follows:

ENESN =

∑s
r=1

(
1−ϕ∗f o

)
p

(6)
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ECE and ENE are decomposed from TESN. That is

TESN = ECESN
× ENESN =

s∑s
r=1(1 + φ∗ro)

×

∑s
r=1

(
1−ϕ∗f o

)
p

(7)

Model (4) can identify the sources of technical inefficiency, which may be from economic inefficiency
and/or environmental inefficiency. φro ∈ [0,∞) and ϕ f o ∈ [0, 1) , and they are all indices of inefficiency.
Thus, φro and ϕ f o could be helpful in understanding the sources of the economic inefficiency and
environmental inefficiency.

Model (4) is a fractional programming, and can be transformed into a linear one by using the
“Charnes–Cooper transformation” [31,32], see Appendix A.

2.2.2. Technical Efficiency under Managerial Disposability

Under managerial disposability, an industrial system utilizes clean production technology to
reduce pollutants, which requires a large amount of capital investment. Therefore, we propose a DEA
model based on the strategy of increasing capital investment for clean production.

Similar to natural disposability, the technical efficiency under managerial disposability can be
measured by the following DEA model:

TESM = min s∑s
r=1(1+φro)

×

∑p
f=1(1−ϕ f o)

p , s.t.
n∑

j=1
λ jxi j ≤ xio, i

= 1, s.t.
n∑

j=1
λ jxi j ≤ xio, i = 1,

n∑
j=1

λ jkl j ≥ klo, l

= 1, . . . , h,
n∑

j=1
λ jgrj ≥ (1 + φro)gro, r = 1, . . . , s,

n∑
j=1

λ jb f j

≤

(
1−ϕ f o

)
b f o, f = 1, . . . , p,λ j ≥ 0, j = 1, . . . , n

(8)

Here, TESM represents the TE under managerial disposability. Variables φro(r = 1, . . . , s) denote
the proportion by which each desirable output may be increased, which characterize the ability of an
industrial system to obtain economic benefit and could be used to form the measure of ECE. The ECE
is defined as follows:

ECESM =
s∑s

r=1(1 + φ∗ro)
(9)

Similarly, variables ϕ f o ( f = 1, . . . , p) indicate the reducible ratio of each undesirable output,
which describe the pollution problem an industrial system faces and could be incorporated to form the
measure of ENE. The ENE is defined as follows:

ENESM =

∑s
r=1

(
1−ϕ∗f o

)
p

(10)

ECE and ENE are decomposed from TESM. That is

TESM = ECESM
× ENESM =

s∑s
r=1(1 + φ∗ro)

×

∑s
r=1

(
1−ϕ∗f o

)
p

(11)

φro ∈ [0,∞) and ϕ f o ∈ [0, 1) . They are all indices of inefficiency and could contribute to
understand the sources the economic inefficiency and environmental inefficiency.

Similar to model (4), model (8) can be transformed into linear programming, see Appendix A.



Sustainability 2019, 11, 5019 7 of 23

2.3. The Dynamic Models

The DEA models proposed in Section 2.2 are mainly used to analyze the TE in static context. For
a specified DMU, it is meaningful to explore the changes in TE over time, because the results could
provide directions for reaching improved performance. As discussed in introduction, the MPI has
been widely used for dynamic efficiency analysis, thus we in this study applied the MPI method to
investigate the changes in TE in dynamic context.

There are various MPI forms in the literature, see Caves et al. [33] and Färe et al. [34]. The MPIs
of Caves and Färe both use technology of one period to measure efficiency, thus these MPIs may
encounter an infeasibility problem [9]. To deal with the infeasibility problem, Pastor and Lovell [35]
proposed a global MPI and used global technology of all periods to estimate efficiency. The MPI
between two periods is the ratio of efficiencies of these two periods.

Suppose the time span for evaluating the efficiency covers T periods. Let xq
i j, kq

l j, and bq
f j denote

the regular inputs, capital inputs, desirable outputs, and undesirable outputs of DMU j during period

q, respectively. Further let t and h refer to two time periods. Assume that EG(t)
j and EG(h)

j are the
efficiencies of these two periods based on the global technology. Then the global MPI is defined
as follows:

MPIG(t,h)
j = EG(h)

j /EG(t)
j (12)

MPIG(t,h)
j can be used to estimate the change in efficiency of DMU j from period t to period h.

MPIG(t,h)
j > 1 (or MPIG(t,h)

j < 1) indicates that the efficiency has improved (or decreased). In this
section, according to the ideas of global MPI introduced by Pastor and Lovell [35], we propose the
dynamic models for measuring the changes in TE, ECE, and ENE over time.

2.3.1. Technical Efficiency under Natural Disposability

Under natural disposability, the efficiency of period t can be calculated via the following
DEA model:

TEDN(t) = min s∑s
r=1(1+φt

ro)
×

∑p
f=1

(
1−ϕt

f o

)
p , s.t.

T∑
q=1

n∑
j=1

λ
q
j x

q
i j ≤ xt

io, i

= 1, . . . , m,
T∑

q=1

n∑
j=1

λ
q
j k

q
l j ≤ kt

lo, l = 1, . . . , h,
T∑

q=1

n∑
j=1

λ
q
j gq

rj

≥

(
1 + φt

ro

)
gt

ro, r = 1, . . . , s,
T∑

q=1

n∑
j=1

λ
q
j b

q
f j ≤

(
1−ϕt

f o

)
bt

f o, f

= 1, . . . , p,λq
j ≥ 0, j = 1, . . . , n, q = 1, . . . , T

(13)

The efficiency of period h (h is later than t), TEDN(h), can be calculated similarly. The global MPI
between two periods is MPIDN(t,h)

o = TEDN(h)/TEDN(t). MPIDN(t,h)
o can be used to assess the change in

TE of DMUo from period t to period h under natural disposability. MPIDN(t,h)
o > 1 (or MPIDN(t,h)

o < 1)
indicates that the TE has improved (or decreased).

Since TEDN(t) = ECEDN(t)
× ENEDN(t), this leads to the following relationship between period

and process MPIs:

MPIDN(t,h)
o =

TEDN(h)

TEDN(t)
=

ECEDN(h)
× ENEDN(h)

ECEDN(t) × ENEDN(t)
= MPIDN−ECE(t,h)

o ×MPIDN−ENE(t,h)
o (14)

This is that the period MPI between two periods is the product of the two process MPIs between
the same periods.
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In addition, similar to Pastor and Lovell [35], MPIDN(t,h)
o can also be decomposed into two

components as

MPIDN(t,h)
o =

TESN(h)

TESN(t)
×

(
TEDN(h)/TESN(h)

TEDN(t)/TESN(t)

)
= ECDN(t,h)

× TCDN(t,h) (15)

Here, ECDN(t,h) is the static efficiency change indicator and TCDN(T,h) measures the technical
change between the two periods.

Similarly, MPIDM−ECE(t,h)
o and MPIDM−ENE(t,h)

o can be decomposed into two components as

MPIDN−ECE(t,h)
o =

ECESN(h)

ECESN(t)
×

(
ECEDN(h)/ECESN(h)

ECEDM(t)/ECESN(t)

)
= ECDN−ECE(t,h)

× TCDN−ECE(t,h) (16)

MPIDN−ENE(t,h)
o = ENESN(h)

ENESN(t) ×

(
ENEDN(h)/ENESN(h)

ENEDN(t)/ENESN(t)

)
= ECDN−ENE(t,h)

× TCDN−ENE(t,h)= ECDN−ENE(t,h)
× TCDN−ENE(t,h) (17)

2.3.2. Technical Efficiency under Managerial Disposability

Similar to natural disposability, the efficiency of period t under managerial disposability can be
calculated via the following DEA model:

TEDM(t) = min s∑s
r=1(1+φt

ro)
×

∑p
f=1

(
1−ϕt

f o

)
p , s.t.

T∑
q=1

n∑
j=1

λ
q
j x

q
i j ≤ xt

io, i

= 1, . . . , m,
T∑

q=1

n∑
j=1

λ
q
j k

q
l j ≥ kt

lo, l = 1, . . . , h,
T∑

q=1

n∑
j=1

λ
q
j gq

rj

≥

(
1 + φt

ro

)
gt

ro, r = 1, . . . , s,
T∑

q=1

n∑
j=1

λ
q
j b

q
f j ≤

(
1−ϕt

f o

)
bt

f o, f

= 1, . . . , p,λq
j ≥ 0, j = 1, . . . , n, q = 1, . . . , T

(18)

The efficiency of period h, TEDM(h), can be calculated similarly. The global MPI between two
periods is MPIDM(t,h)

o = TEDM(h)/TEDM(t). MPIDM(t,h)
o can be used to assess the change in TE of DMUo

from period t to period h under managerial disposability. MPIDM(t,h)
o > 1 (or MPIDM(t,h)

o < 1) indicates
that the TE has improved (or decreased).

Since TEDM(t) = ECEDM(t)
× ENEDM(t), it leads to the following relationship between period and

process MPIs:

MPIDM(t,h)
o =

TEDM(h)

TEDM(t)
=

ECEDM(h)
× ENEDM(h)

ECEDM(t) × ENEDM(t)
= MPIDM−ECE(t,h)

o ×MPIDM−ENE(t,h)
o (19)

This is that the period MPI between two periods is the product of the two process MPIs between
the same periods.

In addition, MPIDM(t,h)
o can also be decomposed into two components as

MPIDM(t,h)
o =

TESM(h)

TESM(t)
×

(
TEDM(h)/TESM(h)

TEDM(t)/TESM(t)

)
= ECDM(t,h)

× TCDM(t,h) (20)

Here, ECDM(t,h) is the static efficiency change indicator and TCDM(t,h) measures the technical
change between the two periods.

Similarly, MPIDM−ECE(t,h)
o and MPIDM−ENE(t,h)

o can be decomposed into two components as

MPIDM−ECE(t,h)
o = ECESM(h)

ECESM(t) ×

(
ECEDM(h)/ECESM(h)

ECEDM(t)/ECESM(t)

)
= ECDM−ECE(t,h)

× TCDM−ECE(t,h)
(21)
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MPIDM−ENE(t,h)
o = ENESM(h)

ENESM(t) ×

(
ENEDM(h)/ENESM(h)

ENEDM(t)/ENESM(t)

)
= ECDM−ENE(t,h)

× TCDM−ENE(t,h)
(22)

3. Empirical Study

In this section, we employ the proposed models to measure the technical efficiencies of regional
industrial systems in China between 2011 and 2015 (the 12th Five-Year Plan period). Section 3.1
describes the regions and data used. Section 3.2 analyzes the results of the static and dynamic
evaluations for Chinese regional industrial systems.

3.1. Regions and the Data

There are 31 regions (provinces) in mainland China, which can be divided into three major areas:
eastern, central, and western areas. Since the data on energy input of Tibet are not available, it is
excluded. Table 1 reports the detailed information of 30 regions.

Table 1. Areas in China.

Areas Regions

Eastern area Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong and Hainan

Central area Shanxi, Jilin and Heilongjiang, Anhui, Jiangxi, Henan, Hubei and Hunan

Western area Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia, and Xinjiang

As argued by Bian et al. [18], the investment of fixed assets (IFA) is usually used as capital
input in regional efficiency evaluation. We, in this study, take IFA as capital input, labor and energy
consumption as other two inputs, industrial value added (IVA) as desirable output, and volume of
pollutants emission in the industrial waste gas (VPE) as undesirable output. Note that, the data of IFA
and IVA are adjusted by using the purchasing power parity (PPP) method to eliminate price fluctuation
impacts. In addition, VPE in this study include SO2, NOx, soot, and dust. We collected the data of
regional industrial systems between 2011 and 2015 from the Statistical Year Book of China (2012–2016).
Table 2 shows the descriptive statistics of the data.

Table 2. Descriptive statistics of the data (2011–2015).

Variables Units 2011 2012 2013 2014 2015

Labor 10 thousand persons Mean 305.52 318.91 326.32 332.51 325.77
S.D 326.36 332.38 336.79 340.01 339.28

Energy 10 thousand tons of
SCE a

Mean 9807.00 10,186.36 10,155.54 10,261.09 10,241.58
S.D 6344.06 6484.92 6560.12 6583.54 6660.01

Investment of fixed assets (IFA) billion RMB Yuan
Mean 3620.86 4302.45 5049.17 5649.18 6223.40
S.D 2678.48 3147.15 3729.40 4352.00 5027.73

Industrial value added (IVA) billion RMB Yuan
Mean 6707.18 7348.62 8026.24 8501.30 8920.60
S.D 5538.65 5958.84 6438.74 6861.69 7415.52

Volume of pollutants emission in
the industrial waste gas (VPE) billion RMB Yuan

Mean 161.56 153.31 149.17 153.33 132.28
S.D 95.07 90.08 87.34 90.77 77.98

a SCE indicates standard coal equivalent.

3.2. Efficiency Analysis

3.2.1. Static Efficiency Analysis

We first calculated the static TE, ECE, and ENE for 30 regional industrial systems using models (4)
and (8), which are displayed in Tables 3–5. If we simply compare the estimated TESN and TESM values,
they seem totally different except for those regions with efficiency scores equal to unity. For example,
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for Shanghai (in 2015) the calculated TESN and TESM are 1 and 0.3530 respectively. The estimated
TESN shows that Shanghai seems efficient, while in contrast in terms of TESM, it looks very inefficient.

Table 3. Static technical efficiencies (TEs) of regional industrial systems in China (2011–2015).

Areas
TE under Natural Disposability (TESN) TE under Managerial Disposability (TESM)

2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

Eastern area

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hebei 0.3003 0.2579 0.2199 0.1193 0.0648 0.3692 0.4342 0.4690 0.4694 0.4874

Liaoning 0.3425 0.3063 0.2967 0.2420 0.2540 0.4911 0.5994 0.7085 0.5758 0.2983
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 0.7684 0.6978 0.6235 0.4891 0.3530
Jiangsu 0.4886 0.5050 0.4688 0.3645 0.2094 1.0000 1.0000 1.0000 1.0000 1.0000

Zhejiang 0.5313 0.5463 0.4741 0.3945 0.2195 0.6062 0.7209 0.6073 0.6201 0.4645
Fujian 0.4691 0.4818 0.4565 0.3620 0.1983 0.6585 0.7973 0.7895 0.7562 0.6412

Shandong 0.3593 0.3672 0.3377 0.2467 0.1387 0.5473 0.6185 0.6447 0.6508 0.5255
Guangdong 1.0000 0.7523 0.6855 0.5712 0.3360 0.7369 0.7843 0.6855 0.6570 0.5612

Hainan 1.0000 0.8862 0.3338 1.0000 0.4666 0.8869 0.9465 0.5345 0.8141 0.3516
Mean 0.6810 0.6457 0.5703 0.5728 0.4443 0.7331 0.7817 0.7330 0.7302 0.6075

Central area

Jilin 0.4521 0.5448 0.6395 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Heilongjiang 0.7105 0.3660 0.2861 0.2082 0.0599 0.6583 0.5899 0.5792 0.3916 0.2846

Shanxi 0.1301 0.0996 0.0783 0.0512 0.0207 0.1737 0.1813 0.1625 0.1419 0.0837
Anhui 0.2798 0.2821 0.2725 0.2013 0.1069 0.6496 0.7881 0.8767 0.8240 0.7135
Jiangxi 0.2611 0.2484 0.2294 0.1816 0.0880 1.0000 1.0000 1.0000 1.0000 1.0000
Henan 0.2809 0.2968 0.2479 0.2071 0.1142 0.5015 0.6461 0.6293 0.6719 0.5673
Hubei 0.5249 0.5683 0.3929 0.2939 0.1695 0.6555 1.0000 1.0000 1.0000 1.0000
Hunan 0.3948 0.4646 0.3722 0.2883 0.1477 0.5430 0.7262 0.9253 0.9961 1.0000
Mean 0.3793 0.3588 0.3148 0.3040 0.2134 0.6477 0.7415 0.7716 0.7532 0.7061

Western area

Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Guangxi 0.4231 0.3671 0.3210 0.3021 0.3031 0.4768 0.6091 0.6709 0.7282 0.8109
Chongqing 1.0000 1.0000 0.2233 0.1933 0.1204 1.0000 1.0000 0.5652 0.6375 0.7597

Sichuan 0.3411 0.3729 0.3771 0.2732 0.1397 0.5208 0.6078 0.6241 0.5905 0.4312
Guizhou 0.0676 0.0781 0.0821 0.0769 0.0495 0.1166 0.1351 0.1464 0.1669 0.1468
Yunnan 0.2137 0.2045 0.1985 0.2203 0.2377 0.3135 0.3265 0.3563 0.3618 0.3686
Shaanxi 1.0000 1.0000 1.0000 1.0000 0.3024 1.0000 1.0000 1.0000 1.0000 0.4627
Gansu 0.1664 0.1531 0.1345 0.0723 0.0276 0.2949 0.3189 0.4438 0.3350 0.1934

Qinghai 0.6455 0.4048 0.2659 0.2614 0.1404 0.8601 0.7202 1.0000 0.7272 1.0000
Ningxia 0.0568 0.0497 0.0422 0.0359 0.0192 0.1666 0.1454 0.1717 0.1872 0.2613
Xinjiang 0.4478 0.2710 0.1252 0.1191 0.0246 0.7133 1.0000 0.5073 0.5126 1.0000

Mean 0.4875 0.4456 0.3427 0.3231 0.2150 0.5875 0.6239 0.5896 0.5679 0.5850

China Mean 0.5296 0.4958 0.4187 0.4095 0.2986 0.6570 0.7131 0.6907 0.6768 0.6255

It can be observed in Tables 3 and 5 that the average static TEs and ENEs under natural disposability
are all lower than those under managerial disposability. However, in Table 4, the average industrial
static ECEs under natural disposability are slightly higher than those under managerial disposability.
This finding indicates that a regional industrial system can improve its TE and ENE by increasing the
capital investment for technological innovation. Regional industrial systems should guarantee the
capital investment to support clean production technology.

Figure 1 shows the efficiency comparisons between natural disposability and managerial
disposability during the study period. It can be easily seen that the ENE is relatively small, and the
gap between ECE and ENE is very large under natural disposability. This implies that the technical
inefficiency is mainly caused by the low ENE under natural disposability. In contrast, the ENE is
relatively high, and the gap between ECE and ENE is very small under managerial disposability. This
implies that the ECE and ENE are harmonious under managerial disposability. Interestingly, we found
that the TE is mainly affected by the ENE, and the TE and ENE have the same trend under both natural
disposability and managerial disposability. These findings verify that the TEs of regional industrial
systems can be improved by increasing the capital investment for technological innovation.
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Table 4. Static economic efficiencies (ECEs) of regional industrial systems in China (2011–2015).

Areas
ECE under Natural Disposability (ECESN) ECE under Managerial Disposability (ECESM)

2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

Eastern area

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hebei 1.0000 1.0000 1.0000 0.9943 0.8784 0.9113 0.8625 0.8335 0.7418 0.6932

Liaoning 1.0000 1.0000 1.0000 1.0000 1.0000 0.8330 0.8160 0.9089 0.8759 0.9695
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9966 0.9947 0.9989 0.9803
Jiangsu 0.8753 0.9971 0.7454 0.7577 0.8427 1.0000 1.0000 1.0000 1.0000 1.0000

Zhejiang 0.9283 0.8466 0.9016 0.7203 0.7508 0.8375 0.8674 0.6894 0.7668 0.6983
Fujian 0.9402 0.9426 0.9573 0.9512 0.9293 0.8028 0.9453 0.8918 0.8835 0.7374

Shandong 0.9798 0.9918 0.8787 0.9339 0.9211 0.7794 0.7199 0.7856 0.7078 0.7115
Guangdong 1.0000 0.9708 0.8882 0.8341 0.8173 0.9550 0.9184 0.7163 0.7811 0.8489

Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9554 1.0000 1.0000
Mean 0.9749 0.9772 0.9428 0.9265 0.9218 0.9199 0.9206 0.8887 0.8869 0.8763

Central area

Jilin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Heilongjiang 1.0000 1.0000 1.0000 1.0000 0.9824 1.0000 1.0000 0.9163 0.8651 0.8026

Shanxi 1.0000 0.9662 0.9584 0.8645 0.5619 0.8485 0.6908 0.6516 0.5253 0.4348
Anhui 1.0000 0.9941 0.9810 0.9504 0.9693 0.8267 0.8650 0.9097 0.8407 0.7199
Jiangxi 1.0000 0.9990 0.9768 0.9963 0.9708 1.0000 1.0000 1.0000 1.0000 1.0000
Henan 0.9998 0.9790 0.8208 0.8963 0.6537 0.8215 0.8087 0.7499 0.7226 0.6673
Hubei 1.0000 1.0000 1.0000 0.9929 0.9969 0.8549 1.0000 1.0000 1.0000 1.0000
Hunan 1.0000 1.0000 1.0000 1.0000 0.9983 0.8298 0.8204 0.9385 0.9961 1.0000
Mean 1.0000 0.9923 0.9671 0.9626 0.8917 0.8977 0.8981 0.8958 0.8687 0.8281

Western area

Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Guangxi 1.0000 1.0000 1.0000 1.0000 1.0000 0.9099 0.8716 0.8302 0.8422 0.9153
Chongqing 1.0000 1.0000 0.9814 0.9487 0.9941 1.0000 1.0000 0.8962 0.9259 0.8904

Sichuan 0.9875 0.9928 1.0000 0.9979 0.9881 0.7844 0.7474 0.7822 0.8099 0.8316
Guizhou 0.9503 0.9806 1.0000 0.9895 0.9946 0.6235 0.6790 0.7511 0.7919 0.8777
Yunnan 1.0000 1.0000 1.0000 1.0000 1.0000 0.9161 0.8910 0.8896 0.9236 0.9823
Shaanxi 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9827
Gansu 1.0000 1.0000 1.0000 0.9979 0.8858 0.9003 0.8551 0.7682 0.7281 0.5951

Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000 0.9419 0.8749 1.0000 0.7715 1.0000
Ningxia 1.0000 1.0000 0.9790 0.9564 0.8641 0.7683 0.7343 0.6429 0.6147 0.6736
Xinjiang 1.0000 1.0000 1.0000 1.0000 1.0000 0.7945 1.0000 0.6812 0.7130 1.0000

Mean 0.9944 0.9976 0.9964 0.9900 0.9752 0.8763 0.8776 0.8402 0.8292 0.8862

China Mean 0.9887 0.9887 0.9690 0.9594 0.9333 0.8980 0.8988 0.8728 0.8609 0.8671
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Figure 1. Mean efficiencies of the Chinese industrial systems between 2011 and 2015: (a) Natural
disposability; (b) Managerial disposability.

Although the technical inefficiency is mainly sourced from the low ENE, some regions, like Hebei
(in 2015 under managerial disposability), have better pollutant control than regular production. There
are great disparities in inefficiencies of period efficiency among different regions. We took Zhejiang
and Liaoning as examples to further illustrate this point. It is observed that the ECEs are all lower
than the ENEs in Zhejiang between 2011 and 2015. A suggestion for such regions is that they should
improve their regular production first and keep the advantage of pollutant control. On the contrary, the
ECEs are all greater than the ENEs in Liaoning during 2011–2015, that is Liaoning performs badly on
pollutant control but well in regular production. For such regions, improvement in pollutant control
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is more urgent. These analytical results show the necessity and importance of decomposition of TE,
thereby potentially gaining more helpful information into efficiency improvement.

Figure 2 depicts the efficiency comparisons of three areas during the study period. As visually
summarized in Figure 2, the TE, ECE, and ENE of the three areas have a downward trend under
natural disposability. In contrast, such trends do not occur under managerial disposability. Under
natural disposability, the eastern region has the largest TE and ENE. Under managerial disposability,
the western area has the lowest TE and ENE, and the central area gradually catches up with the eastern
area regarding TE and ENE. This implies that increasing the capital investment for technological
innovation can effectively improve the central area’s TE and ENE. The low TE and ENE of the western
area may be caused by the shortage of capital investment for technological innovation, and it should
implement policies to support technological innovation for clean production. The results of efficiency
comparisons for the three areas are consistent with the situation of economic development in China.
In China, the eastern area has the most development while the western area has the least development.
The eastern area has sufficient capital investment for clean production technology. Due to its shortage
of capital investment for clean technology, the western area has the worst performance in TE and ENE.

Table 5. Static environmental efficiencies (ENEs) of regional industrial systems in China (2011–2015).

Areas
ENE under Natural Disposability (ENESN) ENE under Managerial Disposability (ENESM)

2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

Eastern area

Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hebei 0.3003 0.2579 0.2199 0.1200 0.0738 0.4051 0.5035 0.5628 0.6328 0.7031

Liaoning 0.3425 0.3063 0.2967 0.2420 0.2540 0.5896 0.7345 0.7795 0.6573 0.3077
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 0.7684 0.7002 0.6268 0.4897 0.3601
Jiangsu 0.5583 0.5065 0.6290 0.4811 0.2485 1.0000 1.0000 1.0000 1.0000 1.0000

Zhejiang 0.5724 0.6452 0.5259 0.5476 0.2924 0.7239 0.8311 0.8809 0.8087 0.6652
Fujian 0.4989 0.5112 0.4769 0.3806 0.2134 0.8203 0.8434 0.8853 0.8559 0.8695

Shandong 0.3668 0.3702 0.3843 0.2641 0.1505 0.7022 0.8591 0.8206 0.9195 0.7386
Guangdong 1.0000 0.7749 0.7717 0.6849 0.4111 0.7717 0.8540 0.9570 0.8412 0.6610

Hainan 1.0000 0.8862 0.3338 1.0000 0.4666 0.8869 0.9465 0.5595 0.8141 0.3516
Mean 0.6945 0.6599 0.6035 0.6109 0.4646 0.7880 0.8429 0.8248 0.8199 0.6961

Central area

Jilin 0.4521 0.5448 0.6395 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Heilongjiang 0.7105 0.3660 0.2861 0.2082 0.0610 0.6583 0.5899 0.6321 0.4527 0.3546

Shanxi 0.1301 0.1031 0.0817 0.0592 0.0368 0.2047 0.2625 0.2494 0.2701 0.1924
Anhui 0.2798 0.2838 0.2778 0.2118 0.1103 0.7858 0.9111 0.9637 0.9801 0.9911
Jiangxi 0.2611 0.2487 0.2348 0.1823 0.0906 1.0000 1.0000 1.0000 1.0000 1.0000
Henan 0.2809 0.3032 0.3020 0.2311 0.1747 0.6105 0.7990 0.8392 0.9298 0.8501
Hubei 0.5249 0.5683 0.3929 0.2960 0.1700 0.7668 1.0000 1.0000 1.0000 1.0000
Hunan 0.3948 0.4646 0.3722 0.2883 0.1480 0.6544 0.8852 0.9860 1.0000 1.0000
Mean 0.3793 0.3603 0.3234 0.3096 0.2239 0.7100 0.8060 0.8338 0.8291 0.7985

Western area

Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Guangxi 0.4231 0.3671 0.3210 0.3021 0.3031 0.5241 0.6988 0.8081 0.8647 0.8860
Chongqing 1.0000 1.0000 0.2275 0.2037 0.1212 1.0000 1.0000 0.6307 0.6886 0.8532

Sichuan 0.3454 0.3756 0.3771 0.2737 0.1414 0.6640 0.8131 0.7979 0.7291 0.5185
Guizhou 0.0711 0.0796 0.0821 0.0778 0.0497 0.1869 0.1989 0.1949 0.2108 0.1672
Yunnan 0.2137 0.2045 0.1985 0.2203 0.2377 0.3422 0.3665 0.4006 0.3917 0.3753
Shaanxi 1.0000 1.0000 1.0000 1.0000 0.3024 1.0000 1.0000 1.0000 1.0000 0.4709
Gansu 0.1664 0.1531 0.1345 0.0724 0.0312 0.3275 0.3729 0.5777 0.4600 0.3250

Qinghai 0.6455 0.4048 0.2659 0.2614 0.1404 0.9132 0.8232 1.0000 0.9425 1.0000
Ningxia 0.0568 0.0497 0.0431 0.0375 0.0222 0.2168 0.1980 0.2671 0.3046 0.3880
Xinjiang 0.4478 0.2710 0.1252 0.1191 0.0246 0.8978 1.0000 0.7447 0.7189 1.0000

Mean 0.4882 0.4460 0.3432 0.3244 0.2158 0.6429 0.6792 0.6747 0.6646 0.6349

China Mean 0.5348 0.5015 0.4333 0.4255 0.3092 0.7140 0.7730 0.7721 0.7654 0.7010
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Figure 2. Efficiency comparisons of three areas between 2011 and 2015: (a) TE under natural
disposability; (b) TE under managerial disposability; (c) ECE under natural disposability; (d) ECE under
managerial disposability; (e) ENE under natural disposability; (f) ENE under managerial disposability.

Note that the TEs and ENEs of the three areas under managerial disposability are all greater
than those under natural disposability. This result indicates that a positive strategy (managerial
disposability) is more helpful to provide the possibility for TE and ENE improvements. The regional
industrial systems of the three areas should consider environmental regulation as an opportunity and
take major strategic actions to utilize clean production technology. Only in this way can the regional
industrial systems simultaneously achieve economic benefits and environmental protection.

3.2.2. Dynamic Efficiency Analysis

We also calculated the MPIs to examine the changes in TE, ECE, and ENE of 30 regional industrial
systems over time. Tables 6–8 show the calculated results for all the consecutive two-year periods
over 2011–2015.
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Table 6. The Malmqusit productivity index (MPI) values of TE for Chinese industrial systems
(2011–2015).

Areas
MPIDN MPIDM

2011/2012 2012/2013 2013/2014 2014/2015 2011/2012 2012/2013 2013/2014 2014/2015

Eastern area

Beijing 1.0966 2.9871 1.0000 1.0000 1.0268 2.9871 0.5059 1.9768
Tianjin 1.2592 1.2814 1.0000 0.9385 1.2318 1.2773 1.0000 1.0000
Hebei 0.7772 1.2912 0.4901 1.0732 1.2791 1.4046 1.1952 1.2774

Liaoning 1.1120 1.1228 1.6288 1.4628 1.2408 1.4225 0.9297 0.7603
Shanghai 1.0118 1.0266 1.3541 2.0561 1.0790 1.0654 0.9943 1.4267
Jiangsu 1.1333 1.1070 0.9854 1.1354 1.2908 1.3566 1.1368 1.5515

Zhejiang 1.1274 1.0349 1.0544 1.1001 1.3097 1.1816 1.2628 1.2201
Fujian 1.1264 1.1298 1.0050 1.0826 1.4184 1.4801 1.0833 1.2993

Shandong 1.1205 1.0965 0.9258 1.1112 1.2161 1.2605 1.1195 1.2592
Guangdong 1.1195 1.0864 1.0561 1.1628 1.1195 1.0864 1.3321 1.5396

Hainan 1.2890 0.4229 2.4355 0.3612 1.3137 0.5361 1.9328 0.3641
Mean 1.1066 1.2352 1.1759 1.1349 1.2296 1.3689 1.1357 1.2432

Central area

Jilin 1.6622 1.5245 1.4172 0.6478 1.8808 1.2375 1.1613 1.0000
Heilongjiang 0.7789 0.8630 0.6762 0.3597 1.0106 1.1218 0.6157 1.0747

Shanxi 1.0155 0.9376 0.8277 0.8000 1.1870 1.0676 0.9047 0.9057
Anhui 1.1956 1.1518 0.9361 1.0501 1.5674 1.3841 1.0615 1.2060
Jiangxi 1.1197 1.1009 1.0037 0.9577 1.4137 1.7109 1.1208 1.0000
Henan 1.1588 0.9959 1.0587 1.0901 1.4103 1.2227 1.2217 1.2154
Hubei 1.5689 0.8495 0.9949 1.1396 1.4254 1.2573 1.0749 1.5793
Hunan 1.2522 1.0893 1.0053 1.0825 1.4537 1.5003 1.2354 1.4385
Mean 1.2190 1.0641 0.9900 0.8909 1.4186 1.3128 1.0495 1.1775

Western area

Inner Mongolia 1.0000 1.0000 0.9333 0.9710 1.1645 1.0000 1.0000 0.9118
Guangxi 0.8776 1.1615 1.3871 1.1918 1.3172 1.3973 1.3256 1.3713

Chongqing 1.0904 0.5625 1.0971 1.2318 1.3214 1.0912 1.2849 1.6920
Sichuan 1.1986 1.1452 0.9667 1.0108 1.3191 1.2801 1.0151 1.0851
Guizhou 1.2672 1.2318 1.2089 1.2704 1.2524 1.3276 1.1888 1.3051
Yunnan 1.1260 1.5481 1.3525 1.0264 1.2638 1.3849 1.1561 1.3531
Shaanxi 4.2335 1.0000 0.6889 0.3942 3.0772 1.3619 0.7401 0.6252
Gansu 0.8900 1.5065 0.4775 0.7549 1.7745 1.4604 0.9918 0.6542

Qinghai 0.6541 0.8418 0.9213 0.5192 0.8031 1.4876 1.1841 1.4138
Ningxia 1.0788 1.0256 1.0771 1.0562 1.5760 1.2663 1.3035 1.5373
Xinjiang 0.6652 0.5717 0.9346 0.2099 0.9075 1.2310 1.2611 1.9828

Mean 1.2801 1.0541 1.0041 0.8760 1.4342 1.2989 1.1319 1.2665

China Mean 1.2019 1.1178 1.0567 0.9673 1.3608 1.3269 1.1057 1.2291

Table 7. The MPI values of ECE for Chinese industrial systems (2011–2015).

Areas
MPIDN−ECE MPIDM−ECE

2011/2012 2012/2013 2013/2014 2014/2015 2011/2012 2012/2013 2013/2014 2014/2015

Eastern area

Beijing 1.0127 1.0003 1.0000 1.0000 1.1460 1.0420 0.9999 1.0001
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Hebei 1.0000 1.0000 0.9914 0.8755 0.9386 1.1176 0.8131 0.8525

Liaoning 1.0019 1.0065 1.0064 1.0000 0.9662 1.0910 1.0370 1.0511
Shanghai 1.0000 1.0000 1.0000 1.0000 0.9331 1.0802 0.9880 1.0118
Jiangsu 1.0196 1.0009 0.7475 1.2235 1.0145 1.0399 1.0481 1.4205

Zhejiang 1.1453 1.0039 0.9947 1.0315 1.0068 1.0031 1.0498 1.0082
Fujian 0.9947 0.9986 1.0075 1.0228 1.0726 1.0750 1.0546 1.0133

Shandong 0.9829 0.9724 1.0442 0.9158 0.9769 0.9945 0.9978 0.9776
Guangdong 0.9955 0.9251 1.0608 0.8983 0.9539 0.8849 1.1051 1.1042

Hainan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.0139 0.9916 0.9866 0.9970 1.0008 1.0298 1.0085 1.0399

Central area

Jilin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Heilongjiang 1.0000 1.0000 1.0000 0.9381 1.0000 0.9843 0.9961 0.8186

Shanxi 0.8451 1.1417 0.7380 1.4298 0.8925 0.8760 0.8741 0.7579
Anhui 1.0599 1.0047 1.0091 1.0093 1.0554 1.0578 0.9964 0.8424
Jiangxi 1.0337 0.9778 0.8568 1.1153 0.9563 1.2444 1.0000 1.0000
Henan 0.9896 0.8968 1.1106 1.0170 1.0105 0.9363 0.9759 0.9532
Hubei 1.0054 0.9943 0.9994 1.0063 1.0028 0.9317 0.9969 1.2056
Hunan 1.0140 0.9984 1.0037 1.0016 1.0386 1.0397 1.0672 1.0411
Mean 0.9935 1.0017 0.9647 1.0647 0.9945 1.0088 0.9883 0.9524

Western area

Inner Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Guangxi 1.0000 1.0000 1.0000 1.0000 0.9458 1.0876 0.9379 0.9915

Chongqing 1.0000 0.9788 1.0126 0.9907 1.0227 0.8519 1.0458 1.0007
Sichuan 1.0263 1.0431 1.0052 0.9941 1.0525 1.0802 1.0303 0.9386
Guizhou 1.0737 1.0444 1.0116 0.9908 1.1643 1.1328 1.0308 1.0123
Yunnan 1.0000 1.0000 1.0000 1.0000 0.9791 1.0844 1.0000 0.9823
Shaanxi 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9827
Gansu 1.0000 1.0000 0.9912 1.0077 1.0996 0.8792 0.9114 0.7426

Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000 0.9146 0.8899 1.2286
Ningxia 0.9415 1.1037 0.8889 1.0837 1.1233 0.8080 0.9695 0.8770
Xinjiang 1.0000 1.0000 1.0000 0.9823 1.0000 0.8413 0.8805 1.3499

Mean 1.0038 1.0155 0.9918 1.0045 1.0352 0.9709 0.9724 1.0097

China Mean 1.0037 1.0029 0.9810 1.0221 1.0102 1.0032 0.9897 1.0007
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Table 8. The MPI values of ENE for Chinese industrial systems (2011–2015).

Areas
MPIDN−ENE MPIDM−ENE

2011/2012 2012/2013 2013/2014 2014/2015 2011/2012 2012/2013 2013/2014 2014/2015

Eastern area

Beijing 1.0828 2.9861 1.0000 1.0000 0.8960 2.8669 0.5059 1.9765
Tianjin 1.2592 1.2814 1.0000 0.9385 1.2318 1.2773 1.0000 1.0000
Hebei 0.7772 1.2912 0.4943 1.2258 1.3628 1.2568 1.4699 1.4985

Liaoning 1.1099 1.1155 1.6185 1.4628 1.2842 1.3038 0.8965 0.7233
Shanghai 1.0118 1.0266 1.3541 2.0561 1.1563 0.9863 1.0064 1.4100
Jiangsu 1.1115 1.1059 1.3183 0.9280 1.2724 1.3045 1.0846 1.0922

Zhejiang 0.9844 1.0309 1.0600 1.0665 1.3008 1.1780 1.2028 1.2102
Fujian 1.1324 1.1314 0.9975 1.0585 1.3225 1.3768 1.0272 1.2822

Shandong 1.1400 1.1277 0.8867 1.2133 1.2448 1.2675 1.1220 1.2881
Guangdong 1.1245 1.1744 0.9956 1.2945 1.1736 1.2277 1.2054 1.3943

Hainan 1.2890 0.4229 2.4355 0.3612 1.3137 0.5361 1.9328 0.3641
Mean 1.0930 1.2449 1.1964 1.1459 1.2326 1.3256 1.1321 1.2036

Central area

Jilin 1.6622 1.5245 1.4172 0.6478 1.8808 1.2375 1.1613 1.0000
Heilongjiang 0.7789 0.8630 0.6762 0.3834 1.0106 1.1397 0.6181 1.3128

Shanxi 1.2017 0.8213 1.1215 0.5595 1.3299 1.2187 1.0350 1.1950
Anhui 1.1280 1.1465 0.9276 1.0405 1.4851 1.3085 1.0654 1.4316
Jiangxi 1.0832 1.1259 1.1714 0.8587 1.4783 1.3749 1.1208 1.0000
Henan 1.1709 1.1105 0.9533 1.0719 1.3956 1.3059 1.2519 1.2751
Hubei 1.5606 0.8544 0.9954 1.1325 1.4215 1.3494 1.0782 1.3100
Hunan 1.2349 1.0911 1.0016 1.0807 1.3997 1.4430 1.1577 1.3817
Mean 1.2276 1.0671 1.0330 0.8469 1.4252 1.2972 1.0610 1.2383

Western area

Inner Mongolia 1.0000 1.0000 0.9333 0.9710 1.1645 1.0000 1.0000 0.9118
Guangxi 0.8776 1.1615 1.3871 1.1918 1.3928 1.2847 1.4133 1.3831

Chongqing 1.0904 0.5747 1.0834 1.2433 1.2920 1.2809 1.2287 1.6907
Sichuan 1.1679 1.0978 0.9617 1.0168 1.2533 1.1851 0.9853 1.1561
Guizhou 1.1802 1.1794 1.1950 1.2822 1.0756 1.1719 1.1533 1.2892
Yunnan 1.1260 1.5481 1.3525 1.0264 1.2909 1.2772 1.1561 1.3774
Shaanxi 4.2335 1.0000 0.6889 0.3942 3.0772 1.3619 0.7401 0.6362
Gansu 0.8900 1.5065 0.4818 0.7491 1.6137 1.6610 1.0883 0.8809

Qinghai 0.6541 0.8418 0.9213 0.5192 0.8031 1.6264 1.3306 1.1508
Ningxia 1.1458 0.9292 1.2117 0.9746 1.4030 1.5672 1.3445 1.7531
Xinjiang 0.6652 0.5717 0.9346 0.2137 0.9075 1.4632 1.4323 1.4688

Mean 1.2755 1.0374 1.0138 0.8711 1.3885 1.3527 1.1702 1.2453

China Mean 1.1987 1.1165 1.0811 0.9546 1.3488 1.3252 1.1211 1.2291

It can be observed in Tables 6–8 that the average MPI values of TE, ECE, and ENE under natural
disposability are all lower than those under managerial disposability. It implies that increasing the
capital investment for technological innovation has a positive effect on the TE, ECE, and ENE. That is
the positive strategy is more helpful in improving efficiency in the dynamic context.

In Table 6, the Chinese regional industrial systems experience positive change under managerial
disposability, implying that the Chinese regional industrial systems’ TEs have been improved. However,
under natural disposability, one period of time, i.e., 2014/2015, displays a negative change (i.e., below
unity). The regional average MPI values of TE during the study period indicate that all the regions
except Heilongjiang have an improvement in their TEs under managerial disposability. Among them,
Beijing in the eastern area and Shaanxi in the western area are found to have relatively high annual
growth rate.

It can be observed in Tables 7 and 8 that the MPI values of ECE are all lower than those of ENEs
under managerial disposability. This suggests that the changes in ENE are more significant than those
in ECE, and the Chinese government’s environmental regulation policies have achieved remarkable
effects on industrial pollution control.

Additionally, in Table 7, regarding the MPI values of ECE under managerial disposability, we
find that Jiangsu in the eastern area has the highest annual growth rate. That is Jiangsu performs
well in regular production activities. In Table 8, regarding the MPI values of ENE under managerial
disposability, we find that Beijing in the eastern area and Ningxia in the western area have relatively
high annual growth rate. That is these two regions do well on industrial pollution control.
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Figure 3 displays the average MPI values of Chinese industrial systems over time. Note that the
MPI values of TE and ENE have the same trend under both natural disposability and managerial
disposability. This observation suggests that the TE is mainly affected by ENE in the dynamic context.
In order to enhance the TE, the Chinese industrial systems should take ENE into consideration and
make more efforts to improve ENE.
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In Figure 3, it is also found that the MPI values of TE and ENE are all greater than those of ECE under
managerial disposability. This observation verifies that the TE and ENE can be improved significantly
under managerial disposability and the decision makers should guarantee capital investment for
technological innovation.

The above-mentioned efficiency differences between natural disposability and managerial
disposability are confirmed graphically by Figure 4. As shown in Figure 4, the average MPI values of
TE and ENE under managerial disposability are all greater than those under natural disposability. All
these observations suggest that increasing the capital investment for technological innovation has a
positive effect on the TE and ENE. Therefore, in the following discussions, we focus on the analysis of
efficiency changes under managerial disposability.

Sustainability 2019, 11, x FOR PEER REVIEW 16 of 26 

industrial products increased by 6.7 times, with an average annual growth rate of 18.5%. The 
continuous technological progress of industrial enterprises has become an important force in driving 
China’s innovation. The global innovation index released by the World Intellectual Property 
Organization (WIPO) shows that the comprehensive ranking of China’s innovation capability has 
risen from 34th in 2012 to 22nd in 2017. 

  
(a) (b) 

Figure 3. Mean Malmqusit productivity index (MPI) values of Chinese industrial systems over time: 
(a) MPI values under natural disposability; (b) MPI values under managerial disposability. 

 
(a) (b) 

Figure 4. Mean MPI values of TE and ENE over time: (a) MPE values of TE; (b) MPI values for ENE. 

  
(a) (b) 

Figure 5. Mean EC and TC values of Chinese industrial systems over time: (a) EC and TC values of 
TE under managerial disposability; (b) EC and TC values of ENE under managerial disposability. 

Figure 4. Mean MPI values of TE and ENE over time: (a) MPE values of TE; (b) MPI values for ENE.

We further decomposed the MPI values of TE and ENE into the effects of static efficiency change
and (EC) technical change (TC) using Equations (20) and (22) in order to identify the driving factors of
TE and ENE changes. Table 9 reports the EC and TC values of TE. (For the EC and TC values of ENE,
see Appendix B.)
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Table 9. The EC and TC values of TE for Chinese industrial systems (2011–2015).

Areas
ECDM TCDM

2011/2012 2012/2013 2013/2014 2014/2015 2011/2012 2012/2013 2013/2014 2014/2015

Eastern area

Beijing 1.0000 1.0000 1.0000 1.0000 1.0268 2.9871 0.5059 1.9768
Tianjin 1.0000 1.0000 1.0000 1.0000 1.2318 1.2773 1.0000 1.0000
Hebei 1.1761 1.0801 1.0008 1.0383 1.0875 1.3004 1.1943 1.2302

Liaoning 1.2204 1.1821 0.8126 0.5181 1.0167 1.2034 1.1440 1.4675
Shanghai 0.9080 0.8935 0.7845 0.7217 1.1883 1.1924 1.2673 1.9768
Jiangsu 1.0000 1.0000 1.0000 1.0000 1.2908 1.3566 1.1368 1.5515

Zhejiang 1.1891 0.8424 1.0211 0.7490 1.1014 1.4026 1.2367 1.6290
Fujian 1.2107 0.9903 0.9578 0.8480 1.1715 1.4946 1.1311 1.5322

Shandong 1.1301 1.0423 1.0095 0.8075 1.0761 1.2093 1.1090 1.5595
Guangdong 1.0643 0.8740 0.9585 0.8541 1.0518 1.2431 1.3897 1.8027

Hainan 1.0672 0.5648 1.5231 0.4319 1.2310 0.9492 1.2690 0.8431
Mean 1.0878 0.9518 1.0062 0.8153 1.1340 1.4196 1.1258 1.5063

Central area

Jilin 1.0000 1.0000 1.0000 1.0000 1.8808 1.2375 1.1613 1.0000
Heilongjiang 0.8961 0.9818 0.6761 0.7269 1.1278 1.1426 0.9106 1.4786

Shanxi 1.0441 0.8961 0.8732 0.5897 1.1369 1.1914 1.0360 1.5358
Anhui 1.2132 1.1124 0.9399 0.8658 1.2919 1.2443 1.1293 1.3929
Jiangxi 1.0000 1.0000 1.0000 1.0000 1.4137 1.7109 1.1208 1.0000
Henan 1.2884 0.9740 1.0676 0.8443 1.0946 1.2554 1.1443 1.4394
Hubei 1.5255 1.0000 1.0000 1.0000 0.9344 1.2573 1.0749 1.5793
Hunan 1.3373 1.2743 1.0765 1.0039 1.0870 1.1774 1.1477 1.4330
Mean 1.1631 1.0298 0.9542 0.8788 1.2459 1.2771 1.0906 1.3574

Western area

Inner Mongolia 1.0000 1.0000 1.0000 1.0000 1.1645 1.0000 1.0000 0.9118
Guangxi 1.2774 1.1014 1.0855 1.1136 1.0312 1.2686 1.2211 1.2314

Chongqing 1.0000 0.5652 1.1280 1.1916 1.3214 1.9306 1.1391 1.4199
Sichuan 1.1669 1.0269 0.9462 0.7301 1.1304 1.2466 1.0728 1.4862
Guizhou 1.1588 1.0840 1.1402 0.8793 1.0808 1.2248 1.0426 1.4843
Yunnan 1.0415 1.0914 1.0152 1.0190 1.2135 1.2690 1.1388 1.3278
Shaanxi 1.0000 1.0000 1.0000 0.4627 3.0772 1.3619 0.7401 1.3511
Gansu 1.0814 1.3918 0.7547 0.5773 1.6409 1.0493 1.3141 1.1331

Qinghai 0.8373 1.3885 0.7272 1.3752 0.9592 1.0714 1.6284 1.0281
Ningxia 0.8731 1.1811 1.0902 1.3957 1.8051 1.0722 1.1957 1.1015
Xinjiang 1.4020 0.5073 1.0103 1.9509 0.6473 2.4264 1.2482 1.0163

Mean 1.0762 1.0307 0.9907 1.0632 1.3701 1.3564 1.1583 1.2265

China Mean 1.1090 1.0041 0.9837 0.9191 1.2500 1.3511 1.1249 1.3634

In Table 9, the third to sixth columns report the static efficiency changes of TE. The seventh to
tenth columns describe the technical changes of TE. Analysis of Table 9 yields the following:

(1) With regard to the static efficiency change, we find that 30 regions as a whole have a rise in their
efficiency change scores over time. Furthermore, Beijing, Tianjin, Jiangsu, Jilin, Jiangxi, and Inner
Mongolia do not experience changes in their TEs (i.e., ECDM = 1.000) over time, which means
that they are always on the production frontier. Among 30 regions, 13 regions show a decrease
in annual change score; this suggests that these regions are not successful in catching up with
the frontier.

(2) Regarding the technical change, it is found that all 30 regions show technical improvement during
the study period. This means that the regional industrial systems all perform well in promoting
technological progress.

(3) The scores of the technical change are all higher than those of the static efficiency change. It
means that the MPI value of TE is mainly constituted by the technical change.

Figure 5 shows the average static efficiency change and technical change values of TE and ENE.
In Figure 5, we find that the static efficiency change and technical change of TE are identical to those
of ENE. Specifically, the MPI values of TE and ENE are mainly affected by the technical changes.
Furthermore, the average EC values are close to unity (e.g., in Figure 5a, the minimum is 0.9191 and
the maximum is 1.1090), and the average TC values are all greater than unity (e.g., in Figure 5b, the
minimum is 1.1249 and the maximum is 1.3634). It may be concluded that the TE have not experienced
remarkable change and the catching-up effect is not distinct, and also the Chinese regional industrial
systems have experienced a significant technical improvement. All these observations suggest that
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the improvement in Chinese industrial efficiency may be mainly attributed to technical improvement
rather than the static efficiency change.
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The above-mentioned findings are consistent with the situation in Chinese industry. Since
the reform and opening-up, Chinese industry has been committed to technological innovation and
industrial technology has reached a new level. For example, from 2004 to 2016, the research and
development (R&D) companies, R&D personnel and R&D expenditures increased by 4.1 times, 3.5 times,
and 8.9 times respectively. On other hand, from 2004 to 2016, the sales revenue of new industrial
products increased by 6.7 times, with an average annual growth rate of 18.5%. The continuous
technological progress of industrial enterprises has become an important force in driving China’s
innovation. The global innovation index released by the World Intellectual Property Organization
(WIPO) shows that the comprehensive ranking of China’s innovation capability has risen from 34th in
2012 to 22nd in 2017.

4. Conclusions

This study proposes static and dynamic DEA models to evaluate the technical efficiencies of
industrial systems. The operational process of an industrial system is characterized as implementing
two types of activities, i.e., regular production activities and pollutant control activities. The duties
of the former activities are to generate desirable outputs for economic benefit, while the missions of
the latter activities are to reduce undesirable outputs for sustainable development. We decomposed
technical efficiency into economic efficiency and environmental efficiency to portray the performance
of the two types of activities. Based on the proposed model, the TE, ECE, ENE, and MPI values are
obtained simultaneously. The dynamic efficiency changes were also divided into two components
(i.e., static efficiency change and technical change) to explore what drives the changes in TE over time.
Since the proposed models decompose TE into ECE and ENE and analyze dynamic efficiency changes,
they have a higher discriminating power for the sources of inefficiencies in industrial systems than the
existing DEA models.

The proposed approach was applied to examine the technical efficiencies of Chinese regional
industrial systems between 2011 and 2015. The major findings are summarized as follows. First, the
low ENE is the main source of technical inefficiency. Second, the average static TEs and ENEs under
natural disposability are all lower than those under managerial disposability. This finding indicates
that a regional industrial system can improve its TE and ENE by increasing the capital investment for
technological innovation. Third, the MPI values of TE and ENE have the same trend, and the static
efficiency change and technical change of TE are identical to those of ENE. This finding further verifies
that the TE is mainly affected by the ENE. Finally, the static efficiency change has an insignificant
impact while the technical change has a significant impact on the changes in TE. It means that the TE
improvement in the Chinese industrial system is mainly driven by technical improvement, especially
the technical improvement of pollutant control.
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Based on the above findings, we supply the following policy implications for the sustainable
development of regional industrial systems in China. (1) More effort should be exerted to enhance the
ENE. It is recommended that the Chinese government takes comprehensive measures to fully mobilize
the initiative of industrial enterprises for enhancing the ENE, such as improving the laws and regulations
on environmental protection, implementing green credit policy, and promoting environmental tax
policy. (2) Increasing capital investment for technological innovation. The Chinese government
should provide appropriate financial support for industrial enterprises to promote technological
innovation, e.g., arranging the ring-fenced funding, developing technology finance, and granting
financial subsidies. (3) Encouraging industrial enterprises to improve the level of clean technology. It
is suggested that the Chinese government establishes an incentive mechanism to fully mobilize the
initiative of industrial enterprises for technological innovation, for example, encouraging industrial
enterprises to establish innovative teams, cooperate with universities, undertake major technological
innovation projects, and transform scientific and technological achievements.

In this study, we considered the two types of activities of industrial systems. Actually, the
operational process of an industrial system is composed of many activities, such as, two-stage process
or network structure. Further research may be conducted by exploring the internal structure of
industrial systems by using the network DEA approach. In addition, we only estimated the technical
efficiencies of Chinese regional industrial systems between 2011 and 2015, and thus a longer time
period would be a useful extension to our study.
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Appendix A

The process of model transformation.
Let 1∑s

r=1(1+φro)
×

1
p = βo, then model (4) becomes:

TESN = minβos
∑p

f=1

(
1−ϕ f o

)
s.t. pβo

∑s
r=1(1 + φro) = 1∑n

j=1 λ jxi j ≤ xio, i = 1, . . . , m∑n
j=1 λ jkl j ≤ klo, l = 1, . . . , h∑n

j=1 λ jgrj ≥ (1 + φro)gro, r = 1, . . . , s∑n
j=1 λ jb f j ≤

(
1−ϕ f o

)
b f o, f = 1, . . . , p

λ j ≥ 0, j = 1, . . . , n

(A1)

Nevertheless, model (A1) is still a nonlinear programming since it contains the nonlinear terms
βoϕ f o in the objective function and βoφro in the constraints. Let

βoϕ f o = ρ f o, βoφro = δro and βoλ j = γ j, (A2)
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Then model (A1) can be transformed into the following linear form:

TESN = mins(βop−
∑p

f=1 ρ f o)

s.t. p(sβo +
∑s

r=1 δro) = 1∑n
j=1 γ jxi j ≤ βoxio, i = 1, . . . , m∑n
j=1 γ jkl j ≤ βoklo, l = 1, . . . , h∑n

j=1 γ jgrj ≥ (βo + δro)gro, r = 1, . . . , s∑n
j=1 γ jb f j ≤

(
βo − ρ f o

)
b f o, f = 1, . . . , p

(A3)

By solving model (A2), we can obtain the optimal solution
(
γ∗j,ρ

∗

f o, δ∗ro, β∗o
)

and the TE. Using

Equation (A2), ϕ∗f o and φ∗ro can be obtained. Further applying Equations (5) and (6), we can then
calculate ECE and ENE.

Similar to model (4), model (8) can be transformed into the following linear form:

TESM = mins(βop−
∑p

f=1 ρ f o)

s.t. p(sβo +
∑s

r=1 δro) = 1∑n
j=1 γ jxi j ≤ βoxio, i = 1, . . . , m∑n
j=1 γ jkl j ≥ βoklo, l = 1, . . . , h∑n

j=1 γ jgrj ≥ (βo + δro)gro, r = 1, . . . , s∑n
j=1 γ jb f j ≤

(
βo − ρ f o

)
b f o, f = 1, . . . , p

γ j ≥ 0, j = 1, . . . , n

(A4)

Similar to model (4), model (13) can be transformed into the following linear form:

TEDN(t) = min
∑p

f=1

(
pβt

o − ρ
t
f o

)
s.t. p(sβt

o +
∑s

r=1 δ
t
ro) = 1∑T

q=1
∑n

j=1 γ
q
j x

q
i j ≤ β

t
oxt

io, i = 1, . . . , m∑T
q=1

∑n
j=1 γ

q
j k

q
l j ≤ β

t
okt

lo, l = 1, . . . , h∑T
q=1

∑n
j=1 γ

q
j gq

rj ≥
(
βt

o + δt
ro

)
gt

ro, r = 1, . . . , s∑T
q=1

∑n
j=1 γ

q
j b

q
f j ≤

(
βt

o − ρ
t
f o

)
bt

f o, f = 1, . . . , p

γ
q
j ≥ 0, j = 1, . . . , n, q = 1, . . . , T

(A5)

Similar to model (4), model (18) can be transformed into the following linear form:

TEDM(t) = min
∑p

f=1

(
pβt

o − ρ
t
f o

)
s.t. p(sβt

o +
∑s

r=1 δ
t
ro) = 1∑T

q=1
∑n

j=1 γ
q
j x

q
i j ≤ β

t
oxt

io, i = 1, . . . , m∑T
q=1

∑n
j=1 γ

q
j k

q
l j ≥ β

t
okt

lo, l = 1, . . . , h∑T
q=1

∑n
j=1 γ

q
j gq

rj ≥
(
βt

o + δt
ro

)
gt

ro, r = 1, . . . , s∑T
q=1

∑n
j=1 γ

q
j b

q
f j ≤

(
βt

o − ρ
t
f o

)
bt

f o, f = 1, . . . , p

γ
q
j ≥ 0, j = 1, . . . , n, q = 1, . . . , T

(A6)

Appendix B

Detail results of EC and TC for ENE.
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Table A1. The EC and TC values of ENE for Chinese industrial systems (2011–2015).

Areas
ECDM−ENE TCDM−ENE

2011/2012 2012/2013 2013/2014 2014/2015 2011/2012 2012/2013 2013/2014 2014/2015

Eastern area

Beijing 1.0000 1.0000 1.0000 1.0000 0.8960 2.8669 0.5059 1.9765
Tianjin 1.0000 1.0000 1.0000 1.0000 1.2318 1.2773 1.0000 1.0000
Hebei 1.2427 1.1178 1.1245 1.1111 1.0966 1.1243 1.3072 1.3486

Liaoning 1.2458 1.0613 0.8432 0.4680 1.0308 1.2285 1.0632 1.5453
Shanghai 0.9112 0.8952 0.7813 0.7354 1.2691 1.1017 1.2881 1.9174
Jiangsu 1.0000 1.0000 1.0000 1.0000 1.2724 1.3045 1.0846 1.0922

Zhejiang 1.1481 1.0599 0.9180 0.8225 1.1330 1.1114 1.3102 1.4714
Fujian 1.0282 1.0497 0.9668 1.0159 1.2862 1.3116 1.0625 1.2621

Shandong 1.2234 0.9553 1.1205 0.8032 1.0175 1.3269 1.0014 1.6036
Guangdong 1.1067 1.1206 0.8789 0.7858 1.0604 1.0955 1.3714 1.7742

Hainan 1.0672 0.5912 1.4551 0.4319 1.2310 0.9069 1.3283 0.8431
Mean 1.0885 0.9864 1.0080 0.8340 1.1386 1.3323 1.1203 1.4395

Central area

Jilin 1.0000 1.0000 1.0000 1.0000 1.8808 1.2375 1.1613 1.0000
Heilongjiang 0.8961 1.0715 0.7161 0.7835 1.1278 1.0637 0.8631 1.6757

Shanxi 1.1596 1.0577 1.0170 1.0112 1.0371 1.2827 0.9555 1.6775
Anhui 1.1596 1.0577 1.0170 1.0112 1.2808 1.2371 1.0475 1.4158
Jiangxi 1.0000 1.0000 1.0000 1.0000 1.4783 1.3749 1.1208 1.0000
Henan 1.3089 1.0503 1.1080 0.9143 1.0663 1.2434 1.1299 1.3946
Hubei 1.3042 1.0000 1.0000 1.0000 1.0899 1.3494 1.0782 1.3100
Hunan 1.3526 1.1139 1.0142 1.0000 1.0348 1.2955 1.1414 1.3817
Mean 1.1630 1.0304 0.9923 0.9277 1.2495 1.2605 1.0622 1.3569

Western area

Inner Mongolia 1.0000 1.0000 1.0000 1.0000 1.1645 1.0000 1.0000 0.9118
Guangxi 1.3334 1.1564 1.0701 1.0247 1.0445 1.1110 1.3207 1.3498

Chongqing 1.0000 0.6307 1.0919 1.2390 1.2920 2.0310 1.1253 1.3646
Sichuan 1.2246 0.9812 0.9138 0.7111 1.0234 1.2077 1.0782 1.6258
Guizhou 1.0641 0.9798 1.0815 0.7934 1.0108 1.1961 1.0664 1.6249
Yunnan 1.0709 1.0931 0.9778 0.9581 1.2054 1.1684 1.1823 1.4377
Shaanxi 1.0000 1.0000 1.0000 0.4709 3.0772 1.3619 0.7401 1.3511
Gansu 1.1385 1.5493 0.7963 0.7064 1.4174 1.0721 1.3667 1.2470

Qinghai 0.9014 1.2148 0.9425 1.0610 0.8909 1.3388 1.4117 1.0846
Ningxia 0.9135 1.3489 1.1402 1.2738 1.5357 1.1618 1.1792 1.3763
Xinjiang 1.1139 0.7447 0.9653 1.3910 0.8147 1.9647 1.4838 1.0559

Mean 1.0691 1.0635 0.9981 0.9663 1.3161 1.3285 1.1777 1.3118

China Mean 1.1069 1.0268 0.9995 0.9093 1.2347 1.3071 1.1201 1.3694

The characteristics of the EC and TC in Table A1 are similar to those in Table 9, thus we omit the analysis of
Table A1 here.

References

1. Sueyoshi, T.; Goto, M. Data envelopment analysis for environmental assessment: Comparison between
public and private ownership in petroleum industry. Eur. J. Oper. Res. 2012, 216, 668–678. [CrossRef]

2. Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emissions in China:
A nonparametric analysis. Energy Policy 2012, 49, 164–172. [CrossRef]

3. Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis
(DEA) based approach. J. Clean. Prod. 2017, 142, 846–853. [CrossRef]

4. Wang, K.; Wei, Y.M. China’s regional industrial energy efficiency and carbon emissions abatement costs.
Appl. Energy 2014, 130, 617–631. [CrossRef]

5. Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data
envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [CrossRef]

6. Meng, F.; Su, B.; Thomson, E.; Zhou, D.; Zhou, P. Measuring China’s regional energy and carbon emission
efficiency with DEA models: A survey. Appl. Energy 2016, 183, 1–21. [CrossRef]

7. Emrouznejad, A.; Yang, G.L. CO2 emissions reduction of Chinese light manufacturing industries: A novel
RAM-based global Malmquist-Luenberger productivity index. Energy Policy 2016, 96, 397–410. [CrossRef]

8. Zhao, L.; Zha, Y.; Liang, N.; Liang, L. Data envelopment analysis for unified efficiency evaluation:
An assessment of regional industries in China. J. Clean. Prod. 2016, 113, 695–704. [CrossRef]

9. Kao, C.; Hwang, S.N. Multi-period efficiency and Malmquist productivity index in two-stage production
systems. Eur. J. Oper. Res. 2014, 232, 512–521. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2011.07.046
http://dx.doi.org/10.1016/j.enpol.2012.05.035
http://dx.doi.org/10.1016/j.jclepro.2016.01.045
http://dx.doi.org/10.1016/j.apenergy.2014.03.010
http://dx.doi.org/10.1016/j.ecolecon.2008.03.009
http://dx.doi.org/10.1016/j.apenergy.2016.08.158
http://dx.doi.org/10.1016/j.enpol.2016.06.023
http://dx.doi.org/10.1016/j.jclepro.2015.05.128
http://dx.doi.org/10.1016/j.ejor.2013.07.030


Sustainability 2019, 11, 5019 22 of 23

10. Färe, R.; Grosskopf, S. Productivity and intermediate products: A frontier approach. Econ. Lett. 1996, 50,
65–70. [CrossRef]

11. Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins,
development and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [CrossRef]

12. Yang, C.C. An enhanced DEA model for decomposition of technical efficiency in banking. Ann. Oper. Res.
2014, 214, 167–185. [CrossRef]

13. Zha, Y.; Liang, N.; Wu, M.; Bian, Y. Efficiency evaluation of banks in China: A dynamic two-stage slacks-based
measure approach. Omega 2016, 60, 60–72. [CrossRef]

14. Arcos-Vargas, A.; Núñez-Hernández, F.; Villa-Caro, G. A DEA analysis of electricity distribution in Spain:
An industrial policy recommendation. Energy Policy 2017, 102, 583–592. [CrossRef]

15. Makridou, G.; Andriosopoulos, K.; Doumpos, M.; Zopounidis, C. Measuring the efficiency of energy-intensive
industries across European countries. Energy Policy 2016, 88, 573–583. [CrossRef]

16. Goto, M.; Otsuka, A.; Sueyoshi, T. DEA (Data Envelopment Analysis) assessment of operational and
environmental efficiencies on Japanese regional industries. Energy 2014, 66, 535–549. [CrossRef]

17. Wang, D.; Li, S.; Sueyoshi, T. DEA environmental assessment on US Industrial sectors: Investment for
improvement in operational and environmental performance to attain corporate sustainability. Energy Econ.
2014, 45, 254–267. [CrossRef]

18. Bian, Y.; Liang, N.; Xu, H. Efficiency evaluation of Chinese regional industrial systems with undesirable
factors using a two-stage slacks-based measure approach. J. Clean. Prod. 2015, 87, 348–356. [CrossRef]

19. Chen, L.; Lai, F.; Wang, Y.M.; Huang, Y.; Wu, F.M. A two-stage network data envelopment analysis approach
for measuring and decomposing environmental efficiency. Comput. Ind. Eng. 2018, 119, 388–403. [CrossRef]

20. Liu, Y.; Wang, K. Energy efficiency of China’s industry sector: An adjusted network DEA (data envelopment
analysis)-based decomposition analysis. Energy 2015, 93, 1328–1337. [CrossRef]

21. Wu, J.; Zhu, Q.; Ji, X.; Chu, J.; Liang, L. Two-stage network processes with shared resources and resources
recovered from undesirable outputs. Eur. J. Oper. Res. 2016, 251, 182–197. [CrossRef]

22. Wu, J.; Xiong, B.; An, Q.; Sun, J.; Wu, H. Total-factor energy efficiency evaluation of Chinese industry by
using two-stage DEA model with shared inputs. Ann. Oper. Res. 2017, 255, 257–276. [CrossRef]

23. Halkos, G.E.; Tzeremes, N.G.; Kourtzidis, S.A. Measuring sustainability efficiency using a two-stage data
envelopment analysis approach. J. Ind. Ecol. 2016, 20, 1159–1175. [CrossRef]

24. Li, Y.; Shi, X.; Emrouznejad, A.; Liang, L. Environmental performance evaluation of Chinese industrial
systems: A network SBM approach. J. Oper. Res. Soc. 2018, 69, 825–839. [CrossRef]

25. Fernández, D.; Pozo, C.; Folgado, R.; Jiménez, L.; Guillén-Gosálbez, G. Productivity and energy efficiency
assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index.
Appl. Energy 2018, 212, 1563–1577. [CrossRef]

26. Sueyoshi, T.; Goto, M.; Sugiyama, M. DEA window analysis for environmental assessment in a dynamic
time shift: Performance assessment of US coal-fired power plants. Energy Econ. 2013, 40, 845–857. [CrossRef]

27. Zhang, N.; Wang, B.; Liu, Z. Carbon emissions dynamics, efficiency gains, and technological innovation in
China’s industrial sectors. Energy 2016, 99, 10–19. [CrossRef]

28. Zhang, R.; Lu, C.C.; Lee, J.H.; Feng, Y.; Chiu, Y.H. Dynamic Environmental Efficiency Assessment of Industrial
Water Pollution. Sustainability 2019, 11, 3053. [CrossRef]

29. Chen, S.; Golley, J. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98.
[CrossRef]

30. Yao, X.; Guo, C.; Shao, S.; Jiang, Z. Total-factor CO2 emission performance of China’s provincial industrial
sector: A meta-frontier non-radial Malmquist index approach. Appl. Energy 2016, 184, 1142–1153. [CrossRef]

31. Charnes, A.; Cooper, W.W. Programming with linear fractional functions. Nav. Res. Logist. Q. 1962, 9,
181–186. [CrossRef]

32. Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2011, 130,
498–509. [CrossRef]

33. Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement
of input, output, and productivity. Econometrica 1982, 50, 1393–1414. [CrossRef]

http://dx.doi.org/10.1016/0165-1765(95)00729-6
http://dx.doi.org/10.1016/j.ejor.2017.06.023
http://dx.doi.org/10.1007/s10479-011-0926-z
http://dx.doi.org/10.1016/j.omega.2014.12.008
http://dx.doi.org/10.1016/j.enpol.2017.01.004
http://dx.doi.org/10.1016/j.enpol.2015.06.042
http://dx.doi.org/10.1016/j.energy.2013.12.020
http://dx.doi.org/10.1016/j.eneco.2014.07.009
http://dx.doi.org/10.1016/j.jclepro.2014.10.055
http://dx.doi.org/10.1016/j.cie.2018.04.011
http://dx.doi.org/10.1016/j.energy.2015.10.072
http://dx.doi.org/10.1016/j.ejor.2015.10.049
http://dx.doi.org/10.1007/s10479-015-1938-x
http://dx.doi.org/10.1111/jiec.12335
http://dx.doi.org/10.1057/s41274-017-0257-9
http://dx.doi.org/10.1016/j.apenergy.2017.12.008
http://dx.doi.org/10.1016/j.eneco.2013.09.020
http://dx.doi.org/10.1016/j.energy.2016.01.012
http://dx.doi.org/10.3390/su11113053
http://dx.doi.org/10.1016/j.eneco.2014.04.002
http://dx.doi.org/10.1016/j.apenergy.2016.08.064
http://dx.doi.org/10.1002/nav.3800090303
http://dx.doi.org/10.1016/S0377-2217(99)00407-5
http://dx.doi.org/10.2307/1913388


Sustainability 2019, 11, 5019 23 of 23

34. Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change
in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83.

35. Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.econlet.2005.02.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Proposed Models 
	Natural Disposability and Managerial Disposability 
	The Static Model 
	Technical Efficiency under Natural Disposability 
	Technical Efficiency under Managerial Disposability 

	The Dynamic Models 
	Technical Efficiency under Natural Disposability 
	Technical Efficiency under Managerial Disposability 


	Empirical Study 
	Regions and the Data 
	Efficiency Analysis 
	Static Efficiency Analysis 
	Dynamic Efficiency Analysis 


	Conclusions 
	
	
	References

